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Continuation from a flat to a round Earth model in

the coplanar orbit transfer problem

M. Cerf ∗ T. Haberkorn E. Trélat †

Abstract

In this article we focus on the problem of minimization of the con-
sumption for the coplanar orbit transfer problem. This problem is
usually solved numerically by a shooting method, based on the ap-
plication of the Pontryagin Maximum Principle, however the shooting
method is known to be hard to initialize and the convergence is difficult
to obtain due to discontinuities of the optimal control. Several tricks
are known in order to overcome that problem, however in this article
we introduce a new approach based on the following preliminary re-
mark. When considering a 2D flat Earth model with constant gravity,
the optimal control problem of passing from an initial configuration to
some final configuration by minimizing the consumption can be very
efficiently solved, and the solution leads to an extremely efficient algo-
rithm. Based on that, we propose a continuous deformation from this
flat Earth model to a modified flat Earth model that is diffeomorphic
to the usual round Earth model. The resulting numerical continuation
process thus provides a new way to solve the problem of minimization
of the consumption for the coplanar orbit transfer problem.

Keywords: orbit transfer problem; optimal control; Pontryagin Maxi-
mum Principle; shooting method; continuation.

1 Introduction

The fuel efficient orbit transfer of a satellite is a widely studied problem,
[13, 7]. We can distinguish mainly between two formulations of this prob-
lem. The first one considers that the vehicle produces instantaneous change
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of velocity and is referred to as the impulse orbit transfer, [14, 15, 19]. The
second formulation takes into account the fact that all engines have a limited
thrust and that the vehicle’s dynamics has to be continuous in the position
and velocity coordinates, [12]. In this continuous approach, we also sepa-
rate the high-thrust and the low-thrust transfer, depending on the available
acceleration.

In this paper, we focus on the high thrust orbit transfer that we further-
more restrict to be coplanar. This problem naturally writes as an optimal
control problem. There exists various numerical methods to solve such a
problem, and we usually separate them in two classes: direct and indirect
methods. Direct methods (e.g. surveyed in [4]) consist in discretizing the
optimal control problem in order to rewrite it as a parametric optimiza-
tion problem. Then a nonlinear large scale optimization solver is applied.
The advantage of this approach is that it is straightforward and is usually
quite robust. The main drawback is that those methods are computation-
ally demanding and that they are not very accurate when compared with
the indirect approach. Indirect methods are based on the Pontryagin Max-
imum Principle (PMP, see [17]) that is a set of necessary conditions for a
candidate trajectory and control strategy to be optimal. The idea is to use
those necessary conditions to reduce the search of a solution to the search of
the zero of the so-called shooting function (indirect methods are also called
shooting methods in this context). The advantage is that shooting meth-
ods are very fast when they converge and that they produce high accuracy
solutions. Their main drawback is that they typically use Newton-like al-
gorithm to look for the zero of the shooting function and thus, they are
hard to properly initialize. We can also mention mixed method that use a
discretization of the PMP necessary conditions and then apply large-scale
optimization solver (see e.g. [5]).

Because of its fast convergence and high accuracy, we will turn to a
shooting method to solve the coplanar orbit transfer problem. There already
exist some methods to cope with the initialization drawback of this method.
In [3], the authors use the impulse transfer solution to provide a good initial
guess to the shooting algorithm. This method is based on the fact that
limited thrust orbit transfer try to mimic impulse transfer, as outlined in
[15, 9]. However this approach is only valid for nearly circular initial and
final orbits. In [16], a multiple shooting method, parameterized by the
number of thrust arcs, is used to solve an Earth-Mars transfer. In [10, 11],
a differential continuation method linking the minimization of the L2-norm
of the control to the minimization of the consumption is used to solve the
low-thrust orbit transfer around the Earth. However this approach is not
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adapted for high-thrust transfer.
In this article we propose a novel way to initialize a shooting method for

high-thrust coplanar orbit transfer with fixed final time. It is based on a
continuation method starting with the solving of a simplified transfer on a
flat Earth model and then continuously adding curvature to end up with the
model we want to solve. Note that we restrict ourselves to fixed final time
problems since it has already been numerically shown that the continuous
transfer with maximization of the final mass does not have any solution (see
[16, 9]).

This paper is organized as follows. First, we explicit the optimal control
problem we want to solve, along with the necessary conditions given by the
PMP. Then we introduce the simplified flat Earth model and modify it so as
to introduce curvature and make it diffeomorphic to the round Earth model.
The next section presents the continuation procedure and explains how to
pass from the simplified model to the targeted optimal control problem. A
refined analysis is then carried out to provide a robust algorithm to solve
the simplified flat Earth model. Finally, we give a numerical example in
which we solve an orbit transfer from an SSO initial orbit to a circular final
one. Since our approach involves diffeomorphic changes of coordinates, we
explain in the appendix the impact of a change of coordinates onto the set
of adjoint vectors of the PMP.

1.1 The round Earth model and the optimal control problem

The model that we use for the coplanar orbit transfer problem is the follow-
ing. Assume that the Earth is spherical with center O and consider an iner-
tial geocentric frame (O,~i,~j,~k). Since we consider the coplanar orbit transfer
problem, we assume that whole trajectory lies in the plane O + R~i + R~j.

The satellite is modeled as a mass point M(t), with
−−→
OM(t) = r(t)~er, where

(~er, ~eϕ) denotes the usual Frénet frame defined by

~er = sinϕ~i+ cosϕ~j, ~eϕ = cosϕ~i− sinϕ~j.

It is subject to the central gravitational field g(r) = µ
r2 , where µ is the

Earth gravitational constant, and to the thrust
−→
T (t) ∈ R

2. The mass of
the satellite is denoted by m(t). The vehicle follows the two-dimensional
controlled Kepler equation

d2−−→OM
dt

(t) = −g(r(t))~er +

−→
T (t)

m(t)
, ṁ(t) = −β‖−→T (t)‖, (1)
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where β > 0 is the inverse of the thruster exhaust velocity. Moreover, the

control
−→
T (·) must satisfy the constraint

‖−→T (·)‖ 6 Tmax, (2)

where Tmax is the maximal allowed thrust, and ‖ ‖ denotes the usual Eu-
clidean norm.

Instead of cartesian coordinates, we next use polar coordinates whose

definition is recalled next. Recall that r(t) = ‖−−→OM(t)‖, and set

v(t) =

∥

∥

∥

∥

∥

d
−−→
OM

dt
(t)

∥

∥

∥

∥

∥

=
√

ṙ(t)2 + r(t)2ϕ̇(t)2.

Define the flight path angle γ(t) by

d
−−→
OM

dt
(t) = v(t)(sin γ(t)~er + cos γ(t)~eϕ).

Define the coordinates q = (r, ϕ, v, γ,m), with (r, ϕ) the polar coordinates
of the satellite, v its speed and γ the slope of the velocity vector. Then, the
control system (1) is written in spherical coordinates as

ṙ(t) = v(t) sin γ(t)

ϕ̇(t) =
v(t)

r(t)
cos γ(t)

v̇(t) = −g(r(t)) sin γ(t) +
Tmax

m(t)
u1(t)

γ̇(t) =

(

v(t)

r(t)
− g(r(t))

v(t)

)

cos γ(t) +
Tmax

m(t)v(t)
u2(t)

ṁ(t) = −βTmax‖u(t)‖

(3)

where the normalized control u(t) = (u1(t), u2(t)) satisfies T (t) = u(t)Tmax

and the constraint
‖u(t)‖ 6 1, (4)

for almost every t. The optimal control problem under consideration then
consists in steering the control system (3) from an initial configuration

r(0) = r0, ϕ(0) = ϕ0, v(0) = v0, γ(0) = γ0, m(0) = m0, (5)

to some final configuration that is either of the form

r(tf ) = rf , v(tf ) = vf , γ(tf ) = γf , (6)
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or of the form

ξKf
=
v(tf )2

2
− µ

r(tf )
−Kf = 0,

ξef
= sin(γ)2 +

(

1 − r(tf )v(tf )2

µ

)2

cos(γ)2 − e2f = 0.

(7)

The conditions (6) state that the satellite has to enter a specified orbit at
a given point of it. The conditions (7) only prescribe the final orbit, of
energy Kf < 0 (for it to be elliptic) and eccentricity ef , but not the entry
point on this orbit. Note that for both final conditions the orientation of the
final orbit is not prescribed (ϕ(tf ) is free). The criterion to consider is the
maximization of the final mass m(tf ). As mentioned in [9, 16], this problem
does not have a solution for free final time, so we assume tf to be fixed. In
what follows, this optimal control problem is referred to as (OCP).

According to the Pontryagin Maximum Principle, every optimal trajec-
tory q(·) of (OCP), associated with a control u(·) on [0, tf ], is the projection
of an extremal (q(·), p(·), p0, u(·)), where p(·) : [0, tf ] → R

5 is an absolutely
continuous mapping called adjoint vector, p0 is a non-positive real number,
with (p(·), p0) 6= (0, 0), and there holds

q̇(t) =
∂H

∂p
(q(t), p(t), p0, u(t)), ṗ(t) = −∂H

∂q
(q(t), p(t), p0, u(t)), (8)

for almost every t ∈ [0, tf ], where the Hamiltonian is defined by

H(q, p, p0, u) = prv sin γ + pϕ
v

r
cos γ + pv

(

−g(r) sin γ +
Tmax

m
u1

)

+ pγ

((

v

r
− g(r)

v

)

cos γ +
Tmax

mv
u2

)

− pmβTmax‖u‖,

with p = (pr, pϕ, pv, pγ , pm). This yields the adjoint equations

ṗr = pϕ
v

r2
cos γ − 2

r
pvg(r) sin γ +

1

r
pγ

(

v

r
− 2

g(r)

v

)

cos γ

ṗϕ = 0

ṗv = −pr sin γ − 1

r
pϕ cos γ − pγ

(

1

r
+
g(r)

v2

)

cos γ + pγ
Tmax

mv2
u2

ṗγ = −prv cos γ + pϕ
v

r
sin γ + pvg(r) cos γ + pγ

(

v

r
− g(r)

v

)

sin γ

ṗm =
Tmax

m2

(

pvu1 +
pγ

v
u2

)
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Moreover, the maximization condition

H(q(t), p(t), p0, u(t)) = max
‖w‖61

H(q(t), p(t), p0, w) (9)

holds almost everywhere on [0, tf ], and this quantity is constant since the
dynamics is autonomous. Note that if tf were to be free, we would also have
that H(tf ) = 0. Furthermore, one has the transversality conditions, that
depend on the chosen final configuration. For (6) we simply have

pϕ(tf ) = 0, pm(tf ) = −p0. (10)

For (7), the conditions (10) hold as well, and additionally the vector (pr(tf ),
pv(tf ), pγ(tf )) is a linear combination of the gradients (with respect to
(r, v, γ)) of the two relations (7). This writes as

∂rξKf
(pγ∂vξef

− pv∂γξef
) + ∂vξKf

(pr∂γξef
− pγ∂rξef

) = 0, (11)

where the expression has to be evaluated at the final time tf .
The extremal (x(·), p(·), p0, u(·)) is said normal whenever p0 6= 0, and

in that case it is usual to normalize the adjoint vector so that p0 = −1;
otherwise it is said abnormal. The controllability aspects of the orbit transfer
problem have been studied in [6, 7, 8, 10], and it has been proved in these
references that the abnormal case cannot occur for our terminal conditions
(5) and (6) or (7). Hence, from now on we assume that p0 = −1.

Define the so-called switching function Φ(·) along a given extremal by

Φ(t) =
1

m(t)

√

pv(t)2 +
pγ(t)2

v(t)2
− βpm(t),

for every t ∈ [0, tf ]. Then, we infer from the maximization condition (9)
that u(t) = (u1(t), u2(t)) = (0, 0) whenever Φ(t) < 0, and

u1(t) =
pv(t)

√

pv(t)2 +
pγ(t)2

v(t)2

, u2(t) =
pγ(t)

v(t)
√

pv(t)2 +
pγ(t)2

v(t)2

,

whenever Φ(t) > 0. Note that these formulas are well defined since the
functions pv(·) and pγ(·) do not vanish simultaneously identically on any
subinterval1. Note that the extremal control cannot be determined from the

1Indeed otherwise, it would follow from (9) and (9) that pr(·) and pϕ(·) vanish identi-
cally as well, and then the vanishing of the Hamiltonian would imply that pm(·) = −p

0 = 0,
which raises a contradiction.
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maximization condition in the case the switching function Φ(·) vanishes on
a subinterval of [0, tf ]. The non-occurrence of this singular case must be
checked from the numerical simulations.

Based on these necessary conditions, recall that the (single) shooting
method consists in finding a zero of the shooting function S defined as
follows. Given tf > 0 and p0 ∈ R

5, denote by (q(t, p0), p(t, p0)) the extremal
solution of (8), starting from the initial condition q(0) given by (5) and from
p(0) = p0. Then, the shooting function is defined by

S(tf , p0) =













r(tf , p0) − rf
v(tf , p0) − vf

γ(tf , p0) − γf

pϕ(tf , p0)
pm(tf , p0) − 1













or













ξKf
(p0)

ξef
(p0)

eq. (11)
pϕ(tf , p0)

pm(tf , p0) − 1













, (12)

depending on the chosen final conditions. The (single) shooting method thus
consists in combining any numerical method for integrating a differential
equation with a Newton-like method in order to determine a zero of the
shooting function S.

As mentioned formerly, it is difficult to obtain convergence of this method,
due to a difficulty of initialization and to the discontinuities of the control.
However, we observe that, when assuming that the Earth is flat and the
gravity is constant, the corresponding optimal control problem can be easily
solved, in a very explicit way. We next introduce this very simplified model
and explain our idea of passing continuously to the round Earth model.

1.2 Simplified flat Earth model

The movement of a vehicle in a flat Earth model with constant gravity is
governed by the control system

ẋ(t) = vx(t)

ḣ(t) = vh(t)

v̇x(t) =
Tmax

m(t)
ux(t)

v̇h(t) =
Tmax

m(t)
uh(t) − g0

(13)

ṁ(t) = −βTmax

√

ux(t)2 + uh(t)2
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where x(t) denotes the downrange, h(t) is the altitude, vx(t) is the horizontal
component of the speed, vh(t) is the vertical component of the speed, and
the control (ux(·), uh(·)) satisfies the constraint

ux(·)2 + uh(·)2 6 1. (14)

The constant g0 stands for the gravity g0 = µ
r2

T

at zero altitude, with rT

the Earth radius. We denote by (OCP)flat the optimal control problem of
maximizing the final mass m(tf ) for the control system (13), with the initial
and final conditions

x(0) = x0, h(0) = h0, vx(0) = vx0, vh(0) = vh0, m(0) = m0, (15)

h(tf ) = hf , vx(tf ) = vxf , vh(tf ) = 0. (16)

If we had to make a connection to the round Earth model, these final condi-
tions would be similar to (6) rather than (7). Furthermore, we do not have
to assume tf fixed and can include it in the parameter to optimize.

It happens that (OCP)flat can be explicitly, analytically solved by ap-
plying the Pontryagin Maximum Principle. This is the object of Section 2
further, and this resolution leads to an extremely efficient algorithm based
on a shooting method whose initialization is obvious. Based on that obser-
vation, it is tempting to try to use this efficient resolution in order to guess
a good initialization for the shooting method applied to (OCP). To this
aim, the idea is to use a continuation process by introducing parameters
such that, when one makes these parameters evolve continuously, one passes
from the flat Earth model to the initial round Earth model. Since the co-
ordinates of the flat Earth model are cartesian, and the coordinates of the
round Earth model are polar, this will of course require, at the end of the
process, a change of coordinates.

Before going into more details we can make one preliminary remark. In
the continuation process, the gravity constant g0 must be obviously deformed
in order to end up with the gravity model g(r). However there is a serious
difference between the flat Earth model, the gravity being constant or not,
and the round Earth model: indeed, in the round Earth model, periodic
trajectories (with u = 0) do exist, namely keplerian orbits. Whereas in
the flat Earth model there do not exist any trajectories with a zero control
having a periodic altitude h(t), due to the presence of the gravity term. This
obvious but important remark leads to the idea of deforming the flat Earth
model by introducing some new term into the dynamics, so that there may
exist some horizontal trajectories with zero control. Moreover, we would
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like this modified model to be equivalent, up to some change of coordinates,
to the round Earth model.

This modified flat Earth model is derived in the next subsection, by
defining a change of coordinates that is flattening circular orbits into hori-
zontal trajectories, and then computing the control system from this change
of coordinates.

1.3 Modified flat Earth model

vx0

xf

vh0

h0

hf

rT ϕf

γ0

vf

γf

hf

h0

(vxf , vhf) (rT + hf )ϕf ↔ xf

v0

Figure 1: Correspondence between flat and round Earth coordinates.

Starting from the polar coordinates (r, ϕ, v, γ) of the round Earth model,
let us define some cartesian coordinates (x, h, vx, vh). The idea of mapping
circular orbits to horizontal trajectories leads to define x = rϕ. Then, x(t)
represents the curvilinear abscissa of the pointM(t). The altitude is logically
defined by h = r− rT , where rT denotes the radius of the Earth. Using the
geometric definition of the angle γ, finally, one is led to define vx = v cos γ
and vy = v sin γ. Summing up, we consider the change of coordinates















x = rϕ
h = r − rT
vx = v cos γ
vh = v sin γ

⇐⇒



















r = rT + h
ϕ = x

rT +h

v =
√

v2
x + v2

h

γ = arctan vh

vx

(17)

and denote by F the corresponding diffeomorphism, such that F (x, h, vx, vh) =
(r, ϕ, v, γ). For the control, the transformation from spherical to cartesian

9



coordinates is
(

ux

uh

)

=

(

cos γ − sin γ
sin γ cos γ

)(

u1

u2

)

. (18)

Applying this change of coordinates to the control system (3) now leads,
after easy computations, to the control system

ẋ(t) = vx(t) + vh(t)
x(t)

rT + h(t)

ḣ(t) = vh(t)

v̇x(t) =
Tmax

m(t)
ux(t) − vx(t)vh(t)

rT + h(t)

v̇h(t) =
Tmax

m(t)
uh(t) − g(rT + h(t)) +

vx(t)2

rT + h(t)

ṁ(t) = −βTmax

√

ux(t)2 + uh(t)2

(19)

This modified formulation in cartesian coordinates is strictly equivalent to
the initial formulation in spherical coordinates. Therefore it still represents
the true round Earth transfer problem. Especially it admits the keplerian
orbits as periodic trajectories with a null thrust. Comparing this modified
formulation wit the flat Earth formulation, we have two differences: the first
one is of course the gravity term, which is constant in the simplified model
(13); the second difference is the presence of new terms in the dynamics of
x, vx and vh. These new terms can be seen as corrective terms in the flat
Earth model, which make possible in particular the existence of periodic
trajectories (with no thrust).

1.4 The continuation procedure

To pass from the simplified flat Earth model (13) to the modified flat Earth
model (19), we introduce two parameters. One of them permits to pass
continuously from the constant gravity term to the varying gravity term,
and the other introduces continuously the corrective terms. In brief, we
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consider the family of control systems

ẋ(t) = vx(t) + λ2vh(t)
x(t)

rT + h(t)

ḣ(t) = vh(t)

v̇x(t) =
Tmax

m(t)
ux(t) − λ2

vx(t)vh(t)

rT + h(t)

v̇h(t) =
Tmax

m(t)
uh(t) − µ

(rT + λ1h(t))2
+ λ2

vx(t)2

rT + h(t)

ṁ(t) = −βTmax

√

ux(t)2 + uh(t)2

(20)

parameterized by the parameters λ1 and λ2, themselves varying between 0
and 1. For λ1 = λ2 = 0, one recovers the simplified flat Earth model (13),
and for λ1 = λ2 = 1 one recovers the modified flat Earth model (19), which
is diffeomorphic to the initial round Earth model (3).

Now, for all (λ1, λ2) ∈ [0, 1]2, denote by (OCP)λ1,λ2
the optimal control

problem of steering the system (20) from (15) to (16) and maximizing the
final mass m(tf ). Since the problem (OCP)1,1 does not have a solution for
free final time, we decide to fix the final time tf for (λ1, λ2) in {1} × (0, 1].
The value that we choose for tf is the optimal final time of (OCP)(1,0). This
is not restrictive since numerical simulations show that the shooting method
is relatively robust with respect to changes on the fixed tf .

As before, the application of the Pontryagin Maximum Principle leads
to a shooting problem, as follows. For every optimal trajectory X(·) =
(x(·), h(·), vx(·), vh(·),m(·)) of (OCP)λ1,λ2

, associated with a control U(·) =
(ux(·), uh(·)) on [0, tf ] there exists an absolutely continuous mapping P (·) =
(px(·), ph(·), pvx(·), pvh

(·), pm(·)) : [0, tf ] → R
5 and p0 6 0, satisfying (p(·),

p0) 6= (0, 0), such that

Ẋ(t) =
∂Hλ1,λ2

∂P
(X(t), P (t), p0, U(t)),

Ṗ (t) = −∂Hλ1,λ2

∂X
(X(t), P (t), p0, U(t)),

(21)

for almost every t ∈ [0, tf ], where the Hamiltonian is defined by

Hλ1,λ2
(X,P, p0, U) = px

(

vx + λ2vh
x

rT + h

)

+ phvh + pvx

(

Tmax

m
ux − λ2

vxvh

rT + h

)

+ pvh

(

Tmax

m
uh − µ

(rT + λ1h)2
+ λ2

v2
x

rT + h

)

− pmβTmax‖u‖.
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In coordinates, the adjoint equations are

ṗx = −px
λ2vh

rT + h

ṗh = px
λ2xvh

(rT + h)2
− pvx

λ2vxvh

(rT + h)2
− pvh

(

2µλ1

(rT + λ1h)3
− λ2v

2
x

(rT + h)2

)

ṗvx = −px + pvx

λ2vh

rT + h
− 2pvh

λ2vx

rT + h

ṗvh
= −px

λ2x

rT + h
− ph + pvx

λ2vx

rT + h

ṗm =
Tmax

m2
(pvxux + pvh

uh)

Moreover, the maximization condition

Hλ1,λ2
(X(t), P (t), p0, U(t)) = max

‖W‖61
H(X(t), P (t), p0,W ) (22)

holds almost everywhere on [0, tf ], and this quantity is equal to 0 for (λ1, λ2) ∈
[0, 1] × {0} since the final time tf is free and the dynamics is autonomous.
Furthermore, one has the transversality conditions

px(tf ) = 0, pm(tf ) = −p0. (23)

The conditions (7) can be taken into account thanks to another continuation
from the transversality conditions (23) to the transversality conditions (11)
expressed in this cartesian reference frame.

Defining the switching function Φ(·)λ1,λ2
as

Φλ1,λ2
(t) =

1

m(t)

√

pvx(t)2 + pvh
(t)2 − βpm(t),

for every t ∈ [0, tf ], one has U(t) = (ux(t), uh(t)) = (0, 0) whenever Φ(t) < 0,
and

ux(t) =
pvx(t)

√

pvx(t)2 + pvh
(t)2

, uh(t) =
pvh

(t)
√

pvx(t)2 + pvh
(t)2

,

whenever Φ(t) > 0. Note that these formulas are well defined since the
functions pvx(·) and pvh

(·) do not vanish simultaneously identically on any
subinterval2.

2Indeed otherwise, it would follow from (22) that px(·) vanishes identically as well, and
then from (22) that px(·) also vanishes identically; then, the vanishing of the Hamiltonian
would imply that pm(·) = −p

0 = 0, which raises a contradiction.
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Assuming p0 = −1 (see comments for the round Earth model), the con-
tinuation method (see [2]) consists in solving a series of shooting problems
for sequences of parameters λ1 and λ2, with the starting point λ1 = λ2 = 0.
At each step, the previous solution is used as an initial guess for the shooting
problem. For every couple (λ1, λ2), the shooting function Sλ1,λ2

is defined
as follows. Given tf > 0 and P0 ∈ R

5, denote by (X(t, P0), P (t, P0)) the
extremal solution of (21), starting from the initial condition X(0) given by
(5) up to the change of coordinates (17), and from P (0) = P0. Then, the
shooting function is defined by

Sλ1,λ2
(P0, tf ) =

















h(tf , P0) − hf

vh(tf , P0)
vx(tf , P0) − vxf

px(tf , P0)
pm(tf , P0) − 1

H(tf ) if (λ1, λ2) ∈ [0, 1] × {0}

















. (24)

Note that in the case where tf is fixed, the shooting function has only five
components.

The continuation procedure consists in solving iteratively by a Newton-
like method the equation Sλ1,λ2

(P0, tf ) = 0 for a sequence of parameters
(λ1, λ2), starting from (0, 0) and ending at (1, 1). The starting point (0, 0)
of the continuation process corresponds to the simplified flat Earth model,
and hence we initialize the procedure with the solution of that simplified
model, as detailed in Section 2.

This algorithmic procedure provides a way of solving (OCP) without
any a priori knowledge on the optimal solution. The price to pay is that,
instead of solving only one optimal control problem, one has to solve a series
of (OCP)λ1,λ2

. However the whole procedure is time-efficient since the
shooting method relies on a Newton-like method. Our procedure provides
a way for bypassing the difficulty due to the initialization of the shooting
method when applied directly to (OCP). Numerical simulations are given
in Section 3.

One item remains however to be explained in our procedure. Indeed, the
continuation process above leads, provided it has converged, to the solution
of (OCP)1,1, which corresponds to the control system (19). As explained in
Section 1.3, this control system is equivalent to the initial control system (3)
via the change of coordinates (17) and (18). Hence, we must explain how the
change of coordinates must act onto the adjoint vector, so as to recover the
adjoint vector in the initial coordinates (pr, pϕ, pv, pγ , pm). Recalling that F

13



denotes the diffeomorphism defined by (17), we claim that

t(pr, pϕ, pv, pγ) = tdF (x, h, vx, vh)−1 · t(px, ph, pvx , pvh
), (25)

i.e., one passes from the adjoint vector in cartesian coordinates to polar
coordinates by applying the transpose of the inverse of the differential of F .
In coordinates, this yields, after easy computations,

pr =
x

rT + h
px + ph

pϕ = (rT + h)px

pv = cos γ pvx + sin γ pvh

pγ = v(− sin γ pvx + cos γ pvh
)

(26)

This claim follows from a general fact recalled separately, in the Appendix
(Section 5), for the sake of clarity. Note that pm remains unchanged.

2 Analysis of the optimal control problem with

the simplified flat Earth model

For this simplified optimal control problem, we consider similar terminal
conditions as (5) and (6) except that we impose γf to be zero and we express
them in cartesian coordinates. The terminal conditions are given by

x(0) = x0, h(0) = h0, vx(0) = vx0, vh(0) = vh(0), m(0) = m0

x(tf ) free, h(tf ) = hf , vx(tf ) = vxf , vh(tf ) = 0, m(tf ) free,
(27)

Contrarily to the initial (OCP), we leave tf free because the simplified
problem does not allow orbits and we thus have a solution for free final
time.

We assume moreover that

hf > h0 +
v2
h0

2g0
. (28)

Note that (28) discards the non interesting case of a zero consumption tra-
jectory. This assumption is satisfied in practice.

2.1 Application of the Pontryagin Maximum Principle

Denoting the adjoint variables by p = (px, ph, pvx , pvh
, pm), the Hamiltonian

is

H = pxvx + phvh + pvx

Tmax

m
ux + pvh

(

Tmax

m
uh − g0

)

− βTmaxpm

√

u2
x + u2

h,

14



and hence the adjoint equations are

ṗx = 0, ṗh = 0, ṗvx = −px, ṗvh
= −ph, ṗm =

Tmax

m2
(pvxux + pvh

uh).

According to the boundary conditions (27), the transversality conditions
yield px(tf ) = 0 and pm(tf ) = −p0 (with p0 6 0). It follows that px(·) is
identically equal to 0, that ph(·) is constant (denoted ph in what follows),
that pvx(·) is constant (denoted pvx in what follows), and that pvh

(t) =
−pht+ pvh

(0). Since the final time tf is free and the system is autonomous,
we infer that H = 0 along any extremal.

Setting Φ(t) = 1
m(t)

√

p2
vx

+ pvh
(t)2 −βpm(t) for every t ∈ [0, tf ], we infer

from the maximization condition of the Hamiltonian that u(t) = (ux(t), uh(t)) =
(0, 0) whenever Φ(t) < 0, and

ux(t) =
pvx

√

p2
vx

+ pvh
(t)2

, uh(t) =
pvh

(t)
√

p2
vx

+ pvh
(t)2

,

whenever Φ(t) > 0.

2.2 Analysis of extremal equations

First of all, notice that ṗm(t) = ‖u(t)‖Tmax

m(t)2

√

p2
vx

+ pvh
(t)2, hence pm(·) is

nondecreasing. More precisely, pm(·) is increasing whenever Φ(·) > 0 and
constant whenever Φ(·) < 0.

Lemma 1. The function t 7→
√

p2
vx

+ pvh
(t)2 does not vanish identically on

any subinterval of [0, tf ].

Proof. The argument goes by contradiction. If pvx = 0 and pvh
(·) = 0 on

a subinterval I, then derivating with respect to t yields ph = 0, and then
by Cauchy uniqueness pvh

(·) = 0 on [0, tf ]. Hence, pm(·) is constant, equal
to −p0. Besides, since H = 0, we infer that p0‖u(·)‖ = 0 on [0, tf ]. Since
hf > h0 (using (28)), the thrust ‖u(·)‖ cannot be identically equal to 0 on
[0, tf ], and hence p0 = 0. We have proved that (p(·), p0) = (0, 0), which is a
contradiction with the Pontryagin Maximum Principle.

This lemma implies in particular that the formulas for the extremal
controls above are well defined. Moreover, it follows from easy computations
that the function t 7→ Φ(t) is almost everywhere two times derivable, and

15



(recall that px = 0)

Φ̇(t) =
−phpvh

(t)

m(t)
√

p2
vx

+ pvh
(t)2

, (29)

Φ̈(t) =
β‖u(t)‖
m(t)

Φ̇(t) − m(t)
√

p2
vx

+ pvh
(t)2

Φ̇(t)2 +
p2

h

m(t)
√

p2
vx

+ pvh
(t)2

.(30)

Lemma 2. The function t 7→ Φ(t) is constant if and only if ph = 0.

Proof. If ph = 0 then it follows from (29) that Φ̇ = 0. Conversely, if Φ̇ = 0
then phpvh

= 0, and derivating with respect to time yields ph = 0.

Lemma 3. The function t 7→ Φ(t) does not vanish identically on any subin-

terval of [0, tf ].

Proof. The argument goes by contradiction. If Φ(·) = 0 on a subinterval I,
then, from Lemma 2, ph = 0, and then using the adjoint equations, pvh

(·) is
constant. Moreover, there holds 0 = H = −pvh

g0, and hence pvh
(·) = 0 on

[0, tf ]. In particular, this yields uh(·) = 0 on [0, tf ], and hence v̇h = −g0 and
vh(t) = vh0−g0t. From (27), vh(tf ) = 0, hence tf = vh0

g0
. Besides, integrating

ẋ2 = vh, one gets h(t) = h0 + vh0t− g0

2 t
2, and thus h(tf ) = h0 +

v2

h0

2g0
. From

(27) one has h(tf ) = hf , and we get a contradiction with (28).

This lemma shows that the singular case where the extremal controls
cannot be inferred directly from the maximization condition does not occur.

Lemma 4. If ph = 0 then the thrust ‖u(·)‖Tmax is constant on [0, tf ], equal

to Tmax. In other words, in that case the thrust is always maximal and there

is no switching.

Proof. If ph = 0 then, from Lemma 2, Φ(·) is constant, and from Lemma
3 this constant Φ cannot be equal to 0. If Φ < 0, then u = 0 on [0, tf ],
which is not possible since the thrust cannot be identically zero (this would
contradict, for instance, the fact that hf > h0). Hence, Φ > 0 and therefore
‖u(·)‖ = 1 on [0, tf ].

Lemma 5. If ph 6= 0 then

• either Φ(·) is increasing on [0, tf ],

• or Φ(·) is decreasing on [0, tf ],

• or Φ(·) has a unique minimum on [0, tf ], is decreasing before that

minimum and then increasing.
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Proof. If ph 6= 0 then, from Lemma 2, Φ(·) is not constant, hence Φ̇(·) is not
identically equal to 0. If Φ̇(·) does not vanish on [0, tf ], then Φ(·) is strictly
monotone, and this yields the two first cases of the result. If Φ̇(·) vanishes
at some point t1 of [0, tf ], then, using (30), for every t1 ∈ [0, tf ] such that
Φ̇(t1) = 0 there must hold Φ̈(t1) > 0 (since ph 6= 0), and therefore this point
is a local minimum. This reasoning shows that every extremum of Φ(·) is a
local minimum. It follows that the function Φ̇(·) cannot vanish more than
one time, otherwise there would exist another local minimum, and hence
there should then exist a local maximum between those two minima; but
this is a contradiction since every extremum of Φ(·) is a local minimum.
Therefore, the third point of the lemma follows.

Lemmas 4 and 5 imply that the thrust ‖u(·)‖Tmax of the optimal trajec-
tory is either constant, equal to Tmax, or has exactly one switching (and in
that case, passing either from 0 to Tmax, or from Tmax to 0), or has exactly
two switchings and passes from Tmax to 0 and then from 0 to Tmax. Actually,
we next prove that the latter possibility cannot occur, and finally derive the
following result.

Theorem 1. The optimal trajectory of (OCP)flat is a succession of at most

two arcs with a control modulus ‖u(·)‖ being either equal to 1 or to 0. More

precisely, the thrust ‖u(·)‖Tmax is

• either constant on [0, tf ] and equal to Tmax,

• or of the type Tmax − 0,

• or of the type 0 − Tmax.

Proof. Let us first start with the following lemma.

Lemma 6. If the modulus of the control ‖u(·)‖ has at least one switching

on [0, tf ] then p0 6= 0.

Proof of Lemma 6. The argument goes by contradiction. If p0 = 0 then
pm(tf ) = 0. Since pm(·) is nondecreasing, it follows that pm(t) 6 0 for every
t ∈ [0, tf ]. From Lemma 1,

√

p2
vx

+ pvh
(·)2 does not vanish identically on

any subinterval, hence Φ(·) = 1
m(·)

√

p2
vx

+ pvh
(·)2−βpm(·) > 0 on [0, tf ], and

therefore ‖u(·)‖ = 1 on [0, tf ]. This contradicts the assumption of having
one switching.

To prove the theorem, one has to prove that the strategy Tmax−0−Tmax

for the thrust cannot occur. The argument goes by contradiction. Assume
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that the thrust ‖u(·)‖Tmax is of this type, and denote by t1 < t2 the two
switching times.

Let us first prove that the minimum of Φ(·) is reached at t̄ =
pvh

(0)

ph
.

Using (29), if Φ̇(t̄) = 0 then there must hold phpvh
(t̄) = 0. Since Φ(·) is

not constant, one has ph 6= 0, hence pvh
(t̄) = 0. Integrating the differential

equation satisfied by pvh
(·), one gets t̄ =

pvh
(0)

ph
. By definition, this minimum

is reached within the interval (0, tf ). In particular, we deduce that

0 < t1 < t̄ =
pvh

(0)

ph
< t2 < tf . (31)

On [t1, t2], one has ‖u(t)‖ = 0, hence in particular m(·) and pm(·) are
constant on this interval, and thus m(t1) = m(t2) and pm(t1) = pm(t2).

Since the function t 7→ Φ(t) =

√
p2

vx
+(pvh

(0)−pht)2

m(t) − βpm(t) vanishes by defi-
nition at t1 and t2, it follows that

√

p2
vx

+ (pvh
(0) − pht1)2 =

√

p2
vx

+ (pvh
(0) − pht2)2,

and hence |pvh
(0) − pht1| = |pvh

(0) − pht2|. Since t1 6= t2, we infer that

t2 = 2
pvh

(0)

ph
− t1.

Note that the latter equality means that the graph of Φ(·) on the interval

[t1, t2] is symmetric with respect to the point t̄ =
pvh

(0)

ph
where the minimum

is reached.
Using the fact that H = 0 along an extremal and that px = 0, one gets

phvh(t) + ‖u(t)‖TmaxΦ(t) − g0pvh
(t) = 0, (32)

for every t ∈ [0, tf ]. In particular, at t = tf , one gets g0pvh
(tf ) = TmaxΦ(tf ) >

0, which implies pvh
(tf ) > 0. Since pvh

(·) is affine and vanishes at t̄, we get
that ph < 0, pvh

(·) 6 0 on [0, t̄] and > 0 on [t̄, tf ].
Now, note that uh(·) has the same sign as pvh

(·) during the thrust arcs,
so it is negative on [0, t1] and positive on [t2, tf ]. In particular, we have that

∀t ∈ [0, t2], v̇h(t) 6 −g0.

We can also deduce that vh0 > 0 otherwise we couldn’t have vh(t̄) = 0. Let
t̃ = min(vh0/g0, tf ) ∈ [t̄, tf ]. Then

h(t̃) 6 h0 +

∫ t̃

0
(vh0 − g0t) dt+max

(

0,

∫ t̃−vh0/g0

0
(vh0 − g0t) dt

)

6 h0 +
v2
h0

2g0
.
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Furthermore, uh(·) is positive and increasing on [t2, tf ], and vhf = 0, so vh(·)
is non positive on [t̄, tf ]. We then necessarily have

∀t ∈ [t̄, tf ], h(t) > hf

In particular, we need h(t̃) > hf . This leads to

h0 +
v2
h0

2g0
> hf .

This raises a contradiction with assumption (28).

Since the strategy where the thrust is maximal all along the flight is
also a minimum time strategy and is not cost efficient, we next focus on
the strategy Tmax − 0 (with one switching). Note however that the former
strategy can be viewed as a particular case of the latter one. The study of
the strategy 0 − Tmax is similar.

2.3 Refined analysis of the strategy Tmax−0, and algorithmic

procedure

Assume that we are in the case where the thrust has one switching, denoted
t1, with 0 < t1 < tf , and is of the form Tmax − 0.

Lemma 7. There holds tf =
pvh

(0)

ph
and phvh(t1)+phg0t1 = g0pvh

(0). More-

over, ph > 0, sign(pvx) = sign(vxf − vx0) and pvh
(0) > 0.

Proof. First of all, note that the identity (32) still holds in that case.
On [t1, tf ], one has ‖u(·)‖ = 0, and hence, from (32), phvh(·) = g0pvh

(·).
Taking t = tf yields pvh

(tf ) = 0 since vh(tf ) = 0 from the boundary condi-

tions (27). Since pvh
(t) = −pht+pvh

(0), it follows that tf =
pvh

(0)

ph
(note that

ph 6= 0 from Lemma 2). Moreover, for every t ∈ [t1, tf ], one has v̇h(t) = −g0,
hence vh(t) = vh(t1)− g0(t− t1). Since pvh

(t) = −pht+ pvh
(0), we infer that

phvh(t1) + phg0t1 = g0pvh
(0).

Since tf =
pvh

(0)

ph
, necessarily ph and pvh

(0) have the same sign. Let
us prove by contradiction that, actually, pvh

(0) > 0. If pvh
(0) < 0 then,

since the function pvh
(·) is affine and since pvh

(tf ) = 0, there should hold
pvh

(t) 6 0 for every t ∈ [0, tf ]. Hence, uh(t) < 0 and v̇h(t) 6 −g0 on [0, tf ].

Integrating, we would obtain h(t) 6 h0 + vh0t − g0

2 t
2 6 h0 +

v2

h0

2g0
. At the

final time tf , this would contradict (28). We thus conclude that ph > 0 and
pvh

(0) > 0.

19



For every t ∈ [0, t1[, one has v̇x(t) = Tmax

m(t) ux(t) with ux(t) having the same

sign than pvx , and for every t ∈]t1, tf ], one has ‖u(·)‖ = 0 and hence vx(·)
remains constant. Then, we directly have sign(vxf − vx0) = sign(ux(·)) =
sign(pvx).

Lemma 7 enables to significantly simplify the application of the single
shooting method to that case. We next explain the construction of this sim-
plified algorithmic procedure. A priori, when applying the single shooting
method, we have 5 unknowns, namely:

• the initial adjoint vector (ph, pvx , pvh
(0), pm(0), p0), defined up to a

multiplicative scalar3 (note that p0 6= 0 from Lemma 6),

• the final time tf ,

and 5 equations:

h(tf ) = hf , vx(tf ) = vxf , vh(tf ) = 0, pm(tf ) = −p0, H(tf ) = 0.

Recall that the adjoint vector (completed with p0) is defined up to a mul-
tiplicative scalar, and instead of choosing the usual normalization p0 = −1,
since there holds ph > 0, we rather choose to normalize the adjoint vector
so that ph = 1. Since the variable p0 is only used here to tune the equa-
tion pm(tf ) = −p0, we can therefore forget about the variable p0 and the
equation pm(tf ) = −p0. This is a first simplification.

Now there remain 4 unknowns, (pvx , pvh
(0), pm(0)) and tf , and 4 equa-

tions:
h(tf ) = hf , vx(tf ) = vxf , vh(tf ) = 0, H(tf ) = 0.

Note that the knowledge of the value of pm(0) permits to determine the
switching function Φ(·) and hence the switching time t1. It is therefore
possible to replace the unknown pm(0) with the new unknown t1. Hence,
from now on we have the 4 unknowns (pvx , pvh

(0), t1, tf ), and the 4 previous
equations.

Taking into account the fact that ph = 1, one can see from the previous
computations and from Lemma 7 that the system of equations

vh(tf ) = 0, H(tf ) = 0,

is equivalent to the system of equations

tf = pvh
(0), vh(t1) + g0t1 = g0pvh

(0).

3Note that we will not use, here, the usual normalization of the adjoint vector leading
to choose p

0 = −1 whenever p
0 6= 0.
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The final time tf being then directly determined by the value of pvh
(0), we

can reduce the problem to 3 unknowns (pvx , pvh
(0), t1) and 3 equations:

h(tf ) = hf , vx(tf ) = vxf , vh(t1) + g0t1 = g0pvh
(0).

We finally end up with the following simplified algorithmic procedure.

Algorithmic procedure

• Initialization: choose some values pvx > 0 and pvh
(0) > 0.

• Integrate numerically the differential equations in order to compute
(h(t), vx(t), vh(t)) on [0, t1], and stop the integration at t1 satisfying
vh(t1) + g0t1 = g0pvh

(0)

• Set tf = pvh
(0). On the interval [t1, tf ], one computes explicitly

vx(t) = Cste = vx(t1), h(t) = h(t1) + vh(t1)(t− t1) −
g0
2

(t− t1)
2.

Then, solve the system

h(tf ) = hf , vx(tf ) = vxf ,

with a Newton-like method.

Note that it is possible to compute explicit expressions of h(t) and of vx(t)
on the whole interval [0, tf ], however it happens that, from the numerical
point of view, this does not save time and the procedure described above is
more efficient.

The above algorithm is very easy to carry out and happens to be ex-
tremely efficient. The convergence is obtained instantaneously for almost
every random choice of initialized values of pvx > 0 and pvh

(0) > 0 (on a
standard MacBook Pro dual core machine, in Matlab).

This simple code is used as a first step in our continuation procedure
described in Section 1.4.

The algorithm provides a solution in terms of (t1, tf , pvx , pvh
(0)). Then,

the unknowns (tf , p̄x(0), p̄h(0), p̄vx(0), p̄vh
(0), p̄m(0)) of the shooting function

(24) associated with this simplified model are computed by

p̄x(0) = 0, p̄h(0) =
m0 − βTmaxt1

β
√

p2
vx

(0) + (pvh
(0) − t1)2

,

p̄vh
(0) = pvh

(0)p̄h(0), p̄vx(0) = pvx(0)p̄vh
(0),

p̄m(0) =
1

βTmax

(

p̄h(0)vh0 +
Tmax

m0

√

p̄2
vx

(0) + p̄2
vh

(0) − g0p̄vh
(0)

)

.

(33)
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3 Numerical simulations

In this section we provide numerical simulations of the algorithmic proce-
dure described in Section 1.4, which consists in solving, in a continuation
process, a series of shooting problems initialized with the simple algorithm
introduced in Section 2.3. Since the latter code converges without any tricky
initialization, we thus get a way of solving (OCP)0,0 without any a priori
knowledge on the optimal solution.

Consider (OCP)0,0 with the initial conditions

x0 = 0, h0 = 200 km, v0 = 5.5 km/s, γ0 = 2◦, m0 = 40000 kg,

and the final conditions and problem parameters

hf = 800 km, vf = 7.5 km/s, γf = 0, Tmax = 170 kN, Isp = 450 s.

Note that this corresponds nearly to a circular final orbit (vf ≈
√

µ/(rT + hf ),
γf = 0), so one might want to introduce the transversality conditions (11)
once (OCP)1,1 is solved.

Using the code developed in Section 2.3 and the transformation (33), we
directly get the zero of the shooting function associated to (OCP)0,0

(tf,(0,0), p0,0(0)) ≈ (1433 s, 0, 0.755, 72.688, 1082.328,−0.137),

associated to the final mass m0,0(tf ) ≈ 1676 kg.
This solution is used as the starting point to the continuation from

(OCP)0,0 to (OCP)1,0, the problem for the flat Earth model with variable
gravity. This leads to the following zero of the shooting function

(tf,(1,0), p1,0(0)) ≈ (1483 s, 0, 3.851, 69.818, 2198.465,−0.236),

associated with the final mass m1,0(tf ) ≈ 1505 kg.
We should note that m1,0(tf ) < m0,0(tf ) seems counterintuitive since

the variable gravity is always lower than g0. However, the gravity does not
only tend to decelerate the vehicle; it also helps to flatten the trajectory in
order to reach vh(tf ) = 0.

At this point, we switch from (OCP)1,0 with free final time tf to (OCP)1,0

with a fixed final time. As mentioned in Section 1.4 this simply means that
the shooting function has one less unknown and thus one less relation to sat-
isfy at the end point of the extremal flow. This final time is tf ≈ 1483 s. The
solution p1,0(0) is then used to initialize the continuation from (OCP)1,0 to
(OCP)1,1. This leads to the solution

p1,1(0) ≈ (0, 12.219, 6824.539, 5230.033, 0.310),
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associated with the final mass m1,1(tf ) ≈ 18922 kg.
First we notice that the final mass of (OCP)1,1 is far better than the ones

of (OCP)0,0 and (OCP)1,0. This could be expected because in (OCP)1,1

the vehicle can use the centripetal forces that allow it to park on an inter-
mediary orbit in between two thrust arcs.

Figure 2 shows the zero path of the shooting function from (OCP)1,0 to
(OCP)1,1.
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Figure 2: evolution of the shooting function unknowns (ph, pvx , pvh
, pm (ab-

scissa) with respect to homotopic parameter λ2 (ordinate).

We can see that this zero path does not seem continuous. This is ex-
plained by the appearance of a new thrust arc during the continuation,
around λ2 ≈ 0.01, that is right at the start of the continuation. However,
this does not prevent the continuation to converge.

Figure 3 compares the trajectory and control strategy of (OCP)1,0 and
(OCP)1,1. On this figure we see that the solution of (OCP)1,0 is clearly
not acceptable because its altitude becomes negative. However (OCP)1,0

is only a fictive problem and there is no need to only accept collision free
trajectory until we solve (OCP)1,1. The main difference between the two
control strategies is that (OCP)1,0 (and (OCP)0,0) only has one thrust arc
while (OCP)1,1 has two. Furthermore, the fact that the mass consumption
is directly proportional to the thrust duration explains that m1,1(tf ) could
be expected to be better than m1,0(tf ).

From the solution of (OCP)1,1, it is possible to find other solutions with
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Figure 3: Trajectory and control strategy of (OCP)1,0 (dashed) and
(OCP)1,1 (plain).

different final time tf . This can help to find solutions with better final mass
than the one obtained here. For example, we can easily find a solution for
tf = 2000 s. with a corresponding final mass mf ≈ 20050 kg.

Also, since our final orbit is not strictly circular it can be interesting
to introduce the final condition of the form (7) rather than (6). This can
be done thanks to another continuation directly on the final conditions and
transversality conditions.

The whole procedure is time-efficient and only takes a few seconds on a
standard personal computer, without any coding trick.

4 Conclusion

We have given an algorithmic procedure to solve the problem of minimiza-
tion of the consumption for the coplanar orbit transfer problem by a shooting
method approach, without any a priori knowledge on the optimal solution
and hence on the way to initialize the shooting method. Our trick relies on
the preliminary remark that, when studying the same problem within a sim-
plified flat Earth model with constant gravity, the optimal control problem
can be explicitly solved, and the solution leads to an extremely efficient al-
gorithm that does not need any tricky initialization. Based on that remark,
we have proposed a continuous deformation of this simplified model to the
initial model (up to some change of coordinates), introducing continuously
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corrective terms into the flat Earth model. From the algorithmic point of
view, the procedure then consists in solving a series of shooting problems,
starting from the simplified flat Earth model which is easy to initialize, and
ending up with the sought solution. The whole procedure is time-efficient
and provides a way for bypassing the difficulty due to the initialization of
the shooting method when it is applied directly to the initial problem.

Many questions remain open and from this point of view our work should
be considered as preliminary. A first question is to investigate whether this
procedure is systematically efficient, for any possible coplanar orbit transfer.
Up to now we did not make any exhaustive tests, however it is very probable
that one may encounter some difficulties, as in any continuation process, due
to the intricate topology of the space of possible continuation paths, this
space being not always arcwise connected. Indeed, the flat Earth model only
has one thrust arc while the round Earth model has two or more. Another
question is to extend our study to the three-dimensional case, the final
objective for an enterprise as Astrium Space Transportation being to have
available a reliable and efficient tool to realize any possible orbit transfer
without having to spend much time on the initialization of the algorithm.

5 Appendix: action of a change of coordinates

onto the adjoint vector

To understand how a change of coordinates acts onto the adjoint vector, it is
useful to come back to the geometric meaning of the Pontryagin Maximum
Principle, recalling its intrinsic character.

Let M (resp. N) be a smooth manifold of dimension n (resp. m). Con-
sider onM the control system ẋ(t) = f(x(t), u(t)), where f : M×N −→ TM
is smooth, TM is the usual tangent bundle, and the controls are bounded
measurable functions taking their values in a subset U of N . Let M0 and M1

be two subsets of M . Consider the optimal control problem of determining a
trajectory x(·) solution of the control system, associated with a control u(·)
on [0, tf ], so that x(0) ∈ M0, x(tf ) ∈ M1, and minimizing a cost function

C(tf , u) =
∫ tf
0 f0(x(t), u(t))dt, where f0 : M ×N −→ R is smooth, and the

final time tf may be fixed or not. According to the Pontryagin Maximum
Principle, if x(·) is optimal then there exists p0 6 0 and an absolutely con-
tinuous mapping p(·) on [0, tf ] (adjoint vector) satisfying (p(·), p0) 6= (0, 0)
and p(t) ∈ T ∗

x(t)M , such that

ẋ(t) =
∂H

∂p
(x(t), p(t), p0, u(t)), ṗ(t) = −∂H

∂x
(x(t), p(t), p0, u(t)),
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almost everywhere on [0, tf ], where H(x, p, p0, u) = 〈p, f(x, u)〉 + p0f0(x, u)
is the Hamiltonian, and H(x(t), p(t), p0, u(t)) = M(x(t), p(t), p0), almost
everywhere on [0, tf ], where M(x(t), p(t), p0) = maxv∈U H(x(t), p(t), p0, v).
If the final time tf is not fixed, there holds moreoverM(x(t), p(t), p0) = 0, for
every t ∈ [0, tf ]. If M0 and M1 (or just one of both) are regular submanifolds
of M , then the adjoint vector can be chosen so that p(0) ⊥ Tx(0)M0 and
p(tf ) ⊥ Tx(tf )M1 (transversality conditions).

Settled in such a way on a manifold, we recall that the Pontryagin Maxi-
mum Principle is intrinsic, i.e., its statement does not depend on the specific
choice of coordinates. This intrinsic version has been proved e.g. in [1].

Let nowM1 (resp. N1) be another smooth manifold of dimension n (resp.
m), and let φ : M →M1 (resp. ψ : N → N1) be a diffeomorphism. Then, it
is well known in differential geometry that the differential dφ maps diffeo-
morphically the tangent bundle TM into TM1, and that the transpose (also
called adjoint) of its inverse tdΦ−1 maps diffeomorphically the cotangent
bundle T ∗M into T ∗M1. From this remark and from the intrinsic character
of the Pontryagin Maximum Principle, we derive the following claim.

Let x1(t) = φ(x(t)) and u1(t) = ψ(u(t)). The trajectory x1(·), as-
sociated to the control u1(·), is solution of the control system ẋ1(t) =
f1(x1(t), u1(t)) = dφ(x(t)).f(φ−1(x1(t), ψ

−1(u1(t)), and corresponds to x(·)
via the change of coordinates φ on the state and ψ on the control. Then,
the adjoint vector p1(·) associated with the trajectory x(·) is given by

p1(·) = tdφ(x(·))−1p(·). (34)

The formula (34) may of course be proved directly, without any geometric
insight, by using Cauchy uniqueness arguments.
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véhicules spatiaux, Springer, Collection “Mathématiques et Applica-
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