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Abstract. This paper presents a new multithreaded approach for the problem of
solving dense linear systems with verified results. We propose a new method that
allows our algorithm to run in a dual-core system without making any changes in
the floating-point rounding mode used during the computations, i.e., each proces-
sor independently uses its own floating-point rounding strategy to do the compu-
tations. The algorithm distributes the computational tasks among the processors
based on the floating-point rounding mode required by the task. We validate our
approach experimentally.

1 Introduction

Parallel computing has become a trend for the future. In the last few years, expensive
multiprocessor systems have become commodity hardware. Today many users already
have dual-core or even quad-core processors at home. Intel has also a prototype of a
80-core processor [25], that will be available in 5 years. Very soon multi processing
capacities will be available for everyone.

The new technology of dual-core processors allows the execution of parallel pro-
grams in any modern computer. The available applications, however, are not fully ready
to use these new technologies. Even well-studied scientific applications must be adapted
in order to fully use all available processors.

Many real problems need numerical methods for their simulation and modeling. A
large number of these problems can be solved through a dense linear system of equa-
tions. Therefore, the solution of systems like

Ax = b (1)

with a n × n matrix A ∈ Rn×n and a right hand side b ∈ Rn are very common in
numerical analysis. Many different numerical algorithms contain this kind of task as a
sub-problem [1, 26, 23].



There are numerous methods and algorithms which compute approximations to the
solution x in floating-point arithmetic. However, usually it is not clear how good these
approximations are, or if there exists a unique solution at all. In general, it is not possible
to answer these questions with mathematical rigor if only floating-point approximations
are used.

The use of verified computing makes it possible to find the correct result. However,
finding the verified result often increases the execution times dramatically [18]. The
research already developed shows that the execution time of verified algorithms are
much larger than the execution time of algorithms that do not use this concept [9, 8].

To compensate the lack of performance of such verified algorithms, some works
suggest the use of midpoint-radius arithmetic to achieve a better performance, since its
implementation can be done using only floating-point operations [20, 21]. This would
be a way to increase the performance of verified methods.

A first parallel implementation was presented using the C-XSC library and MPI
for Cluster computers [12–14]. In this research, two main parts of this method (which
represents the larger part of the computational costs), were studied, parallelized and
optimized. These works achieved significant speed-ups, reinforcing the statement that
the parallelization of such a method is an interesting alternative to increase its usability.

We present a new multithreaded approach for the problem of solving dense linear
systems with verified results. We propose a new method that allows our algorithm to run
in a dual-core system without making any changes in the floating-point rounding mode
used during the computations, i.e., each processor independently uses its own floating-
point rounding strategy to do the computations. With this strategy we do not need to
pay the cost of changing the rounding strategy during the computation, which can be
more than 10 times larger than a floating point operation. The algorithm distributes the
computational tasks among the processors based on the floating-point rounding mode
required by the task.

This text is organized as follows. Section 2 presents some mathematical concepts of
verified computing, Section 3 describes the implementation issues, Section 4 presents
some experimental results, and finally Section 5 concludes de work.

2 Mathematical Background

In general, it is not possible to answer how good an approximation delivered by a
conventional numeric algorithm is, when only floating-point approximations are used.
These problems become especially difficult if the matrix A is ill conditioned. The use of
verified computing can lead to more reliable results [2]. It provides as solution an inter-
val which surely contains the correct result [15]. If the solution is not correct, e.g. if the
matrix is singular, the algorithm will let the user know. The requirements for achiev-
ing this goal are: interval arithmetic and high accuracy, combined with well suitable
algorithms.

In order to ensure that an enclosure will be found, interval arithmetic was used in
this implementation. To find the best arithmetic for this method, the sequential algo-
rithms for point input data were written using both infimum-supremum and midpoint-
radius arithmetic. The performance tests of these sequential versions showed that the



midpoint-radius algorithm needs approximately the same time to solve a linear system
with point data as for interval input data. For infimum-supremum algorithm, the cost
for solving a linear system with interval input data becomes much higher, since the in-
terval multiplication must be implemented and the optimized functions from BLAS [6]
cannot be used. Therefore, midpoint-radius arithmetic was chosen for the parallel im-
plementation.

A verified method for solving linear systems can be found in [7], where the verified
method for solving linear system is based on the enclosure theory described in [22].
This method uses an interval Newton-like iteration and Brower´s fixed point theorem
to find a zero of f(x) = Ax− b with an arbitrary starting value x0 and an approximate
inverse R ≈ A−1 of A. If there is an index k with [x]k+1⊂̊[x]k (the ⊂̊ operator denotes
that [x]k+1 is included in the interior of [x]k), then the matrices R and A are regular,
and there is a unique solution x of the system Ax = b with x ∈ [x]k+1. We assume that
Ax = b is a dense square linear system. The method can be seen in Algorithm 1.

Algorithm 1 Enclosure of a square linear system.
1: R ≈ A−1{Compute an approximated inverse using LU-Decomposition algorithm}
2: x̃ ≈ R · b {compute the approximation of the solution}
3: [z] ⊇ R(b−Ax̃) {compute enclosure for the residuum}
4: [C] ⊇ (I −RA) {compute enclosure for the iteration matrix}
5: [w] := [z], k := 0 {initialize machine interval vector}
6: while not ([w] ⊆ int[y] or k > 10) do
7: [y] := [w]
8: [w] := [z] + [C][y]
9: k + +

10: end while
11: if [w] ⊆ int[y] then
12: Σ(A, b) ⊆ x̃+[w]{The solution set (Σ) is contained in the solution found by the method}
13: else
14: no verification
15: end if

3 Implementation Issues

The IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-
1985) [10] is the de facto standard for floating-point computation and is adopted by
all the major microprocessor manufacturers [11]. The standard defines both the repre-
sentation and operations in floating-point numbers.

At runtime, it is possible to configure a microprocessor to perform all the floating-
point operations using one of the following rounding modes: round to nearest, round
toward zero, round toward +∞ (rounding-up), and rounding toward −∞ (rounding-
down). Using the right round mode is very important to some scientific computations,
although it is well-known that changes in the rounding mode are expensive and can
impact the performance [3].



The main idea of this implementation is to use threads to explore the benefits of
dual-core processors to improve the performance. The algorithm is based on interval
arithmetic which needs to change the rounding mode frequently to find the enclosing
solution. Using dual-core processors, it is possible to divide the method in two parts:
one with rounding-up and another with rounding-down. The natural solution was to use
dedicated threads.

Our parallelization methodology divides the execution of the algorithm in five super-
steps, following the Bulk Synchronous Parallel model [24], and utilizes different threads
to execute the operations in each rounding mode. All operations that need a particular
rounding mode are executed in the same thread.

In order to improve the performance of our implementation, each worker is statically
attributed to one available processor. Defining the processor affinity [17] instructs the
operating system kernel scheduler to not change the processor used by one particular
thread, minimizing the number of changes in the rounding mode of each CPU.

Algorithms based on this method were implemented using just libraries like BLAS
and LAPACK [16] to achieve better performance. To ensure that an enclosure will be
found, interval arithmetic and directed rounding were used [19]. Algorithms were writ-
ten for point and interval input data using midpoint-radius arithmetic.

Inter-thread synchronization is done using POSIX shared memory and semaphores
primitives. Threads are created and managed using the standard POSIX threads li-
brary [5].

4 Results

In order to verify the benefits of these optimizations, three different experiments
were performed. The first concerns the correctness of the result. The second experiment
was done to evaluate the speed-up improvement brought by the proposed method. The
last test uses a real problem to compare both accuracy and execution time.

We used a dedicated computer with 2 Intel Itanium2 processors of 1.6 GHz. The op-
erating system is HP XC Linux for High Performance Computing (HPC), the compiler
used was the Intel icc 10.0 and the MKL 10.0.011 was used for an optimized version of
libraries LAPACK and BLAS.

4.1 Accuracy

Once modifications were done in the algorithm, we conducted some experiments
with well-conditioned and with ill-conditioned matrices to confirm that there were no
changes on the accuracy of the result. For well-conditioned matrices, this implementa-
tion delivers a very accurate result. A well-known example of ill-conditioned matrix are
the Boothroyd/Dekker matrices [7] that are defined by the following formula:

Aij =
(

n+i-1
i-1

)
×

(
n-1
n-j

)
× n

i+j−1 , bi = i,∀i, j = 1..n.



For n = 10 this matrix has a condition number of 1.09 · 10+15. The result found by
this parallel solver compared with the sequential and with the exact result is presented
in Table 1.

Table 1. Results for the Boothroyd/Dekker 10x10 matrix

exact result solution with threads sequential solution
x[0] 0.0 [-0.0000023,0.0000022] [-0.0000023,0.0000034]
x[1] 1.0 [0.9999785,1.0000223] [0.9999672,1.0000221]
x[2] -2.0 [-2.0001191,-1.9998557] [-2.0001182,-1.9998255]
x[3] 3.0 [2.9995540,3.0004640] [2.9993194,3.0004611]
x[4] -4.0 [-4.0014757,-3.9985808] [-4.0014680,-3.9978331]
x[5] 5.0 [4.9960976,5.0040557] [4.9940374,5.0040392]
x[6] -6.0 [-6.0099871,-5.9903856] [-6.0099531,-5.9853083]
x[7] 7.0 [6.9783176,7.0225133] [6.9668534,7.0224518]
x[8] -8.0 [-8.0472766,-7.9544496] [-8.0471964,-7.9303270]
x[9] 9.0 [8.9097973,9.0935856] [8.8620181,9.0934651]

As expected for an ill-conditioned problem, the accuracy of the results is not as
good as the results for well-conditioned problems. It is important to remark that even
if the result has an average diameter of 4.436911 · 10−02, it is an inclusion. In other
words, it is a verified result.

The tests generated by the Boothroyd/Dekker formula presented almost the same
accuracy on both versions (sequential and multithreaded). Actually, for this example,
the result of the parallel version is a narrower interval than the result of the sequential
version. As required by the algorithm, both results contain the exact result. This indi-
cates that the rounding was affected by the use of threads (possibly by changes in the
sequence of operations), however there was no loss of accuracy of the results.

4.2 Performance

We now present the execution times of both sequential and multithreaded algo-
rithms. Tests were executed for matrix dimensions from 1,000 to 10,000. As we had a
very small standard deviation (less than 1.82 in the worst case; the error bars did not
even appear) we just run 10 simulations for each dimension.

In order to validate the proposed parallelization schema, only the computation of
the enclosure for the iteration matrix (the C component showed in Algorithm 1) was
parallelized. The computation of C is the most costly operation performed by the algo-
rithm (complexity O(n3)), so this operation is the first hot spot to be considered in order
to improve the performance for this method. Also, our first experiments showed that,
for this particular case, the parallelization of the other parts of this algorithm suffered
from poor performance mainly due to the overhead introduced by lock contention. The
fine-grained access to the memory performed by these operations caused, very often,



a dispute for the locks that protect the same region of memory between the rounding
threads.

A more detailed study on where the use of multi-threaded parallelism can effectively
improve the execution time of other parts still needs to be done. There is a clear trade-
off between the overhead incurred by thread synchronization and the performance gain.
On this paper our major goal was to do a proof-of-concept on the use of threads to avoid
context changes.

Figure 1 shows the execution times for the C computation (enclosure for the itera-
tion matrix). In this figure, it is possible to see a significant reduction in the execution
time. The speed-ups are even super linear on the C computation (the heaviest part of the
computation), with speed-ups up to 2.80. We suppose that this is due to cache effects
as with two processors there are less cache misses. In the sequential version, all matrix
elements must be loaded in the cache to compute C with rounding-up, and after that,
again, to compute it with rounding-down. If the entire matrix does not fit in the cache,
there will be many cache misses for each rounding mode. Since both threads use the
same data at the same time, the multithreaded version allows a more effective utilization
of the available cache memory, resulting in a better (and even super linear) speed-up as
expected.
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Fig. 1. Time for C computation

Despite the fact of threads are being used only in the C computation, it was possible
to obtain a reasonable global speed-up that can be seen in Figure 2. The gain for solving
a system with dimension 10, 000 was approximately 40%, which is a considerable result
for this kind of platform.

4.3 Real Application

For a real problem test, the used matrix is from the application of Alfven Spectra in
Magnetohydrodynamics [4], used for Plasma physics. Large nonsymmetric generalized
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Fig. 2. Total execution time

matrix eigenvalue problems arise in the modal analysis of dissipative magnetohydrody-
namics (MHD). The MHD system combines Maxwell’s and fluid flow equations. The
physical objective of these MHD systems is to derive nuclear energy from the fusion
of light nuclei. The plasmas generated exhibit both the characteristics of an ordinary
fluid and special features caused by the magnetic field. The study of linearized motion
in MHD has contributed significantly to the understanding of resistive and nonadiabatic
MHD plasma phenomena such as plasma stability, wave propagation and heating.

This problem uses a square 3, 200 x 3, 200 real symmetric indefinite matrix, with
18, 316 entries (3, 200 diagonals, 7, 558 below diagonal, 7, 558 above diagonal).

The presented solver was written for dense systems, therefore, this sparse systems
will be treated as a dense system. No special method or data storage was used/done
concerning the sparsity of this systems.

The first elements of the result vector found for this problem with conditional num-
ber 2.02 · 1013 are presented in Table 2.

Table 2. Results for MHD3200B: Alfven Spectra in Magnetohydrodynamics

res Midpoint Radius Infimum Supremum
x[0] 6.1031675 · 10−01 6.7758771 · 10−17 6.10316758737 · 10−01 6.10316758738 · 10−01

x[1] 1.0954139 · 10−01 5.3302866 · 10−14 1.095413995491 · 10−01 1.095413995492 · 10−01

x[2] 5.4993982 · 10−02 6.1055585 · 10−18 5.499398270479 · 10−02 5.499398270480 · 10−02

x[3] 7.0470230 · 10+05 4.221512 · 10−07 7.04702304574 · 10+05 7.04702304575 · 10+05



Despite it is an ill-conditioned problem, the average diameter of the interval results
found by this threaded solver was 1.87 · 10−5. This is a very accurate result for such an
ill-conditioned problem.

The execution time for solving this systems of linear equations using the sequential
version was 90.80 seconds and with the new multithreaded solution was 70.03 seconds.
The gain in C computation was around 45% from 48.53 to 26.41 seconds.

5 Conclusions

We have shown one possible use of dual-core computers when rounding is needed.
We presented a separation of the calculation with rounding up and rounding down on
two separated threads in order to speed up the verified computation. The same idea can
be used for other problems of the same kind.

Our experiments showed that we can minimize the performance overhead of changes
in the floating-point rounding mode using multi-core machines. Although the inter-
thread synchronization primitives could potentially downgrade the overall performance,
we showed that coarse-grained operations combined with this minimization in the num-
ber of changes in the rounding mode can lead to a significantly better performance.

The fine control in the scheduling of threads provided by the Linux kernel (through
the processor affinity mechanism described in Section 3) allows the use of any num-
ber of threads and still guarantees that each available processor will use the minimum
number possible of changes in the floating-point rounding mode. We believe that this
makes our parallelization method flexible enough to be used in the parallelization of
other numerical problems.
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