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Trabecular bone consists of trabeculae which mechanical properties differ significantly from the surrounding 
marrow and therefore the ultrasonic wave is strongly scattered within the bone structure. The aim of the 
presented paper was the evaluation of the contribution of the first, second and higher order scattering (multiple 
scattering) into total scattering of ultrasounds in the trabecular bone. The scattering due to interconnections 
between thick trabeculae, usually neglected in trabecular bone models, has been also studied. The basic element 
in our model of trabecular bone was an elastic cylinder with finite-length and varying diameter and orientation. 
The applied model was taking into account variation of elements size and spatial configuration. The field 
scattered on the bone model was evaluated by solving numerically the integral form of the Sturm-Liouville 
equation that describes scalar wave in inhomogeneous media. For the calculated scattered fields the effective 
cross-sections as well as the Broadband Ultrasonic Backscatter (BUB) were determined. The influence of the 
absorption on scattering coefficients was demonstrate. The results allowed to conclude that within the frequency 
range from 0.5 to 1.5 MHz the contribution of the second order scattering to the effective backscattering cross-
section is at least 500 times lower than the one due to the first order scattering. BUB, calculated under the same 
assumptions, is 20 times lower. Above the 1.5 MHz the fast growth of the BUB, calculated for the second order 
scattering, occurs. 

1  Introduction 
The evaluation of bone strength requires not only the 

knowledge of its mean density but also of its microscopic 
structure. The ultrasound signals that have been scattered in 
trabecular bone contain information of the properties of the 
bone structure, and hence the analysis of the backscatter 
could be useful in assessment of the microscopic 
architecture of the bone. It has been demonstrated that the 
use of the backscattering models of bone enabled an 
assessment of some micro-structural characteristics from 
the experimental data.  

          Starting from Wear’s work [1], the best of the 
authors' knowledge almost all of the reported bone 
scattering models assumed, not precisely speaking the Born 
approximation, and consequently the multiple scattering 
within the bone trabeculae, was neglected. Trabecular bone 
consists of trabeculae whose mechanical properties differ 
significantly from the surrounding marrow and therefore the 
ultrasonic wave is strongly scattered. The work of Bossey et 
al.[2] presents analytically advanced approach. The 
scattering structure corresponds to the real one. 
Unfortunately this approach does not enable determination 
of the influence of multiple scattering on total The field. 
The Wear’s [3] work contains the review of methods and 
problems of bone sonometry.  

The aim of the presented paper was the evaluation of 
the contribution of the first, second and higher order 
scattering (multiple scattering) into total scattering of the 
ultrasounds in the trabecular bone. The scattering, due to 
interconnections between thick trabeculae, usually 

neglected in trabecular bone models, has been also studied. 
Our model is fully scaled.  

 The basic element in our model of trabecular bone 
was an elastic cylinder with varying finite-length and 
diameter as well as orientation. The density and speed of 
sound were similar to those of the bone tissue. The cylinder 
was applied in building of the multi-element structures, 
similar to the architecture of the trabecular bone, taking into 
account variation of elements size and spatial configuration. 
The field scattered on the bone model was evaluated by 
solving numerically the integral form of the Sturm-
Liouville equation in the version that describes longitudinal 
wave in inhomogeneous and lossy media. 

For the calculated scattered fields the effective cross-
sections as well as the Broadband Ultrasonic Backscatter 
(BUB), directly related to the detected echo-signal level, 
were determined. Calculations were performed for the  
different absorption parameters and  for the frequency 
ranging from 0.5 to 3 MHz.  

2 Basic equations  
The Lame’s equation for longitudinal (volumetric) 

disturbances in non-homogeneous, isotropic and stationary 
medium given in [4] can be rewritten in space–Fourier 
frequency domain as follows  
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Where [ ]),(),( tPFnCC xx == , [ ]),(),( tFnF xuxu = ; 
),( tPP x=  is the normalized stress; 0PPP ≡ , 0P  is the 

reference pressure, ),( txuu =  is the normalized displacement 
vector; 22 gc=+ μλ , )(xλλ = , )(xμμ =  are the first and 
the second Lame’s constants; )(xgg = , )(xcc = are 
respectively: normalized density and speed of the 
longitudinal (sound) waves, ),( tx are normalized 
coordinates in space and time, whereas∇ is the normalized 
nabla vector operator, symbol:• denotes scalar product, 

∇⋅∇≡Δ is the scalar Laplacian. The normalization was 
performed as follows: 0ggg ≡ , 0ccc ≡ , uu 0K≡ , 

xx 0K≡ , tt 0ω≡ , 
0K∇≡∇ . The dimensional 

variables and operators are accented; 0g , 0c  are density 
and speed of sound in reference medium respectively (in 
our case - volume dominant reference), 2

0000 2 cg=+ μλ . It 
means that 1=c  and 1=g  for reference medium. The 
characteristic wave number 0K and pulsation 0ω  are 
restricted by the relation: 000 ω=cK . 00 2 Tπω ≡ , 
where 0T is reference time (e.g. Time window). A 
consequence of the applied normalization method is 
equality of non-dimensional pulsation 0ωω≡n  and 
frequency, and the wave number in dispersion less media 

nnk ±=)( . In homogeneous regions of the medium 
),()( nana x= ; ),( na x  denotes spatial distribution of the 

small signal coefficient of absorption.  
The investigation of the absorption influence on the 

wave propagation in many media (especially biological) 
require generalization of the constitutive relation 

( ) FniC u⋅∇−+= 222 αμλ ( ( ) u⋅∇∂++= tP 222 αμλ ; 

( ) 2342 shb ηηα +≡ ; 2
000 cgshsh ωηη ≡ ; 2

000 cgbb ωηη ≡   are 
normalized share and bulk viscosity's respectively) 
describing classically (viscous) absorbing media. We 
propose this generalization in the form given by Eq.2. For 

2
2)( nna α= we obtain classically absorbing (viscous) 

media. 
    Simplification of the full Lame’s equation to the form 
given by Eq.1 depends on analytical properties of the 
assumed heterogeneity model (the assumption 0u =×∇  
only is not sufficient for derivation of Eq.1). The next 
chapter will present a model of heterogeneous medium with 
step rise changing material parameters, for which 0=Δμ  
also on the surfaces of phase separation, despite the fact that 

0≠∇μ   on these surfaces. We rewrite the Eq.(1) in the 
form of the Sturm-Liouville equation, 
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Where )(0 na  is the absorption coefficient of the reference 
medium. 

3 Medium construction  
We assume that reference homogeneous medium 

surrounds L regions lυ  of space. The regions are bounded 

by surfaces ls  Ll ,...,1= . We suppose that lυ  are open 

sets in space, however lll s∪=υυ are closed. Each region 

lυ  is filled with homogeneous medium and its normalized 
density 1≠lg , as well as normalized speed of the 
longitudinal waves 1≠lc . The multiple-theory sum of the 

lυ  sets describes the structure being submerged in 
reference medium. We assume that elements of structure do 
not cross in a sense of 3D measure of volume )(3 ⋅d  
however they may wear tangential. l

l
υυ U= , 

l
l

ss U= ,  

( ) 03 =mld υυ I , ( ) 01,2 ≠mld υυ I . Thus spatial distributions 
of sound speed, density and absorption coefficient have a 
form: 
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where d... denotes step rise of material parameters; 
)( ll υχχ ≡  is the characteristic function of lυ , 1=χ  for 

lυ∈x , 0=χ  for lυ∉x , 21=χ  for ls∈x .  
Neglect detailed discussion, we heave 
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Vector )(xe l is externally normal to ls in ls∈x  and is unit. 
Because { }Llslll ,...,1,:)()( =⊥= exexe  is a general field 
of the unit vectors being normal to the structure, then: 

)()()()( xexe lll ss δδ = since for ls∉x   0)( =lsδ . 

4 Scattering equations  
For the assumed model of structure of medium the 

Eq.(3) becomes as follows 
                  )(QV2 sBCCkC δ+=+Δ ,                 (7) 

Where ),()(),( nCnB xxex ∇⋅≡ . The field B is determined 
only on surface s  of the structureυ . Further, if it will not 
make misunderstanding the pulsation n will be neglected in 
the argument list. When transforming Eq.(7) into integral 
equation and using features of distributions )(sδ  and 

)(υχ  we obtain 
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Where )4)(exp(),( rrniknrG π≡ , '),( xxxx −=′= rr ,   

),()( 00 nCC xx ≡  is a solution of  Helmholtz equation in 
reference medium (incident field), )),,(()),(( nrGrG xxxx ′=′  
is the Green function of the Helmholtz equation. Applying 

∇⋅)(xe  to the both sides of Eq.(8) we get equation for the 
field B (acceleration). 
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where: 00 CB ∇⋅= e , GrG r∂⋅≡∂ )()()( rexe , rr rre =∇=)( .      
The integrals in Eq.8,9 describe the scattering of incident 
field on potentials V and Q  of the structure. It is sufficient 
to determine the equations for υ∈x  in order to solve it. 
When the solution is substituted to the integrals in Ee.(8) it 
gives solution in whole medium. 

By grouping the functions and their normal derivatives 
in vector function   
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and introducing the scattering field 0CCE −≡ , we 
may rewrite Eqs.(8) and (9) in the compact form       

                ( ) 0EE −=+ GWI      

               ( )CWGC ∫≡ oGW                            (11) 

where, the kernel of operator GW is 2×2 matrices 
(matrix of matrices) determined by diadic vectors product 
signs byo , 00 CE GW= . I  is the identity operation 

)(E)(E xxI =′ . Equivalent form of the operator GW is  
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Integration domains are clearly determined by υd  and 
ds . Because  ∑∑ ==

l
l

l
EEE lχ  then the operator 

GW can be presented as the sum of the cells 

lmml
GWGW

,
∪= ,  where lmGW is given by Eq.(11) or (12) 

for WW mm χ=  and lυ∈x . For lυ∈′xx, and xx ′= , 

0GW =lm (no self interaction).  We set lll GWGW ≡  for 
diagonal cells ml = .      

5 Solution method  
We seek the solution of Eq.(11) for υ∈x in the form  

                             21 REE +=∑
l

l                         (13) 

where 1E l  is the solution of Eq.(11) in l- th element of 
the structure under the assumption that the only scattering 
field in lυ  is 00 EE ll χ=  produced by incident field  

00 CC ll χ= , 0
l

0 CE ll GW= .  

                      ( ) 01 EE lll −=+ GWI                       (14) 

   001 EE llllll CGWHH −=−= , Ll ,...,1=      (15) 

where ( ) 1−+≡ ll GWIH denotes inverse operator. The 

fields 1E l determine a field in medium in the first order of 

scattering (single scattering). The field 0E l  represents first 
therm in Neuman series obtained by iteration of the integral 
Equations (8) and (9). The reminder 2R denotes a field in 
structure created due to interaction between structure 
elements in the second and higher orders of the scattering 
(multi-scattering).  The 2R  satisfies equation   
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The field 1
mE  is calculated as the field from the m- th 

element failing on l-th element. Then we repeat the 
described above procedure. We suppose that 

322 RER +=∑
l

l  and 2E l  satisfies (16) with source in 

the form of  l-th component on right side in (32). Then we 
have 
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and after substitution 12
mm EE →  3R satisfies Eq. (16).  

Generally, in j-th order of the scattering  
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Then in point x of the medium the total j-th order 
component of the scattered field takes the form 
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The total scattered field is given by sum of the )(xjE . 
We obtain the discrete (numerical) representation of the 

above procedure when W is replaced by the weight system 
)(W lζ  for numerical integration’s respect sampling 

structure vector )( lζxx → . Where lζ  is the sample index 
in l-th element of the scattered structure.  

       

6 Trabecular bone model  
The skeleton of the model of trabecular bone structure, 

applied in scattering field calculations, is presented in 
Figure 1:(a) left. One of skeleton structures parallel to the x-
z plane (horizontal respect incident field) is shown in Figure 
1: (a) right. The cylinder with diameter Φ and length d was 
adopted as the model of trabecular and bar . Each segment 
of the skeleton is the axis of cylinder.  

The skeleton was obtained randomly by displacement of 
nodes in each layers of regular structure built of cuboids. 
The uniform probability was assumed for displacements. 
The horizontal structures were adjusted to new node 
positions. Then some elements were randomly eliminated 
from the structure.  The structure is immersed in absorbing 



 
(or not) fluid filer. The results are wary similar to those 
which were presented in [6] . 

 

Figure 1 : (a) left: full skeleton of the trabecular bone 
model; right: one of horizontal substructures in the skeleton. 

(b) the cross-section of the real trabecular bone structure. 

Our model is fully calibratable. The change of number 
of elements and their geometrical parameters enables 
various porosity. Changing probability distribution 
functions and their parameters we can create different 
statistical properties of the physical and geometrical 
parameters of the structure.  It should be noted that in our 
model it is possible to change the shape of the elements, 
which fill the skeleton (cuboids, spheroids etc.). 

7 Results  
In the initial regular structure the cuboids dimensions 

are 2mm in the y direction and 1×1 mm in the x and z 
directions. For the nodes displacement the uniform 
probability was assumed in range  (-0.15; 0.15) mm. Also 
uniform probability for elimination of  some elements from 
the structure  were used. 

Values of sound speed and densities of each trabecualr 
were selected based on Gamma distribution. Maximum 
deviation from mean values 4000 m/s and 2000 kg/m3 was 
assumed as ±5%. For trabecular, in y direction and in 
horizontal planes, mean values Φ=0.05 and 0.04 mm with 
deviations ±20% and ±25% respectively, were assumed. 

For surrounding medium (marrow - fluid filler) as well 
as surrounding space g0=1000kg/m3, c0=1500m/s. The 
absorption parameters for fluid filer was α1= 
(0.23;1.15;2.3)·10-4 Np/mHz, πα 2)( 01 ncna = . Total 
number of elements (trabecular) was 443.  Total dimensions 
are: [-4;4]mm in x,  [-4;4] mm  in y, [0;6]mm in z direction 
(384mm3).  

The unit plane wave was assumed as incident 
field ))(exp(0 zikC ν= 0≥z , ]3,5.0[∈ν MHz with step 
0.333 MHz. Dimensionless frequency is  90,...,16,15=n . 

7.1 Scattering field distributions  

Exemplary distributions of scattering fields for the 
absorption parameter 4

1 103.2 ⋅=α  in subsequent orders and 
for selected frequencies were shown in Figure 2. Colors 
refers logarithmic scale of values. Contour of the scattering 
structure and its location is shown by red rectangle whereas 

red narrow indicates direction of incident wave. The 
represented area is the rectangle with location   [-30,20] mm 
in z direction and [-15, 15]mm in x direction 
 

 
Figure 2 : Distributions of fields in subsequent orders of scattering 
in rows: I, II, III, while in function of frequency from 0.5 MHz to 

3 MHz they are shown in columns. 

7.2 Backscatter coefficients 

We define substructures: horizontal (denoted by “h”) as 
a set of all trabecular that are situated in planes being 
parallel to the x-z plane, and vertical ( denoted by “y’) as a 
set of all trabecular which are parallel to the y axis. 

     In Figure 3 SI, SII and SIII are the backscatter 
effective cross-section coefficients, that were obtained in 
subsequent orders of scattering (first-I, second-II,, third-III) 
and in function of frequencyν . The influence of the 
absorption of the fluid filer on the effective cross-section in 
each order is presented. The plot p1 correspond to the last 
α1=0.23·10-4, p2 to the middle α1=1.15·10-4 and p3 to the 
α1=2.3·10-4 value of absorption parameter.  

Square roots IS , IIS , IIIS were applied for 
better representation. Moreover, they are first range in 
respect to scattered field variations as well as invariants (as 
SI, SII, SIII) in respect to shape of the surface surrounding 
the scatter in hemispace. Then, the square root from the 
effective cross-section is a proper measure (norm) of the 
signal received by transducer placed close to the scatter. 
The backscatter (reflection) coefficients can be defined as 
follows: 

             ( )
G
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σ
κ

IIIIII ,,S
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where, for a given configuration, Gσ  is the geometrical 
cross-section (area of normal projection of the scatter on 
surface that divides space into two hemispaces). In our case 

64=Gσ mm2. In the nearness of frequency ν =1.5 MHz, 
the estimated relations between values SI:SII:SIII, from 
Figure 3, are as 1:(0.001):(0.00001) for the case denoted by 
p1 and higher for the cases p1 and p2. In Figure 3 (left) the 
resonance for ν = 0.75 MHz is observed and it is fully 
created by y substructure in which the trabecular length is 
2mm. It corresponds to the resonance frequency. Similar 
analysis can be performed for other resonances using higher 
scattering orders.   
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In Figure 4:  the contribution of substructures h and y to 

backscatter effective cross-sections for the case p1 in 
subsequent orders of scattering is presented. Let us notice 
the validity change of substructures in transition from the 
 

first order to higher orders of scattering.  It is visible in 
Figure 4 (left) and Figure 4(middle) (the transition occurs 
for ν >1.6 MHz).  

 

 
 
 
 

 
 
 
 
 
 
 
 

Figure 3: Backscatter effective cross-section decomposition in respect to scattering order, first- SI, second-SII and third-SIII. 
Plots p1, p2, p3  corresponds to the last-p1, middle-p2 and extreme-p3 value of absorption parameter. Frequency in MHz. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Contribution of substructures h and y in subsequent orders of scattering as well as in respect to frequency (in MHz) 
for the case p1 of the absorption parameter. 

8 Conclusion 
In space-frequency range the method of solving of 

longitudinal wave scattering equations has been developed. 
It is convergent for high potentials and multi-element 
structures in numerical applications.  

The method is accurate in each order of scattering that 
means the calculated fields in subsequent order do not make 
corrections in scattering fields of former order. The 
Neuman’s iteration of integral equations of scattering 
produce the asymptotically converged series (if it is 
converging); this means that each subsequent element of 
series includes improving accuracy corrections to former 
field elements for the selected structure element. The 
developed algorithm enables the analysis of the scattering 
field characteristics taking into account not only the 
scattering order but also the influence of selected 
substructures.  The examples of this effect has been 
presented.   

From the comparison of the plots p1, p2 and p3, on the 
left in Figure 3, the smoothing effect of the absorption on 
the relationship between the scattering coefficients and 
frequency/ the scattering coefficient dependence from 
frequency,   results/follows/is seen. 

Moreover, from the comparison of the relationship 
between p1, p2 and p3 for IS , IIS , IIIS , the increase 
in the influence of absorption on the scattering process, in II 
and higher orders of scattering, is seen. 

  In the range up to 1.5 MHz the influence of higher 
scattering orders on characteristics of the first order in 
respect to the field is less than few percent. In the range 
above 1.5 MHz one can observe in higher orders even 
twenty (for p1) or  several percent resonance effect of 
scattering. 
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