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REGULARIZED PERIMETER FOR TOPOLOGY OPTIMIZATION

SAMUEL AMSTUTZ

Abstract. The perimeter functional is known to oppose serious difficulties when it has to be handled
within a topology optimization procedure. In this paper, a regularized perimeter functional Perε,

defined for 2d and 3d domains, is introduced. On one hand, the convergence of Perε to the exact
perimeter when ε tends to zero is proved. On the other hand, the topological differentiability of
Perε for ε > 0 is analyzed. These features lead to the design of a topology optimization algorithm
suitable for perimeter dependent objective functionals. Some numerical results on academic problems

illustrate the method.

1. Introduction

Topology optimization problems are known to be generally ill-posed, in the sense that they possess
no global minimizers. Typically, this property stems from the fact that the minimizing sequences
have more and more complex topologies, without ever converging to a domain in any appropriate way
[2, 13]. Therefore, relaxation methods are often used [1, 7, 9], but the binary nature of the problem is
then lost. A totally different approach is to impose geometrical constraints that limit the complexity of
the obtained topologies. In this framework, a classical technique is to incorporate in the cost function
a penalization by the perimeter. In many important cases, the resulting problem can be proved to be
well-posed [3, 8, 13]. The control of the perimeter of domains with variable topology appears also in
image processing, when considering the Mumford-Shah functional [16], for instance.

However, a major drawback of the perimeter functional is that it is not easy to handle numerically
as soon as one wants to perform topology changes. To illustrate this claim, let us consider the creation
of a hole ω inside a larger domain Ω seen as the current design domain in an iterative process. Then
the variation of the perimeter is given by Per(Ω \ ω)− Per(Ω) = Per(ω). In contrast, the variation of
the volume is |Ω \ ω| − |Ω| = |ω|. In fact, the traditional shape functionals, like the compliance, also
admit a first variation proportional to |ω|, at least when Neumann boundary conditions are prescribed
on ∂ω [4, 10, 19]. This difference of order of magnitude creates an incompatibility in the numerical
treatment of the perimeter in association with other shape functionals. To circumvent this difficulty, a
two step algorithm is used in [14]: a “topological” step which does not take into account the perimeter,
then a “classical” step based on smooth boundary variation methods. The basic ingredients in each
of these steps are the notions of topological and shape derivatives, respectively. More sophisticated
approaches, also based on alternating steps, have been proposed in [11, 12].

In this paper, we present a natural way to include the perimeter within a topology optimization
procedure. The proposed approach is based on a regularization method: the perimeter Per(Ω) is
approximated by a functional Perε(Ω) well-suited for topology optimization, then ε is driven to zero
for which the exact perimeter is retrieved. Let us enter a little more into details. Let Ω be an open
and bounded subset of RN , N ∈ {2, 3}, with C2 boundary ∂Ω. We denote by u the characteristic
function of Ω, i.e., u(x) = 1 if x ∈ Ω, u(x) = 0 if x ∈ R

N \ Ω. For a fixed m ∈ N
⋆ and any ε > 0 we

consider the (weak) solution uε ∈ H
m(RN ) of

ε2m(−∆)muε + uε = u. (1.1)

Then we define the quantity

Eε(Ω) := ‖u− uε‖
2
L2(RN ) =

∫

RN

(u− uε)
2dx.

We shall see that the asymptotic behavior of Eε(Ω) when ε goes to zero is directly related to the
perimeter of Ω. Before giving a precise statement, let us specify some notation. We denote by 〈., .〉
the canonical scalar product of RN , and by |.| the associated norm. For complex vectors, the same
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notation is kept for the Hermitian scalar product of CN and its norm, while complex conjugacy is
denoted by a bar. The surface measure on ∂Ω is denoted by σ. Therefore, the perimeter of Ω can be
defined as

Per(Ω) = σ(∂Ω) =

∫

∂Ω

dσ.

The outward unit normal to ∂Ω at point x is denoted by n(x). We shall prove the following result.

Theorem 1.1. The following asymptotic expansion holds when ε goes to zero:

Eε(Ω) = εκm Per(Ω) +O(ε
N+4

N+2 ),

where κm is defined by

κm =
1

π

∫ ∞

0

t4m−2

(1 + t2m)2
dt.

The first values of κm are κ1 = 1/4 and κ2 = 3/27/2.

Therefore, we call regularized perimeter the quantity

Perε(Ω) =
1

κmε
Eε(Ω), (1.2)

which, in consequence of Theorem 1.1, satisfies

Perε(Ω) = Per(Ω) +O(ε
2

N+2 ).

Theorem 1.1 is proved in Section 2. In Section 3, the result is extended to a boundary value problem,
where (1.1) is complemented by a Neumann boundary condition on the border of a bounded domain
D containing Ω. In Section 4, the sensitivity of the functional Perε to topological perturbations is
analyzed. Then, in Section 5, we show how these results lead to a topology optimization algorithm
dedicated to perimeter dependent objective functionals. Finally, some numerical experiments on a
simple model problem are reported in Section 6.

2. Asymptotic expansion of the regularized functional

This section is devoted to the proof of Theorem 1.1. Our approach relies on the Fourier transform,
for which we adopt the definition

∀f ∈ L1(RN ), f̂(ξ) = (2π)−N/2
∫

RN

e−i〈x,ξ〉f(x)dx.

For a detailed exposition of the Fourier transform’s properties, we refer, e.g., to [15].

2.1. Reformulation in the frequency domain. Passing to the Fourier transform in (1.1) yields

ε2m|ξ|2mûε(ξ) + ûε(ξ) = û(ξ),

from which we derive

ûε(ξ) =
û(ξ)

1 + (ε|ξ|)2m
.

Next, by Parseval’s equality, we obtain

Eε(Ω) = ‖û− ûε‖
2
L2(RN ) =

∫

RN

(

(ε|ξ|)2m

1 + (ε|ξ|)2m

)2

|û(ξ)|2dξ.

The change of variable ζ = εξ results in

Eε(Ω) = ε−N
∫

RN

|ζ|4m

(1 + |ζ|2m)2
|û(ε−1ζ)|2dζ. (2.1)

It will turn out to be useful and also interesting on its own to study a generalized version of (2.1). To
this aim, for all k ∈ N, we introduce the linear space

Vk =
{

Φ ∈ C∞(R), [t 7→ tk−2(1 + t2)2Φ(k)(t)] ∈ L∞(R)
}

,

endowed with the norm

‖Φ‖Vk
=

∥

∥

∥
t 7→ tk−2(1 + t2)2Φ(k)(t)

∥

∥

∥

L∞(R)
= inf

{

a ∈ R, |Φ(k)(t)| ≤ a
|t|2−k

(1 + t2)2
a.e. t ∈ R

}

.



3

Then, for all Φ ∈ V0, we set

Tε(Φ) = ε−N
∫

RN

Φ(|ζ|)|ζ|2|û(ε−1ζ)|2dζ. (2.2)

Since û ∈ L2(RN ), the above expression makes sense for all Φ ∈ V0, and furthermore we have Tε ∈ V
′
0,

the continuous dual of V0. We also define the linear functional T̃ε ∈ V
′
0 by

T̃ε(Φ) =
ε

π
Per(Ω)

∫ ∞

0

Φ(t)dt,

and the linear space

V =

N+1
⋂

k=0

Vk

endowed with the norm
‖Φ‖V = max {‖Φ‖Vk

, k = 0, ..., N + 1} .

We shall prove the following result.

Theorem 2.1. There exists c > 0 such that, for all Φ ∈ V and all ε sufficiently small,

|Tε(Φ)− T̃ε(Φ)| ≤ cε
N+4

N+2 ‖Φ‖V .

Then Theorem 1.1 follows at once from Theorem 2.1 by choosing

Φ(t) =
t4m−2

(1 + t2m)2
.

We only have to check that this function belongs to V. To do so we set Gk(t) = t2−k/(1 + t2)2. We
remark that Φ(k)/Gk is a rational function of degree 0, hence it will be bounded as soon as it has no
pole on the real line. Immediate calculations provide

Φ(t)

G0(t)
=

[

t2m−2 1 + t2

1 + t2m

]2

,

Φ′(t)

G1(t)
= (4m− 2)

[

t2m−2 1 + t2

1 + t2m

]2

− 4mt6m−4 (1 + t2)2

(1 + t2m)3
,

∀k ≥ 2,
Φ(k)(t)

Gk(t)
= Φ(k)(t) tk−2(1 + t2)2.

Obviously the above rational functions have no real poles for any m ≥ 1.
The rest of this section is devoted to the proof of Theorem 2.1. Throughout, the letter c will be

used to denote any positive constant independent of ε and Φ. For the reader’s convenience the proof
is divided into three parts.

2.2. Derivation of the leading term. At first, we assume that Φ ∈ C∞0 (R), the set of functions of
class C∞ on R with compact support. By definition we have

|ξ|2û(ξ) = (2π)−N/2|ξ|2
∫

Ω

e−i〈x,ξ〉dx = (2π)−N/2
∫

Ω

divx

(

ie−i〈x,ξ〉ξ
)

dx,

which, by the divergence formula and setting eξ = ξ/|ξ|, yields

|ξ|û(ξ) = (2π)−N/2i

∫

∂Ω

e−i〈x,ξ〉〈eξ, n(x)〉dσ(x). (2.3)

On writing |û(ξ)|2 = û(ξ)û(ξ) we obtain from (2.3)

|ξ|2|û(ξ)|2 = (2π)−N
∫

∂Ω×∂Ω

e−i〈x−y,ξ〉〈eξ, n(x)〉〈eξ, n(y)〉dσ(x)dσ(y).

Plugging this expression into (2.2) entails

Tε(Φ) = (2π)−Nε2−N
∫

RN

Φ(|ζ|)

[
∫

∂Ω×∂Ω

eiε
−1〈y−x,ζ〉〈eζ , n(x)〉〈eζ , n(y)〉dσ(x)dσ(y)

]

dζ.

By Fubini’s theorem, this can be reordered as

Tε(Φ) = (2π)−Nε2−N
∫

∂Ω

〈
∫

∂Ω

(
∫

RN

eiε
−1〈y−x,ζ〉Φ(|ζ|)eζ ⊗ eζdζ

)

n(y)dσ(y), n(x)

〉

dσ(x).
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Setting

ϕ(z) = (2π)−N/2
∫

RN

ei〈z,ζ〉Φ(|ζ|)eζ ⊗ eζdζ, (2.4)

Fε(x) =

∫

∂Ω

ϕ(ε−1(y − x))n(y)dσ(y), (2.5)

we arrive at

Tε(Φ) = (2π)−N/2ε2−N
∫

∂Ω

〈Fε(x), n(x)〉dσ(x). (2.6)

We shall now examine the asymptotic behavior of Fε(x) for a given x ∈ ∂Ω. Let ρ > 0 be such
that the set ∂Ω ∩ B(x, 2ρ) can be represented as the graph of a C2 function on an appropriate local
Cartesian coordinate system. Note that, by compactness of ∂Ω, ρ may be chosen independent of x.
Let η : RN → R be a smooth (C∞) function such that η(z) = 1 if |z| ≤ ρ, 0 ≤ η(z) ≤ 1 if ρ ≤ |z| ≤ 2ρ,
and η(z) = 0 if |z| ≥ 2ρ. We introduce a parameter β ∈]0, 1[ which will be fixed later, and split (2.5)
as

Fε(x) = F 0
ε (x) + F 1

ε (x), (2.7)

with

F 0
ε (x) =

∫

∂Ω

η(ε−β(y − x))ϕ(ε−1(y − x))n(y)dσ(y), (2.8)

F 1
ε (x) =

∫

∂Ω

[1− η(ε−β(y − x))]ϕ(ε−1(y − x))n(y)dσ(y). (2.9)

In the ball B(x, 2ρ) we parametrize ∂Ω by

t ∈ O 7→ y(t) = x+R(t, ψ(t)) ∈ ∂Ω, (2.10)

where O is an open set of RN−1 containing the origin, R is a rotation, and ψ : O → R is a function
of class C2 satisfying

ψ(0) = 0, ∇ψ(0) = 0. (2.11)

For notational simplicity, we write vectors of RN indifferently row-wise or column-wise. We subse-
quently assume that ε < 1. Then η(ε−β(y − x)) 6= 0 implies y ∈ B(x, 2ρ), and we can write

F 0
ε (x) =

∫

O

η(ε−β(y(t)− x))ϕ(ε−1(y(t)− x))R(−∇ψ(t), 1)dt.

Setting

ηε(t) =

{

η(ε−β(y(t)− x)) if t ∈ O,
0 otherwise,

we obtain

F 0
ε (x) =

∫

RN−1

ηε(t)ϕ(R(ε
−1t, ε−1ψ(t)))R(−∇ψ(t), 1)dt.

By the definition (2.4), we observe that

ϕ(Rz) = Rϕ(z)R⋆, (2.12)

with R⋆ the adjoint of R. This entails

F 0
ε (x) = R

∫

RN−1

ηε(t)ϕ(ε
−1t, ε−1ψ(t))(−∇ψ(t), 1)dt.

Then, by the change of variable t = εs, we arrive at

F 0
ε (x) = εN−1R

∫

RN−1

ηε(εs)ϕ(s, ε
−1ψ(εs))(−∇ψ(εs), 1)ds. (2.13)

Let eN = (0, ..., 0, 1) be the last vector of the canonical basis of RN . We split (2.13) as

F 0
ε (x) = Aε(x) +Bε(x) + Cε(x) +Dε(x), (2.14)

with

Aε(x) = εN−1R

∫

RN−1

ϕ(s, 0)eNds, (2.15)

Bε(x) = εN−1R

∫

RN−1

[ηε(εs)− 1]ϕ(s, 0)eNds, (2.16)
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Cε(x) = εN−1R

∫

RN−1

ηε(εs)
[

ϕ(s, ε−1ψ(εs))− ϕ(s, 0)
]

eNds, (2.17)

Dε(x) = εN−1R

∫

RN−1

ηε(εs)ϕ(s, ε
−1ψ(εs))(−∇ψ(εs), 0)ds. (2.18)

We first focus on the expected leading term Aε(x). We define for every ζ ∈ R
N and ζ ′ ∈ R

N−1

h(ζ) = Φ(|ζ|)eζ ⊗ eζ , H(ζ ′) =

∫

R

h(ζ ′, ζN )dζN . (2.19)

Therefore the definition (2.4) is equivalent to ϕ(z) = ĥ(z). In addition, we have for all s ∈ R
N−1

Ĥ(s) = (2π)−
N−1

2

∫

RN−1

e−i〈s,ζ
′〉

∫

R

h(ζ ′, ζN )dζNdζ
′ = (2π)

1
2 ĥ(s, 0),

thus

ϕ(s, 0) = (2π)−
1
2 Ĥ(s).

It follows that

Aε(x) = (2π)−
1
2 εN−1R

[
∫

RN−1

Ĥ(s)ds

]

eN .

Next, the Fourier inversion formula yields

Aε(x) = (2π)
N
2
−1εN−1RH(0)eN .

From

H(0) =

∫

R

Φ(|ζN |)eN ⊗ eNdζN = 2

(
∫ ∞

0

Φ(t)dt

)

eN ⊗ eN ,

we arrive at

Aε(x) = (2π)
N
2
−1εN−12

(
∫ ∞

0

Φ(t)dt

)

ReN = (2π)
N
2
−1εN−12

(
∫ ∞

0

Φ(t)dt

)

n(x).

The contribution of Aε(x) in the functional Eε(Ω) is then given by

(2π)−N/2ε2−N
∫

∂Ω

〈Aε(x), n(x)〉dσ(x) = (2π)−1ε2

(
∫ ∞

0

Φ(t)dt

)
∫

∂Ω

〈n(x), n(x)〉dσ(x) (2.20)

=
ε

π

(
∫ ∞

0

Φ(t)dt

)

Per(Ω) = T̃ε(Φ). (2.21)

2.3. Estimate of remainders. From (2.6) and (2.21) we find

Tε(Φ)− T̃ε(Φ) = (2π)−N/2ε2−N
∫

∂Ω

〈Fε(x)−Aε(x), n(x)〉dσ(x).

Then using (2.7) and (2.14) we arrive at

Tε(Φ)− T̃ε(Φ) = (2π)−N/2ε2−N
∫

∂Ω

〈F 1
ε (x) +Bε(x) + Cε(x) +Dε(x), n(x)〉dσ(x). (2.22)

We shall estimate each term of the integrand in (2.22). Beforehand, we shall establish useful estimates
for the function ϕ defined by (2.4).

By successive integrations by parts from (2.4), we obtain for each j ∈ {1, ..., N} and any n ∈ N

ϕ(z)znj = (2π)−N/2in
∫

RN

ei〈z,ζ〉
∂n

∂ζnj
(Φ(|ζ|)eζ ⊗ eζ) dζ. (2.23)

Here, zj and ζj stand for the j − th components of the vectors z and ζ, respectively. The Leibniz
formula provides

∂n

∂ζnj
(Φ(|ζ|eζ ⊗ eζ) =

∂

∂ζnj

(

Φ(|ζ|)

|ζ|2
ζ ⊗ ζ

)

=

2
∑

k=0

(

n
k

)

∂n−k

∂ζn−kj

(

Φ(|ζ|)

|ζ|2

)

∂k

∂ζkj
(ζ ⊗ ζ) . (2.24)

By induction, deferred to the appendix, we prove that

∂q

∂ζqj

(

Φ(|ζ|)

|ζ|2

)

=
1

|ζ|2q+2

q
∑

p=0

Φ(p)(|ζ|)Pp,q(|ζ|, ζj), (2.25)
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where Pp,q is a homogeneous polynomial of two variables of degree p+ q. This entails
∣

∣

∣

∣

∣

∂q

∂ζqj

(

Φ(|ζ|)

|ζ|2

)

∣

∣

∣

∣

∣

≤ cq
1

|ζ|2q+2

q
∑

p=0

|Φ(p)(|ζ|)||ζ|p+q,

for some constants cq > 0. Using now that, by definition,

|Φ(p)(|ζ|)| ≤ ‖Φ‖Vp

|ζ|2−p

(1 + |ζ|2)2
,

we obtain
∣

∣

∣

∣

∣

∂q

∂ζqj

(

Φ(|ζ|)

|ζ|2

)

∣

∣

∣

∣

∣

≤ (q + 1)cq
max

(

‖Φ‖Vp
, p ≤ q

)

|ζ|q(1 + |ζ|2)2
.

Plugging this estimate into (2.24), we get
∣

∣

∣

∣

∣

∂n

∂ζnj
(Φ(|ζ|eζ ⊗ eζ)

∣

∣

∣

∣

∣

≤

2
∑

k=0

(

n
k

)

(n− k + 1)cn−k
max

(

‖Φ‖Vp
, p ≤ n− k

)

|ζ|n−k(1 + |ζ|2)2
|ζ|2−k (2.26)

≤ cn
max

(

‖Φ‖Vp
, p ≤ n

)

|ζ|n−2(1 + |ζ|2)2
, (2.27)

for some other constant cn > 0. The combination of (2.23) and (2.27) leads to

|ϕ(z)||z|n ≤ (2π)−N/2cnmax
(

‖Φ‖Vp
, p ≤ n

)

∫

RN

dζ

|ζ|n−2(1 + |ζ|2)2
.

The integral at the right hand side of the above inequality is finite whenever N − 1 ≤ n ≤ N +1. We
conclude that

∀n ∈ {N − 1, N,N + 1}, |ϕ(z)| ≤ c
max

(

‖Φ‖Vp
, p ≤ n

)

|z|n
≤ c
‖Φ‖V
|z|n

. (2.28)

Next we study the partial derivative

∂ϕ

∂zN
(z) = (2π)−N/2i

∫

RN

ei〈z,ζ〉ζNΦ(|ζ|)eζ ⊗ eζdζ.

By successive integrations by parts we find

∂ϕ

∂zN
(z)znj = (2π)−N/2in+1

∫

RN

ei〈z,ζ〉
∂n

∂ζnj
(ζNΦ(|ζ|)eζ ⊗ eζ) dζ. (2.29)

If j 6= N we have obviously

∂ϕ

∂zN
(z)znj = (2π)−N/2in+1

∫

RN

ei〈z,ζ〉ζN
∂n

∂ζnj
(Φ(|ζ|)eζ ⊗ eζ) dζ.

Using (2.27) we obtain

∀j 6= N,

∣

∣

∣

∣

∂ϕ

∂zN
(z)

∣

∣

∣

∣

|zj |
n ≤ (2π)−N/2cnmax

(

‖Φ‖Vp
, p ≤ n

)

∫

RN

dζ

|ζ|n−1(1 + |ζ|2)2
. (2.30)

For j = N the Leibniz formula provides

∂n

∂ζnN
(ζNΦ(|ζ|)eζ ⊗ eζ) = ζN

∂n

∂ζnN
(Φ(|ζ|)eζ ⊗ eζ) + n

∂n−1

∂ζn−1
N

(Φ(|ζ|)eζ ⊗ eζ) .

Then (2.27) yields
∣

∣

∣

∣

∂n

∂ζnN
(ζNΦ(|ζ|)eζ ⊗ eζ)

∣

∣

∣

∣

≤ (2π)−N/2(cn + ncn−1)
max

(

‖Φ‖Vp
, p ≤ n

)

|ζ|n−3(1 + |ζ|2)2
,

which, in view of (2.29), implies
∣

∣

∣

∣

∂ϕ

∂zN
(z)

∣

∣

∣

∣

|zN |
n ≤ (2π)−N/2(cn + ncn−1)max

(

‖Φ‖Vp
, p ≤ n

)

∫

RN

dζ

|ζ|n−3(1 + |ζ|2)2
. (2.31)
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The two integrals at right hand sides of (2.30) and (2.31) are finite if we choose n = N . We conclude
that

∣

∣

∣

∣

∂ϕ

∂zN
(z)

∣

∣

∣

∣

≤ c
‖Φ‖V
|z|N

. (2.32)

(1) When ε−β(y − x) belongs to the support of 1− η, we have ε−β |y − x| ≥ ρ, hence, in view of
(2.28) for n = N + 1,

1− η(ε−β(y − x)) 6= 0 =⇒ |ϕ(ε−1(y − x))| ≤ c
‖Φ‖V

(ρεβ−1)N+1
.

From (2.9) and the above estimate we infer

|F 1
ε (x)| ≤ cε

(1−β)(N+1)‖Φ‖V . (2.33)

(2) From (2.16) we derive

|Bε(x)| ≤ ε
N−1

∫

RN−1

(1− ηε(εs))|ϕ(s, 0)|ds.

In view of (2.10) we have

∀t ∈ O, |y(t)− x| =
√

|t|2 + ψ(t)2. (2.34)

Yet, using (2.11) and a Taylor-Lagrange expansion, we get

∀t ∈ O, |ψ(t)| ≤ c|t|2, (2.35)

hence

∀t ∈ O, |y(t)− x| ≤
√

|t|2 + c|t|4 ≤ λ|t|

for some λ ≥ 1. We deduce that

∀t ∈ O, |t| ≤
ρ

λ
εβ =⇒ ε−β |y(t)− x| ≤ ρ =⇒ ηε(t) = 1.

Set α = ρ/λ, possibly decreased so that B(0, α) ⊂ O. Thus, for all t ∈ R
N−1, |t| ≤ αεβ

implies ηε(t) = 1. Using also (2.28) for n = N + 1, we arrive at

|Bε(x)| ≤ cεN−1‖Φ‖V

∫

RN−1\B(0,αεβ−1)

1

|s|N+1
ds = cεN−1‖Φ‖V

(

α−1ε1−β
)2

(2.36)

≤ cεN−1+2(1−β)‖Φ‖V . (2.37)

(3) From (2.17), we obtain

|Cε(x)| ≤ ε
N−1

∫

RN−1

ηε(εs)
∣

∣ϕ(s, ε−1ψ(εs))− ϕ(s, 0)
∣

∣ ds.

The mean value inequality entails

∣

∣ϕ(s, ε−1ψ(εs))− ϕ(s, 0)
∣

∣ ≤ |ε−1ψ(εs)| sup
|t|≤ε−1|ψ(εs)|

∣

∣

∣

∣

∂ϕ

∂zN
(s, t)

∣

∣

∣

∣

.

From (2.32) and (2.35) we derive
∣

∣ϕ(s, ε−1ψ(εs))− ϕ(s, 0)
∣

∣ ≤ c‖Φ‖Vε|s|
2−N .

Yet, (2.34) yields |y(t)− x| ≥ |t| for all t ∈ O, hence

∀t ∈ O, |t| ≥ 2ρεβ =⇒ ε−β |y(t)− x| ≥ 2ρ =⇒ ηε(t) = 0. (2.38)

We conclude that

|Cε(x)| ≤ c‖Φ‖Vε
N

∫

B(0,2ρεβ−1)

|s|2−Nds = c‖Φ‖Vε
N+β−1. (2.39)
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(4) We get from (2.18)

|Dε(x)| ≤ ε
N−1

∫

RN−1

ηε(εs)|ϕ(s, ε
−1ψ(εs))||∇ψ(εs)|ds.

Using that |∇ψ(t)| ≤ c|t| for all t ∈ O together with (2.28) for n = N − 1, we obtain

|Dε(x)| ≤ c‖Φ‖Vε
N

∫

RN−1

ηε(εs)|s|
2−Nds.

Using now (2.38), we arrive at

|Dε(x)| ≤ c‖Φ‖Vε
N+β−1. (2.40)

Gathering (2.22), (2.33), (2.37), (2.39) and (2.40), we finally obtain

|Tε(Φ)− T̃ε(Φ)| ≤ c‖Φ‖Vε
α ∀Φ ∈ C∞0 (R), (2.41)

for the exponent

α = 2−N +min((1− β)(N + 1), N − 1 + 2(1− β), N + β − 1)

= min(3− β(N + 1), 3− 2β, 1 + β) = min(3− β(N + 1), 1 + β).

This value is maximized when 3− β(N + 1) = 1 + β, i.e., when β = 2/(N + 2). This corresponds to
α = (N + 4)/(N + 2).

2.4. Extension to a function Φ ∈ V. We shall now extend (2.41) to an arbitrary function Φ ∈ V.
The expression of the integral in (2.2) in spherical coordinates reads

Tε(Φ) = ε−N
∫ ∞

0

∫

SN−1

Φ(r)r2|û(ε−1rυ)|2rN−1dσ(υ)dr =

∫ ∞

0

Φ(r)r2wε(r)dr,

with

wε(r) = ε−NrN−1

∫

SN−1

|û(ε−1rυ)|2dυ,

and SN−1 the unit sphere of RN−1. Note that, as û ∈ L2(RN ), we have wε ∈ L
1(R+). We also write

T̃ε(Φ) =

∫ ∞

0

Φ(r)r2w̃ε(r)dr, with w̃ε(r) =
ε

π

Per(Ω)

r2
.

Therefore we have

Tε(Φ)− T̃ε(Φ) =

∫ ∞

0

Φ(r)r2[wε(r)− w̃ε(r)]dr.

From (2.41) and the above equality we derive that
∣

∣

∣

∣

∫ ∞

0

Φ(r)r2[wε(r)− w̃ε(r)]dr

∣

∣

∣

∣

≤ cεα‖Φ‖V ∀Φ ∈ C∞0 (R). (2.42)

We choose now an arbitrary function Φ ∈ V, and construct the sequence of auxiliary functions

Φn(r) = Φ(r)η(
r

n
), (2.43)

where η ∈ C∞(R) is such that η(r) = 1 if |r| ≤ 1, 0 ≤ η(r) ≤ 1 if 1 ≤ |r| ≤ 2, and η(r) = 0 if |r| ≥ 2.
The differentiation of (2.43) at the order k by the Leibniz formula and a reordering gives

∀n ∈ N
⋆, ∀r ∈ R, rk−2(1 + r2)2Φ(k)

n (r) =
k

∑

p=0

(

k
p

)

rp−2(1 + r2)2Φ(p)(r)
( r

n

)k−p

ηk−p(
r

n
).

For each q ∈ N the function t 7→ tqη(q)(t) belongs to C∞0 (R), hence it is bounded. This entails

∀n ∈ N
⋆, ‖Φn‖Vk

≤ ck

k
∑

p=0

‖Φ‖Vp
,

for some constants ck independent of n, and subsequently

∀n ∈ N
⋆, ‖Φn‖V ≤ c‖Φ‖V . (2.44)
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Applying (2.42) to the function Φn and using (2.44), it follows that

∀n ∈ N
⋆,

∣

∣

∣

∣

∫ ∞

0

η(
r

n
)Φ(r)r2[wε(r)− w̃ε(r)]dr

∣

∣

∣

∣

≤ cεα‖Φ‖V .

By Lebesgue’s dominated convergence theorem, we can pass to the limit and find
∣

∣

∣

∣

∫ ∞

0

Φ(r)r2[wε(r)− w̃ε(r)]dr

∣

∣

∣

∣

≤ cεα‖Φ‖V ,

that is,

|Tε(Φ)− T̃ε(Φ)| ≤ cε
α‖Φ‖V .

The proof of Theorem 2.1 is now complete.

3. Extension to a boundary value problem

We assume now that Ω ⊂⊂ D, where D is a bounded Lipschitz domain of RN and Ω has a C2

boundary. We consider the problem: find vε ∈ H
1(D) such that

{

−ε2∆vε + vε = u in D,
∂nvε = 0 on ∂D,

(3.1)

with u the characteristic function of Ω in D, and set

Eε(Ω) = ‖u− vε‖
2
L2(D). (3.2)

Note that we have restricted ourselves to the case m = 1 merely for simplicity. We shall show that
Eε(Ω) obeys the same first order asymptotic expansion as in the unbounded case.

Theorem 3.1. The following asymptotic expansion holds when ε goes to zero:

Eε(Ω) =
ε

4
Per(Ω) +O(ε

N+4

N+2 ). (3.3)

Proof. We make the splitting vε = uε + eε with uε ∈ H
1(RN ) and eε ∈ H

1(D) respectively solutions
of

−ε2∆uε + uε = u in R
N ,

{

−ε2∆eε + eε = 0 in D,
∂neε = −∂nuε on ∂D.

(3.4)

Here, u is extended by zero outside D. We introduce the rescaled function Uε(x) := uε(εx), which
solves

−∆Uε + Uε = u(εx) in R
N .

Thus we can write for all x ∈ R
N

Uε(x) =

∫

RN

u(εy)Γ(x− y)dy,

where Γ is the fundamental solution of the operator −∆+ I in R
N . By change of variable we obtain

uε(x) = ε−N
∫

Ω

Γ

(

x− z

ε

)

dz.

Assume now that dist(x,Ω) ≥ ρ > 0. By Fourier transform, we can easily show that |Γ(x)| = O(|x|−p)
for all p > 0. This implies

∀z ∈ Ω,

∣

∣

∣

∣

Γ

(

x− z

ε

)∣

∣

∣

∣

≤ c

(

ε

ρ

)p

.

We arrive at
|uε(x)| ≤ c|Ω|ρ

−pεp−N .

Similar estimates hold for |∇uε(x)| and |∆uε(x)|, which provides, for any k > 0,

‖uε‖H1(RN\D) ≤ cε
k, ‖∂nuε‖H−1/2(∂D) ≤ cε

k. (3.5)

Now, the variational formulation of (3.4) yields
∫

D

(ε2|∇eε|
2 + |eε|

2)dx = −

∫

∂D

∂nuεeεdx,

from which we deduce
ε2‖eε‖H1(D) ≤ c‖∂nuε‖H−1/2(∂D) ≤ cε

k. (3.6)
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Then we write

Eε(Ω) = ‖u− uε‖
2
L2(D) − 2

∫

D

eε(u− uε)dx+ ‖eε‖
2
L2(D) (3.7)

= ‖u− uε‖
2
L2(RN ) − ‖uε‖

2
L2(RN\D) − 2

∫

D

eε(u− uε)dx+ ‖eε‖
2
L2(D). (3.8)

By Theorem 1.1 we have

‖u− uε‖
2
L2(RN ) =

ε

4
Per(Ω) +O(ε

N+4

N+2 ). (3.9)

Combining (3.8), (3.5), (3.6) and (3.9), using the Cauchy-Schwarz inequality and choosing k sufficiently
large yields (3.3). �

It is also of interest for the applications to study domains of the form D \Ω, where Ω is defined as
before. The peculiarity of this set is to touch the external boundary ∂D. The corresponding functional
Eε(D \Ω) is defined by (3.1) and (3.2), with u the characteristic function of D \Ω. It turns out that
the previous asymptotic expansion remains valid in this case, as stated in the following corollary.

Corollary 3.2. The following asymptotic expansion holds when ε goes to zero:

Eε(D \ Ω) =
ε

4
Per(Ω) +O(ε

N+4

N+2 ). (3.10)

Proof. We have by definition

Eε(D \ Ω) = ‖u
D\Ω − vD\Ω

ε ‖2L2(D),

where uD\Ω is the characteristic function of D \ Ω and v
D\Ω
ε solves

{

−ε2∆v
D\Ω
ε + v

D\Ω
ε = uD\Ω in D,

∂nv
D\Ω
ε = 0 on ∂D.

Since uD\Ω = 1−uΩ (almost everywhere), with uΩ the characteristic function of Ω, and, by uniqueness,

v
D\Ω
ε = 1− vΩε , with v

Ω
ε the solution of (3.1) for u = uΩ, we derive

Eε(D \ Ω) = ‖u
Ω − vΩε ‖

2
L2(D) = Eε(Ω).

Then we apply Theorem 3.1. �

Note that, in this case, it is still the perimeter of Ω which is involved, not that of D \ Ω. In fact,
this corresponds to the relative perimeter of D \ Ω in D, namely σ(∂(D \ Ω) ∩D), see, e.g., [13].

4. Topological sensitivity of the regularized perimeter

We place ourselves in the context if Section 3, i.e., we consider a bounded Lipschitz domain D of
R
N which will serve as “hold all”. In this section we assume that ε > 0 is fixed. For all u ∈ L2(D),

we denote by Lεu the solution vε of (3.1), and we set

Pε(u) =

∫

D

Lεu(Lεu− 2u)dx.

The functional Eε(Ω) introduced in the previous section is defined for any measurable subset Ω of D (it
is not needed here to assume further regularity neither that Ω ⊂⊂ D) by Eε(Ω) = ‖LεχΩ−χΩ‖

2
L2(D),

with χΩ the characteristic function of Ω in D. Then the regularized perimeter Perε(Ω) defined by
(1.2) satisfies

Perε(Ω) =
4

ε
‖LεχΩ − χΩ‖

2
L2(D) =

4

ε
[Pε(χΩ) + |Ω|] , (4.1)

where |Ω| is the N -dimensional Lebesgue measure of Ω.

Lemma 4.1. For any q ∈]1, 2] if N = 2, q ∈ [6/5, 2] if N = 3, the functional u ∈ Lq(D) 7→ Pε(u) is

of class C∞ in the sense of Fréchet. Its derivative in the direction h ∈ Lq(D) is given by

DPε(u)h = 2

∫

D

(pε − vε)hdx, (4.2)
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where vε = Lεu is the direct state and pε is an adjoint state solution of

{

−ε2∆pε + pε = vε − u in D,
∂npε = 0 on ∂D.

(4.3)

Proof. First, by application of the Lax-Milgram theorem, the map Lε : (H
1(D))′ → H1(D) is linear

and continuous. In addition, we have the continuous imbeddings H1(D) →֒ Lq
′

(D) and Lq(D) →֒
(H1(D))′, where q′ is such that 1/q + 1/q′ = 1. Thus the map u ∈ Lq(D) 7→ Pε(u) is of class C

∞ by
composition. The standard rules of differential calculus provide

DPε(u)h =

∫

D

[Lεh(Lεu− 2u) + Lεu(Lεh− 2h)] dx.

A rearrangement and the replacement of Lεu by vε yields

DPε(u)h = 2

∫

D

[(vε − u)Lεh− vεh] dx.

Since the operator Lε : L
q(D)→ Lq

′

(D) is self-adjoint, we can also write

DPε(u)h = 2

∫

D

[Lε(vε − u)h− vεh] dx.

The definition of the adjoint state as pε = Lε(vε − u) leads to (4.2). �

Theorem 4.2. Let Ω be a measurable subset of D and vε, pε be the direct and adjoint states, respec-

tively, solutions of

{

−ε2∆vε + vε = χΩ in D,
∂nvε = 0 on ∂D,

{

−ε2∆pε + pε = vε − χΩ in D,
∂npε = 0 on ∂D.

For any q chosen as in Lemma 4.1 and any measurable subset Ω̃ of D, we have

Perε(Ω̃)− Perε(Ω) =

∫

D

Per′ε(Ω)(χΩ̃ − χΩ)dx+O(‖χΩ̃ − χΩ‖
2/q
L1(D)), (4.4)

with the function Per′ε(Ω) given by

Per′ε(Ω) =
4

ε
[1 + 2(pε − vε)] .

Proof. We get from (4.1)

Perε(Ω̃)− Perε(Ω) =
4

ε

[

Pε(χΩ̃)− Pε(χΩ) + |Ω̃| − |Ω|
]

.

A Taylor-Lagrange expansion of Pε yields

Perε(Ω̃)− Perε(Ω) =
4

ε

[

DPε(χΩ)(χΩ̃ − χΩ) +O(‖χΩ̃ − χΩ‖
2
Lq(D)) + |Ω̃| − |Ω|

]

.

Then (4.2) entails

Perε(Ω̃)− Perε(Ω) =
4

ε

[
∫

D

2(pε − vε)(χΩ̃ − χΩ)dx+O(‖χΩ̃ − χΩ‖
2/q
L1(D)) +

∫

D

(χΩ̃ − χΩ)dx

]

.

A rearrangement completes the proof. �

Remark 4.3. Suppose that χΩ̃ − χΩ = χB(z,ρ) for some z ∈ D and ρ > 0. By elliptic regularity,

Per′ε(Ω) is continuous in the vicinity of z, hence, as ρ → 0, the first term at the right hand side of
(4.4) is equivalent to Per′ε(Ω)(z)|B(z, ρ)|. The second term is a O(|B(z, ρ)|2/q) which, by choosing
q < 2, is of higher order than the first one. The function Per′ε(Ω) can therefore be identified as the
topological derivative [4, 10, 17, 18, 19] of the shape functional Perε evaluated at Ω.
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5. Application to topology optimization

Given a function w ∈ L2(D) and a real parameter α, we consider the model problem

min
Ω⊂D

J(Ω) :=

∫

Ω

wdx+ αPer(Ω).

Above, Per(Ω) stands for the relative perimeter of Ω in D, whose definition can be extended to any
measurable subset of D [8, 13]. When α > 0, the existence of a minimizer is ensured, see, e.g.,
Theorem 1.4.5 of [8] or Theorem 4.1.4 of [13]. For any ε > 0, we define the approximated problem

min
Ω⊂D

Jε(Ω) :=

∫

Ω

wdx+ αPerε(Ω). (5.1)

We use a continuation method described below.

Algorithm 5.1. (1) Define an initial domain Ω0, and a decreasing sequence (εn)n∈N of positive
numbers such that limn→∞ εn = 0. Set n = 0.

(2) Solve (5.1) with ε = εn and the initial guess Ωn. Call Ωn+1 the obtained solution.
(3) Increment n← n+ 1 and goto step (2).

To solve (5.1), we use the algorithm introduced in [6] and analyzed in [5]. We recall its main
features. First, we need the topological derivative of the functional Jε. It can be straightforwardly
deduced from Theorem 4.2, which provides the topological asymptotic expansion

Jε(Ω̃)− Jε(Ω) =

∫

D

J ′
ε(Ω)(χΩ̃ − χΩ)dx+ o(‖χΩ̃ − χΩ‖L1(D)), (5.2)

with

J ′
ε(Ω) = w + αPer′ε(Ω).

From (5.2) we deduce the following necessary optimality conditions:

J ′
ε(Ω) ≤ 0 a.e. in Ω,
J ′
ε(Ω) ≥ 0 a.e. in D \ Ω.

(5.3)

To solve these conditions, we represent every domain Ω ⊂ D by a so-called level-set function ψ : D → R

constructed so that

Ω = Ω(ψ) := {x ∈ D,ψ(x) < 0}.

We equip the set of real valued functions defined on D with the equivalence relation:

ψ1 ∼ ψ2 ⇐⇒ ∃µ > 0, ψ1 = µψ2.

Therefore, the conditions (5.3) will be satisfied by the domain Ω(ψ) whenever

J ′
ε(Ω(ψ)) ∼ ψ.

We solve this equation by the fixed point iteration with relaxation applied to the equivalence classes.
It turns out to be convenient to handle representatives on the unit sphere S of some Hilbert space H
of functions on D, for instance H = L2(D). This leads to the following algorithm.

Algorithm 5.2. (1) Choose an initial function ψ0 ∈ S. Set k = 0.
(2) Determine ψk+1 ∈ S as

ψk+1 ∼ (1− λk)ψk + λkJ
′
ε(Ω(ψk)), (5.4)

with λk ∈]0, 1] chosen so that

Jε(Ω(ψk+1)) ≤ Jε(Ω(ψk)).

(3) Increment n← n+ 1 and goto step (2).

The interest of the Hilbertian norm is that (5.4) can be reformulated as

ψk+1 =
1

sin θk

[

sin((1− τk)θk)ψk + sin(τkθk)
J ′
ε(Ω(ψk))

‖J ′
ε(Ω(ψk))‖H

]

,

with the angle

θk = arccos

〈

ψk,
J ′
ε(Ω(ψk))

‖J ′
ε(Ω(ψk))‖H

〉

H

,
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Figure 1. Example 1: α = 0 (left), α = 0.1 (middle), α = 0.2 (right).

Figure 2. Example 2: α = 0 (left), α = 0.1 (middle), α = 0.2 (right).

and τk ∈]0, 1] acting as stepsize in place of λk. In the implementation, τk is determined by a line
search of Armijo type (see [5]).

6. Numerical experiments

In the following examples the spatial dimension is N = 2. The hold all D is the unit square ]0, 1[2.
We choose the full domain initialization Ω0 = D, more precisely, ψ0 = −1/‖1‖H with H = L2(D). The
direct and adjoint problems are solved in Matlab by piecewise linear finite elements on a structured
mesh with 51521 degrees of freedom. The sequence of regularization parameters is chosen as εn = 1/2n,
and 15 iterations of Algorithm 5.1 are performed. Actually, we observe that almost no more evolution
occurs when εn becomes smaller than the mesh resolution. The stopping criterion of Algorithm 5.2
is θk ≤ 0.1◦. For each presented example, the computer time of the whole procedure is lower than 5
minutes on a standard PC.

6.1. Example 1. The function w is chosen as

w(x1, x2) =

{

−1 if 0.2 ≤ x1, x2 ≤ 0.8,
1 otherwise.

In Figure 1, we present the results obtained with the coefficients α = 0, α = 0.1 and α = 0.2. Of
course, for α = 0, the optimal solution is the rectangle ]0.2, 0.8[2. For α > 0, the contribution of the
perimeter is highlighted by the rounded corners.

6.2. Example 2. In order to demonstrate the ability of the algorithm to deal with topology changes
and illustrate Corollary 3.2, we choose now

w(x1, x2) =

{

1 if 0.2 ≤ x1, x2 ≤ 0.8,
−1 otherwise.

The results obtained for the same values of α as in Example 1 are shown in Figure 2.
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Figure 3. Example 3: α = 0 (left), α = 0.01 (middle), α = 0.1 (right).

Figure 4. Example 4: α = 0 (left), α = 0.01 (middle), α = 0.02 (right).

6.3. Example 3. The purpose of this example is to show that the proposed algorithm can also be
used when there exist junction points between ∂Ω and ∂D, although this case has not been treated
in the theory. In fact, if the junctions occur at right angles, it is intuitively clear that, due to the
Neumann boundary condition in (3.1), the functional Perε(Ω) still approximates the relative perimeter
of Ω in D, namely, σ(∂Ω ∩D). We consider the function

w(x1, x2) = sin(2πx1) sin(2πx2).

Figure 3 shows the results obtained with the coefficients α = 0, α = 0.01 and α = 0.1.

6.4. Example 4. In this last example we combine topology changes and junction of boundaries by
choosing

w(x1, x2) = sin(
2πx1
3

) sin(
2πx2
3

).

The results obtained with the coefficients α = 0, α = 0.01 and α = 0.02 are depicted in Figure 4.

Appendix

In this appendix we prove the relation (2.25) for every p ∈ N. Obviously it is true for p = 0.
Suppose now that it is true for some p ∈ N. The differentiation gives

∂q+1

∂ζq+1
j

(

Φ(|ζ|)

|ζ|2

)

= −(2q + 2)
ζj

|ζ|2q+4

q
∑

p=0

Φ(p)(|ζ|)Pp,q(|ζ|, ζj)

+
1

|ζ|2q+2

q
∑

p=0

[

Φ(p+1)(|ζ|)
ζj
|ζ|
Pp,q(|ζ|, ζj) + Φ(p)(|ζ|)

(

∂1Pp,q(|ζ|, ζj)
ζj
|ζ|

+ ∂2Pp,q(|ζ|, ζj)

)]

.

For each p ∈ {0, ..., q} we set

P 1
p,q+1(|ζ|, ζj) = −(2q + 2)ζjPp,q(|ζ|, ζj),

P 2
p+1,q+1(|ζ|, ζj) = ζj |ζ|Pp,q(|ζ|, ζj),

P 3
p,q+1(|ζ|, ζj) = ∂1Pp,q(|ζ|, ζj)ζj |ζ|+ ∂2Pp,q(|ζ|, ζj)|ζ|

2.
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We note that each polynomial P lα,β is homogeneous of degree α+ β. We obtain

∂q+1

∂ζq+1
j

(

Φ(|ζ|)

|ζ|2

)

=
1

|ζ|2q+4

q
∑

p=0

[

Φ(p)(|ζ|)P 1
p,q+1(|ζ|, ζj) + Φ(p+1)(|ζ|)P 2

p+1,q+1(|ζ|, ζj)

+ Φ(p)(|ζ|)P 3
p,q+1(|ζ|, ζj)

]

.

A rearrangement entails

∂q+1

∂ζq+1
j

(

Φ(|ζ|)

|ζ|2

)

=
1

|ζ|2q+4

q+1
∑

p=0

Φ(p)(|ζ|)
[

P 1
p,q+1(|ζ|, ζj) + P 2

p,q+1(|ζ|, ζj) + P 3
p,q+1(|ζ|, ζj)

]

,

where the undefined polynomials P 1
q+1,q+1, P

2
0,q+1 and P 3

q+1,q+1 have been set to zero. It suffices now

to set Pp,q+1 = P 1
p,q+1 + P 2

p,q+1 + P 3
p,q+1 to complete the proof.
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