Samuel Amstutz 
  
REGULARIZED PERIMETER FOR TOPOLOGY OPTIMIZATION

Keywords: topology optimization, perimeter, topological derivative, level set

The perimeter functional is known to oppose serious difficulties when it has to be handled within a topology optimization procedure. In this paper, a regularized perimeter functional Perε, defined for 2d and 3d domains, is introduced. On one hand, the convergence of Perε to the exact perimeter when ε tends to zero is proved. On the other hand, the topological differentiability of Perε for ε > 0 is analyzed. These features lead to the design of a topology optimization algorithm suitable for perimeter dependent objective functionals. Some numerical results on academic problems illustrate the method.

Introduction

Topology optimization problems are known to be generally ill-posed, in the sense that they possess no global minimizers. Typically, this property stems from the fact that the minimizing sequences have more and more complex topologies, without ever converging to a domain in any appropriate way [START_REF] Allaire | Conception optimale de structures[END_REF][START_REF] Henrot | Variation et optimisation de formes[END_REF]. Therefore, relaxation methods are often used [START_REF] Allaire | Shape optimization by the homogenization method[END_REF][START_REF] Attouch | Variational analysis in Sobolev and BV spaces[END_REF][START_REF] Cherkaev | Variational methods for structural optimization[END_REF], but the binary nature of the problem is then lost. A totally different approach is to impose geometrical constraints that limit the complexity of the obtained topologies. In this framework, a classical technique is to incorporate in the cost function a penalization by the perimeter. In many important cases, the resulting problem can be proved to be well-posed [START_REF] Ambrosio | An optimal design problem with perimeter penalization[END_REF][START_REF] Bucur | Variational methods in shape optimization problems[END_REF][START_REF] Henrot | Variation et optimisation de formes[END_REF]. The control of the perimeter of domains with variable topology appears also in image processing, when considering the Mumford-Shah functional [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF], for instance.

However, a major drawback of the perimeter functional is that it is not easy to handle numerically as soon as one wants to perform topology changes. To illustrate this claim, let us consider the creation of a hole ω inside a larger domain Ω seen as the current design domain in an iterative process. Then the variation of the perimeter is given by Per(Ω \ ω) -Per(Ω) = Per(ω). In contrast, the variation of the volume is |Ω \ ω| -|Ω| = |ω|. In fact, the traditional shape functionals, like the compliance, also admit a first variation proportional to |ω|, at least when Neumann boundary conditions are prescribed on ∂ω [START_REF] Amstutz | Sensitivity analysis with respect to a local perturbation of the material property[END_REF][START_REF] Garreau | The topological asymptotic for PDE systems: the elasticity case[END_REF][START_REF] Soko | On the topological derivative in shape optimization[END_REF]. This difference of order of magnitude creates an incompatibility in the numerical treatment of the perimeter in association with other shape functionals. To circumvent this difficulty, a two step algorithm is used in [START_REF] Hintermüller | Multiphase image segmentation and modulation recovery based on shape and topological sensitivity[END_REF]: a "topological" step which does not take into account the perimeter, then a "classical" step based on smooth boundary variation methods. The basic ingredients in each of these steps are the notions of topological and shape derivatives, respectively. More sophisticated approaches, also based on alternating steps, have been proposed in [START_REF] Hackl | Methods for reliable topology changes for perimeter-regularized geometric inverse problems[END_REF][START_REF] He | Solving the chan-vese model by a multiphase level set algorithm based on the topological derivative[END_REF].

In this paper, we present a natural way to include the perimeter within a topology optimization procedure. The proposed approach is based on a regularization method: the perimeter Per(Ω) is approximated by a functional Per ε (Ω) well-suited for topology optimization, then ε is driven to zero for which the exact perimeter is retrieved. Let us enter a little more into details. Let Ω be an open and bounded subset of R N , N ∈ {2, 3}, with C 2 boundary ∂Ω. We denote by u the characteristic function of Ω, i.e., u(x) = 1 if x ∈ Ω, u(x) = 0 if x ∈ R N \ Ω. For a fixed m ∈ N ⋆ and any ε > 0 we consider the (weak) solution

u ε ∈ H m (R N ) of ε 2m (-∆) m u ε + u ε = u. (1.1)
Then we define the quantity

E ε (Ω) := u -u ε 2 L 2 (R N ) = R N (u -u ε ) 2 dx.
We shall see that the asymptotic behavior of E ε (Ω) when ε goes to zero is directly related to the perimeter of Ω. Before giving a precise statement, let us specify some notation. We denote by ., . the canonical scalar product of R N , and by |.| the associated norm. For complex vectors, the same notation is kept for the Hermitian scalar product of C N and its norm, while complex conjugacy is denoted by a bar. The surface measure on ∂Ω is denoted by σ. Therefore, the perimeter of Ω can be defined as

Per(Ω) = σ(∂Ω) = ∂Ω dσ.
The outward unit normal to ∂Ω at point x is denoted by n(x). We shall prove the following result.

Theorem 1.1. The following asymptotic expansion holds when ε goes to zero:

E ε (Ω) = εκ m Per(Ω) + O(ε N +4 N +2 ),
where κ m is defined by

κ m = 1 π ∞ 0 t 4m-2 (1 + t 2m ) 2 dt.
The first values of κ m are κ 1 = 1/4 and κ 2 = 3/2 7/2 . Therefore, we call regularized perimeter the quantity

Per ε (Ω) = 1 κ m ε E ε (Ω), (1.2) 
which, in consequence of Theorem 1.1, satisfies

Per ε (Ω) = Per(Ω) + O(ε 2 N +2
). Theorem 1.1 is proved in Section 2. In Section 3, the result is extended to a boundary value problem, where (1.1) is complemented by a Neumann boundary condition on the border of a bounded domain D containing Ω. In Section 4, the sensitivity of the functional Per ε to topological perturbations is analyzed. Then, in Section 5, we show how these results lead to a topology optimization algorithm dedicated to perimeter dependent objective functionals. Finally, some numerical experiments on a simple model problem are reported in Section 6.

Asymptotic expansion of the regularized functional

This section is devoted to the proof of Theorem 1.1. Our approach relies on the Fourier transform, for which we adopt the definition

∀f ∈ L 1 (R N ), f (ξ) = (2π) -N/2 R N e -i x,ξ f (x)dx.
For a detailed exposition of the Fourier transform's properties, we refer, e.g., to [START_REF] Hörmander | The analysis of linear partial differential operators. I. Classics in Mathematics[END_REF]. 

E ε (Ω) = û -ûε 2 L 2 (R N ) = R N (ε|ξ|) 2m 1 + (ε|ξ|) 2m 2 |û(ξ)| 2 dξ. The change of variable ζ = εξ results in E ε (Ω) = ε -N R N |ζ| 4m (1 + |ζ| 2m ) 2 |û(ε -1 ζ)| 2 dζ.
(2.1)

It will turn out to be useful and also interesting on its own to study a generalized version of (2.1). To this aim, for all k ∈ N, we introduce the linear space

V k = Φ ∈ C ∞ (R), [t → t k-2 (1 + t 2 ) 2 Φ (k) (t)] ∈ L ∞ (R) ,
endowed with the norm

Φ V k = t → t k-2 (1 + t 2 ) 2 Φ (k) (t) L ∞ (R) = inf a ∈ R, |Φ (k) (t)| ≤ a |t| 2-k (1 + t 2 ) 2 a.e. t ∈ R .
Then, for all Φ ∈ V 0 , we set

T ε (Φ) = ε -N R N Φ(|ζ|)|ζ| 2 |û(ε -1 ζ)| 2 dζ. (2.2)
Since û ∈ L 2 (R N ), the above expression makes sense for all Φ ∈ V 0 , and furthermore we have T ε ∈ V ′ 0 , the continuous dual of V 0 . We also define the linear functional Tε ∈ V ′ 0 by Tε

(Φ) = ε π Per(Ω) ∞ 0 Φ(t)dt,
and the linear space

V = N +1 k=0 V k endowed with the norm Φ V = max { Φ V k , k = 0, ..., N + 1}
. We shall prove the following result.

Theorem 2.1. There exists c > 0 such that, for all Φ ∈ V and all ε sufficiently small,

|T ε (Φ) -Tε (Φ)| ≤ cε N +4 N +2 Φ V .
Then Theorem 1.1 follows at once from Theorem 2.1 by choosing

Φ(t) = t 4m-2 (1 + t 2m ) 2 .
We only have to check that this function belongs to V. To do so we set G k (t) = t 2-k /(1 + t 2 ) 2 . We remark that Φ (k) /G k is a rational function of degree 0, hence it will be bounded as soon as it has no pole on the real line. Immediate calculations provide

Φ(t) G 0 (t) = t 2m-2 1 + t 2 1 + t 2m 2 , Φ ′ (t) G 1 (t) = (4m -2) t 2m-2 1 + t 2 1 + t 2m 2 -4mt 6m-4 (1 + t 2 ) 2 (1 + t 2m ) 3 , ∀k ≥ 2, Φ (k) (t) G k (t) = Φ (k) (t) t k-2 (1 + t 2 ) 2 .
Obviously the above rational functions have no real poles for any m ≥ 1. The rest of this section is devoted to the proof of Theorem 2.1. Throughout, the letter c will be used to denote any positive constant independent of ε and Φ. For the reader's convenience the proof is divided into three parts.

2.2. Derivation of the leading term. At first, we assume that Φ ∈ C ∞ 0 (R), the set of functions of class C ∞ on R with compact support. By definition we have

|ξ| 2 û(ξ) = (2π) -N/2 |ξ| 2 Ω e -i x,ξ dx = (2π) -N/2 Ω div x ie -i x,ξ ξ dx,
which, by the divergence formula and setting e ξ = ξ/|ξ|, yields

|ξ|û(ξ) = (2π) -N/2 i ∂Ω e -i x,ξ e ξ , n(x) dσ(x).
(2.3)

On writing |û(ξ)| 2 = û(ξ)û(ξ) we obtain from (2.3)

|ξ| 2 |û(ξ)| 2 = (2π) -N ∂Ω×∂Ω e -i
x-y,ξ e ξ , n(x) e ξ , n(y) dσ(x)dσ(y).

Plugging this expression into (2.2) entails

T ε (Φ) = (2π) -N ε 2-N R N Φ(|ζ|) ∂Ω×∂Ω e iε -1 y-x,ζ e ζ , n(x) e ζ , n ( 
y) dσ(x)dσ(y) dζ.

By Fubini's theorem, this can be reordered as

T ε (Φ) = (2π) -N ε 2-N ∂Ω ∂Ω R N e iε -1 y-x,ζ Φ(|ζ|)e ζ ⊗ e ζ dζ n(y)dσ(y), n(x) dσ(x).
Setting

ϕ(z) = (2π) -N/2 R N e i z,ζ Φ(|ζ|)e ζ ⊗ e ζ dζ, (2.4) 
F ε (x) = ∂Ω ϕ(ε -1 (y -x))n(y)dσ(y), (2.5) 
we arrive at

T ε (Φ) = (2π) -N/2 ε 2-N ∂Ω F ε (x), n(x) dσ(x). (2.6) 
We shall now examine the asymptotic behavior of F ε (x) for a given x ∈ ∂Ω. Let ρ > 0 be such that the set ∂Ω ∩ B(x, 2ρ) can be represented as the graph of a C 2 function on an appropriate local Cartesian coordinate system. Note that, by compactness of ∂Ω, ρ may be chosen independent of x.

Let η : R N → R be a smooth (C ∞ ) function such that η(z) = 1 if |z| ≤ ρ, 0 ≤ η(z) ≤ 1 if ρ ≤ |z| ≤ 2ρ, and η(z) = 0 if |z| ≥ 2ρ.
We introduce a parameter β ∈]0, 1[ which will be fixed later, and split (2.5) as

F ε (x) = F 0 ε (x) + F 1 ε (x), (2.7 
) with

F 0 ε (x) = ∂Ω η(ε -β (y -x))ϕ(ε -1 (y -x))n(y)dσ(y), (2.8) 
F 1 ε (x) = ∂Ω [1 -η(ε -β (y -x))]ϕ(ε -1 (y -x))n(y)dσ(y).
(2.9)

In the ball B(x, 2ρ) we parametrize ∂Ω by

t ∈ O → y(t) = x + R(t, ψ(t)) ∈ ∂Ω, (2.10) 
where O is an open set of R N -1 containing the origin, R is a rotation, and

ψ : O → R is a function of class C 2 satisfying ψ(0) = 0, ∇ψ(0) = 0.
(2.11) For notational simplicity, we write vectors of R N indifferently row-wise or column-wise. We subsequently assume that ε < 1. Then η(ε -β (y -x)) = 0 implies y ∈ B(x, 2ρ), and we can write

F 0 ε (x) = O η(ε -β (y(t) -x))ϕ(ε -1 (y(t) -x))R(-∇ψ(t), 1)dt.
Setting

η ε (t) = η(ε -β (y(t) -x)) if t ∈ O, 0 otherwise, we obtain F 0 ε (x) = R N -1 η ε (t)ϕ(R(ε -1 t, ε -1 ψ(t)))R(-∇ψ(t), 1)dt.
By the definition (2.4), we observe that

ϕ(Rz) = Rϕ(z)R ⋆ , (2.12) 
with R ⋆ the adjoint of R. This entails

F 0 ε (x) = R R N -1 η ε (t)ϕ(ε -1 t, ε -1 ψ(t))(-∇ψ(t), 1)dt.
Then, by the change of variable t = εs, we arrive at

F 0 ε (x) = ε N -1 R R N -1 η ε (εs)ϕ(s, ε -1 ψ(εs))(-∇ψ(εs), 1)ds. ( 2 

.13)

Let e N = (0, ..., 0, 1) be the last vector of the canonical basis of R N . We split (2.13) as

F 0 ε (x) = A ε (x) + B ε (x) + C ε (x) + D ε (x), (2.14) 
with

A ε (x) = ε N -1 R R N -1 ϕ(s, 0)e N ds, (2.15) 
B ε (x) = ε N -1 R R N -1 [η ε (εs) -1] ϕ(s, 0)e N ds, (2.16 
)

C ε (x) = ε N -1 R R N -1 η ε (εs) ϕ(s, ε -1 ψ(εs)) -ϕ(s, 0) e N ds, (2.17) 
D ε (x) = ε N -1 R R N -1 η ε (εs)ϕ(s, ε -1 ψ(εs))(-∇ψ(εs), 0)ds. (2.18)
We first focus on the expected leading term A ε (x). We define for every

ζ ∈ R N and ζ ′ ∈ R N -1 h(ζ) = Φ(|ζ|)e ζ ⊗ e ζ , H(ζ ′ ) = R h(ζ ′ , ζ N )dζ N . (2.19)
Therefore the definition (2.4) is equivalent to ϕ(z) = ĥ(z). In addition, we have for all s ∈ R N -1

Ĥ(s) = (2π) -N -1 2 R N -1 e -i s,ζ ′ R h(ζ ′ , ζ N )dζ N dζ ′ = (2π) 1 2 ĥ(s, 0), thus ϕ(s, 0) = (2π) -1 2 Ĥ(s). It follows that A ε (x) = (2π) -1 2 ε N -1 R R N -1 Ĥ(s)ds e N .
Next, the Fourier inversion formula yields

A ε (x) = (2π) N 2 -1 ε N -1 RH(0)e N . From H(0) = R Φ(|ζ N |)e N ⊗ e N dζ N = 2 ∞ 0 Φ(t)dt e N ⊗ e N ,
we arrive at 

A ε (x) = (2π) N 2 -1 ε N -1 2 ∞ 0 Φ(t)dt Re N = (2π) N 2 -1 ε N -1 2 ∞ 0 Φ(t)dt n(x). The contribution of A ε (x) in the functional E ε (Ω) is then given by (2π) -N/2 ε 2-N ∂Ω A ε (x), n(x) dσ(x) = (2π) -1 ε2 ∞ 0 Φ(t)dt ∂Ω n(x), n(x) dσ(x) (2.20) = ε π ∞ 0 Φ(t)dt Per(Ω) = Tε (Φ). ( 2 
T ε (Φ) -Tε (Φ) = (2π) -N/2 ε 2-N ∂Ω F ε (x) -A ε (x), n(x) dσ(x).
Then using (2.7) and (2.14) we arrive at

T ε (Φ) -Tε (Φ) = (2π) -N/2 ε 2-N ∂Ω F 1 ε (x) + B ε (x) + C ε (x) + D ε (x), n(x) dσ(x). (2.22)
We shall estimate each term of the integrand in (2.22). Beforehand, we shall establish useful estimates for the function ϕ defined by (2.4). By successive integrations by parts from (2.4), we obtain for each j ∈ {1, ..., N } and any n ∈ N

ϕ(z)z n j = (2π) -N/2 i n R N e i z,ζ ∂ n ∂ζ n j (Φ(|ζ|)e ζ ⊗ e ζ ) dζ. (2.23)
Here, z j and ζ j stand for the j -th components of the vectors z and ζ, respectively. The Leibniz formula provides

∂ n ∂ζ n j (Φ(|ζ|e ζ ⊗ e ζ ) = ∂ ∂ζ n j Φ(|ζ|) |ζ| 2 ζ ⊗ ζ = 2 k=0 n k ∂ n-k ∂ζ n-k j Φ(|ζ|) |ζ| 2 ∂ k ∂ζ k j (ζ ⊗ ζ) . (2.24)
By induction, deferred to the appendix, we prove that

∂ q ∂ζ q j Φ(|ζ|) |ζ| 2 = 1 |ζ| 2q+2 q p=0 Φ (p) (|ζ|)P p,q (|ζ|, ζ j ), (2.25) 
where P p,q is a homogeneous polynomial of two variables of degree p + q. This entails

∂ q ∂ζ q j Φ(|ζ|) |ζ| 2 ≤ c q 1 |ζ| 2q+2 q p=0 |Φ (p) (|ζ|)||ζ| p+q ,
for some constants c q > 0. Using now that, by definition,

|Φ (p) (|ζ|)| ≤ Φ Vp |ζ| 2-p (1 + |ζ| 2 ) 2 , we obtain ∂ q ∂ζ q j Φ(|ζ|) |ζ| 2 ≤ (q + 1)c q max Φ Vp , p ≤ q |ζ| q (1 + |ζ| 2 ) 2 .
Plugging this estimate into (2.24), we get

∂ n ∂ζ n j (Φ(|ζ|e ζ ⊗ e ζ ) ≤ 2 k=0 n k (n -k + 1)c n-k max Φ Vp , p ≤ n -k |ζ| n-k (1 + |ζ| 2 ) 2 |ζ| 2-k (2.26) ≤ c n max Φ Vp , p ≤ n |ζ| n-2 (1 + |ζ| 2 ) 2 , (2.27) 
for some other constant c n > 0. The combination of (2.23) and (2.27) leads to

|ϕ(z)||z| n ≤ (2π) -N/2 c n max Φ Vp , p ≤ n R N dζ |ζ| n-2 (1 + |ζ| 2 ) 2 .
The integral at the right hand side of the above inequality is finite whenever

N -1 ≤ n ≤ N + 1. We conclude that ∀n ∈ {N -1, N, N + 1}, |ϕ(z)| ≤ c max Φ Vp , p ≤ n |z| n ≤ c Φ V |z| n .
(2.28)

Next we study the partial derivative

∂ϕ ∂z N (z) = (2π) -N/2 i R N e i z,ζ ζ N Φ(|ζ|)e ζ ⊗ e ζ dζ.
By successive integrations by parts we find

∂ϕ ∂z N (z)z n j = (2π) -N/2 i n+1 R N e i z,ζ ∂ n ∂ζ n j (ζ N Φ(|ζ|)e ζ ⊗ e ζ ) dζ. (2.29) If j = N we have obviously ∂ϕ ∂z N (z)z n j = (2π) -N/2 i n+1 R N e i z,ζ ζ N ∂ n ∂ζ n j (Φ(|ζ|)e ζ ⊗ e ζ ) dζ.
Using (2.27) we obtain

∀j = N, ∂ϕ ∂z N (z) |z j | n ≤ (2π) -N/2 c n max Φ Vp , p ≤ n R N dζ |ζ| n-1 (1 + |ζ| 2 ) 2 .
(2.30)

For j = N the Leibniz formula provides

∂ n ∂ζ n N (ζ N Φ(|ζ|)e ζ ⊗ e ζ ) = ζ N ∂ n ∂ζ n N (Φ(|ζ|)e ζ ⊗ e ζ ) + n ∂ n-1 ∂ζ n-1 N (Φ(|ζ|)e ζ ⊗ e ζ ) .
Then (2.27) yields

∂ n ∂ζ n N (ζ N Φ(|ζ|)e ζ ⊗ e ζ ) ≤ (2π) -N/2 (c n + nc n-1 ) max Φ Vp , p ≤ n |ζ| n-3 (1 + |ζ| 2 ) 2 ,
which, in view of (2.29), implies

∂ϕ ∂z N (z) |z N | n ≤ (2π) -N/2 (c n + nc n-1 ) max Φ Vp , p ≤ n R N dζ |ζ| n-3 (1 + |ζ| 2 ) 2 .
(2.31)

The two integrals at right hand sides of (2.30) and (2.31) are finite if we choose n = N . We conclude that ∂ϕ ∂z N

(z) ≤ c Φ V |z| N .
(2.32)

(1) When ε -β (y -x) belongs to the support of 1 -η, we have ε -β |y -x| ≥ ρ, hence, in view of (2.28) for n = N + 1,

1 -η(ε -β (y -x)) = 0 =⇒ |ϕ(ε -1 (y -x))| ≤ c Φ V (ρε β-1 ) N +1 .
From (2.9) and the above estimate we infer

|F 1 ε (x)| ≤ cε (1-β)(N +1) Φ V .
(2.33)

(2) From (2.16) we derive

|B ε (x)| ≤ ε N -1 R N -1 (1 -η ε (εs))|ϕ(s, 0)|ds.
In view of (2. 

for some λ ≥ 1. We deduce that ∀t ∈ O, |t| ≤ ρ λ ε β =⇒ ε -β |y(t) -x| ≤ ρ =⇒ η ε (t) = 1.
Set α = ρ/λ, possibly decreased so that B(0, α) ⊂ O. Thus, for all t ∈ R N -1 , |t| ≤ αε β implies η ε (t) = 1. Using also (2.28) for n = N + 1, we arrive at

|B ε (x)| ≤ cε N -1 Φ V R N -1 \B(0,αε β-1 ) 1 |s| N +1 ds = cε N -1 Φ V α -1 ε 1-β 2
(2.36)

≤ cε N -1+2(1-β) Φ V .
(2.37)

(3) From (2.17), we obtain

|C ε (x)| ≤ ε N -1 R N -1 η ε (εs) ϕ(s, ε -1 ψ(εs)) -ϕ(s, 0) ds.
The mean value inequality entails

ϕ(s, ε -1 ψ(εs)) -ϕ(s, 0) ≤ |ε -1 ψ(εs)| sup |t|≤ε -1 |ψ(εs)| ∂ϕ ∂z N (s, t) .
From (2.32) and (2.35) we derive

ϕ(s, ε -1 ψ(εs)) -ϕ(s, 0) ≤ c Φ V ε|s| 2-N . Yet, (2.34) yields |y(t) -x| ≥ |t| for all t ∈ O, hence ∀t ∈ O, |t| ≥ 2ρε β =⇒ ε -β |y(t) -x| ≥ 2ρ =⇒ η ε (t) = 0. (2.38)
We conclude that

|C ε (x)| ≤ c Φ V ε N B(0,2ρε β-1 ) |s| 2-N ds = c Φ V ε N +β-1 .
(2.39) (4) We get from (2.18)

|D ε (x)| ≤ ε N -1 R N -1 η ε (εs)|ϕ(s, ε -1 ψ(εs))||∇ψ(εs)|ds.
Using that |∇ψ(t)| ≤ c|t| for all t ∈ O together with (2.28) for n = N -1, we obtain

|D ε (x)| ≤ c Φ V ε N R N -1 η ε (εs)|s| 2-N ds.
Using now (2.38), we arrive at 

|D ε (x)| ≤ c Φ V ε N +β-1 . ( 2 
|T ε (Φ) -Tε (Φ)| ≤ c Φ V ε α ∀Φ ∈ C ∞ 0 (R), (2.41) 
for the exponent

α = 2 -N + min((1 -β)(N + 1), N -1 + 2(1 -β), N + β -1) = min(3 -β(N + 1), 3 -2β, 1 + β) = min(3 -β(N + 1), 1 + β).
This value is maximized when 3 -β(N + 1) = 1 + β, i.e., when β = 2/(N + 2). This corresponds to α = (N + 4)/(N + 2).

2.4. Extension to a function Φ ∈ V. We shall now extend (2.41) to an arbitrary function Φ ∈ V.

The expression of the integral in (2.2) in spherical coordinates reads

T ε (Φ) = ε -N ∞ 0 SN-1 Φ(r)r 2 |û(ε -1 rυ)| 2 r N -1 dσ(υ)dr = ∞ 0 Φ(r)r 2 w ε (r)dr, with w ε (r) = ε -N r N -1 SN-1 |û(ε -1 rυ)| 2 dυ,
and S N -1 the unit sphere of R N -1 . Note that, as û ∈ L 2 (R N ), we have w ε ∈ L 1 (R + ). We also write

Tε (Φ) = ∞ 0 Φ(r)r 2 wε (r)dr, with wε (r) = ε π Per(Ω) r 2 .
Therefore we have

T ε (Φ) -Tε (Φ) = ∞ 0 Φ(r)r 2 [w ε (r) -wε (r)]dr.
From (2.41) and the above equality we derive that

∞ 0 Φ(r)r 2 [w ε (r) -wε (r)]dr ≤ cε α Φ V ∀Φ ∈ C ∞ 0 (R). ( 2 

.42)

We choose now an arbitrary function Φ ∈ V, and construct the sequence of auxiliary functions

Φ n (r) = Φ(r)η( r n ), (2.43) where η ∈ C ∞ (R) is such that η(r) = 1 if |r| ≤ 1, 0 ≤ η(r) ≤ 1 if 1 ≤ |r| ≤ 2, and η(r) = 0 if |r| ≥ 2.
The differentiation of (2.43) at the order k by the Leibniz formula and a reordering gives

∀n ∈ N ⋆ , ∀r ∈ R, r k-2 (1 + r 2 ) 2 Φ (k) n (r) = k p=0 k p r p-2 (1 + r 2 ) 2 Φ (p) (r) r n k-p η k-p ( r n ).
For each q ∈ N the function t → t q η (q) (t) belongs to C ∞ 0 (R), hence it is bounded. This entails

∀n ∈ N ⋆ , Φ n V k ≤ c k k p=0 Φ Vp ,
for some constants c k independent of n, and subsequently

∀n ∈ N ⋆ , Φ n V ≤ c Φ V .
(2.44) Applying (2.42) to the function Φ n and using (2.44), it follows that

∀n ∈ N ⋆ , ∞ 0 η( r n )Φ(r)r 2 [w ε (r) -wε (r)]dr ≤ cε α Φ V .
By Lebesgue's dominated convergence theorem, we can pass to the limit and find

∞ 0 Φ(r)r 2 [w ε (r) -wε (r)]dr ≤ cε α Φ V , that is, |T ε (Φ) -Tε (Φ)| ≤ cε α Φ V .
The proof of Theorem 2.1 is now complete.

Extension to a boundary value problem

We assume now that Ω ⊂⊂ D, where D is a bounded Lipschitz domain of R N and Ω has a C 2 boundary. We consider the problem: find

v ε ∈ H 1 (D) such that -ε 2 ∆v ε + v ε = u in D, ∂ n v ε = 0 on ∂D, (3.1) 
with u the characteristic function of Ω in D, and set

E ε (Ω) = u -v ε 2 L 2 (D) . (3.2)
Note that we have restricted ourselves to the case m = 1 merely for simplicity. We shall show that E ε (Ω) obeys the same first order asymptotic expansion as in the unbounded case.

Theorem 3.1. The following asymptotic expansion holds when ε goes to zero:

E ε (Ω) = ε 4 Per(Ω) + O(ε N +4 N +2 ). (3.3) 
Proof. We make the splitting

v ε = u ε + e ε with u ε ∈ H 1 (R N ) and e ε ∈ H 1 (D) respectively solutions of -ε 2 ∆u ε + u ε = u in R N , -ε 2 ∆e ε + e ε = 0 in D, ∂ n e ε = -∂ n u ε on ∂D. (3.4)
Here, u is extended by zero outside D. We introduce the rescaled function U ε (x) := u ε (εx), which solves

-∆U ε + U ε = u(εx) in R N . Thus we can write for all x ∈ R N U ε (x) = R N u(εy)Γ(x -y)dy,
where Γ is the fundamental solution of the operator -∆ + I in R N . By change of variable we obtain

u ε (x) = ε -N Ω Γ x -z ε dz.
Assume now that dist(x, Ω) ≥ ρ > 0. By Fourier transform, we can easily show that |Γ(x)| = O(|x| -p ) for all p > 0. This implies

∀z ∈ Ω, Γ x -z ε ≤ c ε ρ p .
We arrive at |u ε (x)| ≤ c|Ω|ρ -p ε p-N . Similar estimates hold for |∇u ε (x)| and |∆u ε (x)|, which provides, for any k > 0,

u ε H 1 (R N \D) ≤ cε k , ∂ n u ε H -1/2 (∂D) ≤ cε k . (3.5)
Now, the variational formulation of (3.4) yields

D (ε 2 |∇e ε | 2 + |e ε | 2 )dx = - ∂D ∂ n u ε e ε dx,
from which we deduce

ε 2 e ε H 1 (D) ≤ c ∂ n u ε H -1/2 (∂D) ≤ cε k . (3.6)
Then we write

E ε (Ω) = u -u ε 2 L 2 (D) -2 D e ε (u -u ε )dx + e ε 2 L 2 (D) (3.7) = u -u ε 2 L 2 (R N ) -u ε 2 L 2 (R N \D) -2 D e ε (u -u ε )dx + e ε 2 L 2 (D) . (3.8)
By Theorem 1.1 we have

u -u ε 2 L 2 (R N ) = ε 4 Per(Ω) + O(ε N +4 N +2 ). (3.9)
Combining (3.8), (3.5), (3.6) and (3.9), using the Cauchy-Schwarz inequality and choosing k sufficiently large yields (3.3).

It is also of interest for the applications to study domains of the form D \ Ω, where Ω is defined as before. The peculiarity of this set is to touch the external boundary ∂D. The corresponding functional E ε (D \ Ω) is defined by (3.1) and (3.2), with u the characteristic function of D \ Ω. It turns out that the previous asymptotic expansion remains valid in this case, as stated in the following corollary.

Corollary 3.2. The following asymptotic expansion holds when ε goes to zero:

E ε (D \ Ω) = ε 4 Per(Ω) + O(ε N +4 N +2 ). (3.10)
Proof. We have by definition

E ε (D \ Ω) = u D\Ω -v D\Ω ε 2 L 2 (D)
,

where u D\Ω is the characteristic function of D \ Ω and v D\Ω ε solves -ε 2 ∆v D\Ω ε + v D\Ω ε = u D\Ω in D, ∂ n v D\Ω ε = 0 on ∂D.
Since u D\Ω = 1-u Ω (almost everywhere), with u Ω the characteristic function of Ω, and, by uniqueness,

v D\Ω ε = 1 -v Ω ε , with v Ω ε the solution of (3.1) for u = u Ω , we derive E ε (D \ Ω) = u Ω -v Ω ε 2 L 2 (D) = E ε (Ω).
Then we apply Theorem 3.1.

Note that, in this case, it is still the perimeter of Ω which is involved, not that of D \ Ω. In fact, this corresponds to the relative perimeter of D \ Ω in D, namely σ(∂(D \ Ω) ∩ D), see, e.g., [START_REF] Henrot | Variation et optimisation de formes[END_REF].

Topological sensitivity of the regularized perimeter

We place ourselves in the context if Section 3, i.e., we consider a bounded Lipschitz domain D of R N which will serve as "hold all". In this section we assume that ε > 0 is fixed. For all u ∈ L 2 (D), we denote by L ε u the solution v ε of (3.1), and we set

P ε (u) = D L ε u(L ε u -2u)dx.
The functional E ε (Ω) introduced in the previous section is defined for any measurable subset Ω of D (it is not needed here to assume further regularity neither that Ω ⊂⊂ D) by

E ε (Ω) = L ε χ Ω -χ Ω 2 L 2 (D) , with χ Ω the characteristic function of Ω in D. Then the regularized perimeter Per ε (Ω) defined by (1.2) satisfies Per ε (Ω) = 4 ε L ε χ Ω -χ Ω 2 L 2 (D) = 4 ε [P ε (χ Ω ) + |Ω|] , (4.1) 
where |Ω| is the N -dimensional Lebesgue measure of Ω.

Lemma 4.1.

For any q ∈]1, 2] if N = 2, q ∈ [6/5, 2] if N = 3, the functional u ∈ L q (D) → P ε (u) is of class C ∞ in the sense of Fréchet. Its derivative in the direction h ∈ L q (D) is given by DP ε (u)h = 2 D (p ε -v ε )hdx, (4.2) 
where v ε = L ε u is the direct state and p ε is an adjoint state solution of

-ε 2 ∆p ε + p ε = v ε -u in D, ∂ n p ε = 0 on ∂D. (4.3) 
Proof. First, by application of the Lax-Milgram theorem, the map L ε : (H 1 (D)) ′ → H 1 (D) is linear and continuous. In addition, we have the continuous imbeddings H 1 (D) ֒→ L q ′ (D) and L q (D) ֒→ (H 1 (D)) ′ , where q ′ is such that 1/q + 1/q ′ = 1. Thus the map u ∈ L q (D) → P ε (u) is of class C ∞ by composition. The standard rules of differential calculus provide

DP ε (u)h = D [L ε h(L ε u -2u) + L ε u(L ε h -2h)] dx.
A rearrangement and the replacement of L ε u by v ε yields

DP ε (u)h = 2 D [(v ε -u)L ε h -v ε h] dx.
Since the operator L ε : L q (D) → L q ′ (D) is self-adjoint, we can also write

DP ε (u)h = 2 D [L ε (v ε -u)h -v ε h] dx.
The definition of the adjoint state as

p ε = L ε (v ε -u) leads to (4.2). Theorem 4.2.
Let Ω be a measurable subset of D and v ε , p ε be the direct and adjoint states, respectively, solutions of

-ε 2 ∆v ε + v ε = χ Ω in D, ∂ n v ε = 0 on ∂D, -ε 2 ∆p ε + p ε = v ε -χ Ω in D, ∂ n p ε = 0 on ∂D.
For any q chosen as in Lemma 4.1 and any measurable subset Ω of D, we have

Per ε ( Ω) -Per ε (Ω) = D Per ′ ε (Ω)(χ Ω -χ Ω )dx + O( χ Ω -χ Ω 2/q L 1 (D) ), (4.4) 
with the function Per ′ ε (Ω) given by

Per ′ ε (Ω) = 4 ε [1 + 2(p ε -v ε )] .
Proof. We get from (4.1)

Per ε ( Ω) -Per ε (Ω) = 4 ε P ε (χ Ω) -P ε (χ Ω ) + | Ω| -|Ω| .
A Taylor-Lagrange expansion of P ε yields

Per ε ( Ω) -Per ε (Ω) = 4 ε DP ε (χ Ω )(χ Ω -χ Ω ) + O( χ Ω -χ Ω 2 L q (D) ) + | Ω| -|Ω| . Then (4.2) entails Per ε ( Ω) -Per ε (Ω) = 4 ε D 2(p ε -v ε )(χ Ω -χ Ω )dx + O( χ Ω -χ Ω 2/q L 1 (D) ) + D (χ Ω -χ Ω )dx .
A rearrangement completes the proof.

Remark 4.3. Suppose that χ Ω -χ Ω = χ B(z,ρ) for some z ∈ D and ρ > 0. By elliptic regularity, Per ′ ε (Ω) is continuous in the vicinity of z, hence, as ρ → 0, the first term at the right hand side of (4.4) is equivalent to Per ′ ε (Ω)(z)|B(z, ρ)|. The second term is a O(|B(z, ρ)| 2/q ) which, by choosing q < 2, is of higher order than the first one. The function Per ′ ε (Ω) can therefore be identified as the topological derivative [START_REF] Amstutz | Sensitivity analysis with respect to a local perturbation of the material property[END_REF][START_REF] Garreau | The topological asymptotic for PDE systems: the elasticity case[END_REF][START_REF] Nazarov | Asymptotic analysis of shape functionals[END_REF][START_REF] Novotny | Topological sensitivity analysis[END_REF][START_REF] Soko | On the topological derivative in shape optimization[END_REF] of the shape functional Per ε evaluated at Ω. Above, Per(Ω) stands for the relative perimeter of Ω in D, whose definition can be extended to any measurable subset of D [START_REF] Bucur | Variational methods in shape optimization problems[END_REF][START_REF] Henrot | Variation et optimisation de formes[END_REF]. When α > 0, the existence of a minimizer is ensured, see, e.g., Theorem 1.4.5 of [START_REF] Bucur | Variational methods in shape optimization problems[END_REF] or Theorem 4.1.4 of [START_REF] Henrot | Variation et optimisation de formes[END_REF]. For any ε > 0, we define the approximated problem min Ω⊂D J ε (Ω) := Ω wdx + αPer ε (Ω).

Application to topology optimization

(5.1)

We use a continuation method described below.

Algorithm 5.1.

(1) Define an initial domain Ω 0 , and a decreasing sequence (ε n ) n∈N of positive numbers such that lim n→∞ ε n = 0. Set n = 0.

(2) Solve (5.1) with ε = ε n and the initial guess Ω n . Call Ω n+1 the obtained solution.

(3) Increment n ← n + 1 and goto step (2).

To solve (5.1), we use the algorithm introduced in [START_REF] Amstutz | A new algorithm for topology optimization using a level-set method[END_REF] and analyzed in [START_REF] Amstutz | Analysis of a level-set method for topology optimization[END_REF]. We recall its main features. First, we need the topological derivative of the functional J ε . It can be straightforwardly deduced from Theorem 4.2, which provides the topological asymptotic expansion

J ε ( Ω) -J ε (Ω) = D J ′ ε (Ω)(χ Ω -χ Ω )dx + o( χ Ω -χ Ω L 1 (D) ), (5.2) 
with J ′ ε (Ω) = w + αPer ′ ε (Ω). From (5.2) we deduce the following necessary optimality conditions:

J ′ ε (Ω) ≤ 0 a.e.
in Ω, J ′ ε (Ω) ≥ 0 a.e. in D \ Ω.

(

To solve these conditions, we represent every domain Ω ⊂ D by a so-called level-set function ψ : D → R constructed so that Ω = Ω(ψ) := {x ∈ D, ψ(x) < 0}. We equip the set of real valued functions defined on D with the equivalence relation:

ψ 1 ∼ ψ 2 ⇐⇒ ∃µ > 0, ψ 1 = µψ 2 .
Therefore, the conditions (5.3) will be satisfied by the domain Ω(ψ) whenever J ′ ε (Ω(ψ)) ∼ ψ. We solve this equation by the fixed point iteration with relaxation applied to the equivalence classes. It turns out to be convenient to handle representatives on the unit sphere S of some Hilbert space H of functions on D, for instance H = L 2 (D). This leads to the following algorithm. Algorithm 5.2.

(1) Choose an initial function ψ 0 ∈ S. Set k = 0. (2) Determine ψ k+1 ∈ S as

ψ k+1 ∼ (1 -λ k )ψ k + λ k J ′ ε (Ω(ψ k )), (5.4) 
with λ k ∈]0, 1] chosen so that

J ε (Ω(ψ k+1 )) ≤ J ε (Ω(ψ k )).
(3) Increment n ← n + 1 and goto step [START_REF] Allaire | Conception optimale de structures[END_REF].

The interest of the Hilbertian norm is that (5.4) can be reformulated as

ψ k+1 = 1 sin θ k sin((1 -τ k )θ k )ψ k + sin(τ k θ k ) J ′ ε (Ω(ψ k )) J ′ ε (Ω(ψ k )) H ,
with the angle and τ k ∈]0, 1] acting as stepsize in place of λ k . In the implementation, τ k is determined by a line search of Armijo type (see [START_REF] Amstutz | Analysis of a level-set method for topology optimization[END_REF]).

θ k = arccos ψ k , J ′ ε (Ω(ψ k )) J ′ ε (Ω(ψ k )) H H ,

Numerical experiments

In the following examples the spatial dimension is N = 2. The hold all D is the unit square ]0, 1[ 2 . We choose the full domain initialization Ω 0 = D, more precisely, ψ 0 = -1/ 1 H with H = L 2 (D). The direct and adjoint problems are solved in Matlab by piecewise linear finite elements on a structured mesh with 51521 degrees of freedom. The sequence of regularization parameters is chosen as ε n = 1/2 n , and 15 iterations of Algorithm 5.1 are performed. Actually, we observe that almost no more evolution occurs when ε n becomes smaller than the mesh resolution. The stopping criterion of Algorithm 5.2 is θ k ≤ 0.1 • . For each presented example, the computer time of the whole procedure is lower than 5 minutes on a standard PC. 6.1. Example 1. The function w is chosen as

w(x 1 , x 2 ) = -1 if 0.2 ≤ x 1 , x 2 ≤ 0.8, 1 otherwise. 
In Figure 1, we present the results obtained with the coefficients α = 0, α = 0.1 and α = 0.2. Of course, for α = 0, the optimal solution is the rectangle ]0.2, 0.8[ 2 . For α > 0, the contribution of the perimeter is highlighted by the rounded corners. ).

The results obtained with the coefficients α = 0, α = 0.01 and α = 0.02 are depicted in Figure 4.

Appendix

In this appendix we prove the relation (2.25) for every p ∈ N. Obviously it is true for p = 0. Suppose now that it is true for some p ∈ N. E-mail address: samuel.amstutz@univ-avignon.fr
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 1 Reformulation in the frequency domain. Passing to the Fourier transform in (1.1) yields ε 2m |ξ| 2m ûε (ξ) + ûε (ξ) = û(ξ), from which we derive ûε (ξ) = û(ξ) 1 + (ε|ξ|) 2m . Next, by Parseval's equality, we obtain

  Given a function w ∈ L 2 (D) and a real parameter α, we consider the model problem min Ω⊂D J(Ω) := Ω wdx + α Per(Ω).

Figure 1 .

 1 Figure 1. Example 1: α = 0 (left), α = 0.1 (middle), α = 0.2 (right).

Figure 2 .

 2 Figure 2. Example 2: α = 0 (left), α = 0.1 (middle), α = 0.2 (right).

6. 2 .

 2 Example 2. In order to demonstrate the ability of the algorithm to deal with topology changes and illustrate Corollary 3.2, we choose noww(x 1 , x 2 ) = 1 if 0.2 ≤ x 1 , x 2 ≤ 0.8, -1 otherwise.The results obtained for the same values of α as in Example 1 are shown in Figure2.

Figure 3 .

 3 Figure 3. Example 3: α = 0 (left), α = 0.01 (middle), α = 0.1 (right).

Figure 4 .

 4 Figure 4. Example 4: α = 0 (left), α = 0.01 (middle), α = 0.02 (right).

6. 3 .

 3 Example 3. The purpose of this example is to show that the proposed algorithm can also be used when there exist junction points between ∂Ω and ∂D, although this case has not been treated in the theory. In fact, if the junctions occur at right angles, it is intuitively clear that, due to the Neumann boundary condition in (3.1), the functional Per ε (Ω) still approximates the relative perimeter of Ω in D, namely, σ(∂Ω ∩ D). We consider the function w(x 1 , x 2 ) = sin(2πx 1 ) sin(2πx 2 ).

Figure 3

 3 Figure3shows the results obtained with the coefficients α = 0, α = 0.01 and α = 0.1.6.4. Example 4. In this last example we combine topology changes and junction of boundaries by choosingw(x 1 , x 2 ) = sin( 2πx 1 3 ) sin( 2πx2 3).

  The differentiation gives (|ζ|, ζ j ) + Φ (p) (|ζ|) ∂ 1 P p,q (|ζ|, ζ j )ζ j |ζ| + ∂ 2 P p,q (|ζ|, ζ j ) .For each p ∈ {0, ..., q} we setP 1 p,q+1 (|ζ|, ζ j ) = -(2q + 2)ζ j P p,q (|ζ|, ζ j ), P 2 p+1,q+1 (|ζ|, ζ j ) = ζ j |ζ|P p,q (|ζ|, ζ j ), P 3 p,q+1 (|ζ|, ζ j ) = ∂ 1 P p,q (|ζ|, ζ j )ζ j |ζ| + ∂ 2 P p,q (|ζ|, ζ j )|ζ| 2 .We note that each polynomial P l α,β is homogeneous of degree α + β. We obtain (|ζ|)P 1 p,q+1 (|ζ|, ζ j ) + Φ (p+1) (|ζ|)P 2 p+1,q+1 (|ζ|, ζ j ) + Φ (p) (|ζ|)P 3 p,q+1 (|ζ|, ζ j ) . (|ζ|) P 1 p,q+1 (|ζ|, ζ j ) + P 2 p,q+1 (|ζ|, ζ j ) + P 3 p,q+1 (|ζ|, ζ j ) , where the undefined polynomials P 1 q+1,q+1 , P 2 0,q+1 and P 3 q+1,q+1 have been set to zero. It suffices now to set P p,q+1 = P 1 p,q+1 + P 2 p,q+1 + P 3 p,q+1 to complete the proof. Institut de Mathématiques et de Modélisation de Montpellier, UMR CNRS & Université de Montpellier 2, Place Eugène Bataillon, 34095 Montpellier Cedex, France.
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