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Abstract

We consider the radial transport of test particles due to the E x B drift motion in the
guiding center approximation. In a configuration where the magnetic field is constant
and uniform in linear devices or with neglecting toroidal effects in tokamaks, the Ex B
instability is one of the main sources of deconfinement of magnetized plasmas. Using
an explicit expression to modify the electrostatic potential, we show that it is possible
to construct a transport barrier which suppresses the radial transport. We propose
an algorithm and a simulation of test particles for the implementation of this local
modification computed from an electrostatic potential known on a spatio-temporal
grid. The number of particles which escape the inner region defined by the barrier
measures the efficiency of the control.

1 Introduction

Control of chaotic transport is an important topic in many areas of physics with
considerable research and technical applications. Its aim is to reduce chaos when
it is harmful and enhance it when it is beneficial. In the context of Hamiltonian



systems, the possibility of controlling chaos finds some important applications
in particle accelerator dynamics (increase of dynamical aperture), free electron
lasers (reduction of intensity fluctuations), atomic physics (control of ionization
rates) and fluid mechanics (increase of fluid mixing). A lot of efforts have
been devoted to reduce chaotic and turbulent transport in laboratory plasma
physics. Two examples are afforded by the control of stochasticity of magnetic
field lines and the transport generated by plasma instabilities. In magnetically
confined fusion plasmas, like tokamaks, the electrostatic turbulence and the
associated E x B drift motion, is one of the main sources for the loss of energy
confinement [ﬂ, E, and consequently a relevant obstacle to the attainment
of plasma ignition. The development of control strategies able to induce a
relevant change in transport properties, i.e. turbulence reduction, by means of
a small and localized perturbation constitutes a way to understand the complex
behavior of laboratory plasmas in the long run to achieve thermonuclear fusion.

A convenient way to control these systems is by using electromagnetic fields.
Since the plasma dynamics is very sensitive to electrostatic fluctuations, a con-
trol method for the E x B drift motion of test particles has been proposed by
a small and apt modification of the electrostatic potential [E, ﬂ] This method
has been tested on a Travelling-Wave Tube (TWT) for the reduction of chaotic
transport [f]]. Tt is worth noticing that for these methods the relevant modifica-
tions were applied in all the plasma region. To step forward in the applicability
of this control scheme to more complex plasma devices, we present a method and
its practical algorithm to construct a transport barrier for the radial dynamics
where the modification of the potential is only applied in a peripheral region of
the plasma. Our strategy does not depend on the electrostatic potential at hand
whether it is known analytically, numerically or experimentally. The geometry
we are considering is a cylindrical spatial geometry which is shared by many lin-
ear devices like for example VINETA [ff, MIRABELLE [§] or CSDX [ff]. More-
over, as in these devices the plasma temperature is not too high, plasma density
and plasma electrostatic potential are routinely measured by inserting probe
arrays with large radial and poloidal extents. In that way it is possible to have
a very accurate description of the space time behavior of the plasma , EI, ﬂ]
In addition it is worth noticing that it is also possible to act on the plasma using
electrodes directly in contact with the plasma, producing for example a mode
locking between the injected sinusoidal signal and the plasma dynamics [[12, [LF].
The first part of this paper deals with the analytical solution in order to create
a radial transport barrier with only the knowledge of the electrostatic potential.
The second part concerns the numerical algorithm to compute this control from
electrostatic potential data. Finally, the third part is related to the computa-
tion and the results of the control of test particle dynamics in an electrostatic
potential without or with control.



2 Method

2.1 Guiding-center dynamics

The equations of motion of charged particles (of charge e and mass m) in elec-
tromagnetic fields (E = —VV — 0A /0t and B = V x A) can be obtained in a
Hamiltonian framework [@, E] where the Hamiltonian is

(p — eA(q, 1))’

2m

H(paq’ t) = +6V(qa t)’ (1)
where q is the position of the particle and p is its canonically conjugate momen-
tum. In strong magnetic fields, particles have a fast gyration motion around
the guiding-center [E] The relation between the position of the particle and
its guiding center is:

q=Xx+ P (2)

where x is the position of the guiding-center and p is the Larmor vector. In what
follows, we restrict our study to the case where the magnetic field is constant
and uniform: B = Bz. In this case, in order to reduce the system, we apply the
generalized canonical transformation (g, p) — (x,u):

1,

XfQ*e—BZX(PfeA), (3)
A

u=P 2 (4)

m - m

The Hamiltonian becomes [[[7, [§:

mu2

2

H = +eV(x+£ixu,t), (5)

and the Poisson bracket has pairs of conjugate coordinates: (z,u.), (z,y) and

(U, Uy).
(F,G} = Li(aF 3G>+§2.<8F 8G)

eB &xa_x m?2 %X%
L, OF, 06 oF, G
- e R

It is important to notice that the two coordinates (z and y) of the guiding center
in the plane transverse to the magnetic field are conjugate, as well as the two
velocities (u, and u,) of the particle in this transverse plane. Nothing is changed
along the direction of the field lines. In order to reduce the dimensionality of
our system, we neglect the finite Larmor radius (FLR) effects

V(x—l—%ixu,t) ~V(x,t),

which is standard hypothesis for plasma devices, in particular, for tokamaks. In
this way, we notice that the equations of motion for the position of the guiding



center are decoupled from the ones of the velocity of the particle. The equations
of motion are given by

1oV
“Say
1oV
y—+E%,

that is the velocity of the guiding centers is equal to the E x B drift velocity.

We consider a cylindrical geometry as encountered in linear plasma devices.
In this geometry, the polar coordinates are better suited. We perform the (non-
canonical) change of coordinates « = r cos§ and y = rsin 6. The Poisson bracket
of the reduced system in the poloidal plane (see ) is changed into

{F’G}:re—B

1 (0FO0G OF0G
20 or  or 90 )’

with a reduced Hamiltonian H = ef/(r,@,t), where V(r,@,t) = V(z,y,t). In
what follows, we remove the tildas for simplicity of the notations. Hence, the
equations of motion for the guiding centers are:

. 1 oV
T (6)
. 1 oV
b=+Far ™

The singularity at r = 0 can be removed by reformulating the equations of
motion in the canonically conjugate pair of variables (¥,0) with ¥ = r2/2.
However the singularity is in general not a problem in the numerical integration
of test particles since the measured fluctuating potentials vanish in the core
region around r = 0. The important region where confinement is crucial is the
peripheral (edge) region whether it is for linear devices or toroidal ones like
tokamaks.

2.2 Control term for a transport barrier

We are looking at modifications of the Hamiltonian, i.e. of the electrostatic
potential V| in order to create a radial transport barrier. We consider the
following expression for the controlled potential V,:

Ve(r,0,t) =V (f(r,0,t),0,t), (8)

where f(r,0,t) is the control function that has to be determined. We define the
application T as:
T : (r, 9, t) ’_> (f(r, 9, t)797t>’ (9)

with which the controlled potential is written as V, = V oT. We impose that
this new potential creates a transport barrier for the guiding centers located at



r = R(0,t). This is equivalent to imposing that » = R(0,¢) is invariant by the
dynamics. More specifically, we have

R=0;R(0,t) + 09y R(0, 1), (10)

where R and § are given by Egs. (B)-(@) for the potential V. given by Eq. (§).
Equation ([[0]) translates into

1 oV 0 OR 1 oV
"B or o0 00001+ Zr+ 7p =0
where the derivatives of V are taken at r = f(R(6,t),0,t). This equation has
two unknown functions f and R to be determined. A bounded solution can be
found when the time-average of V/(f(R(6,t),0,t),0,t) vanishes for all values of
0. We assume that the time-average of V' is zero for all 8 at a given radius rg.
We obtain a solution for f and R assuming that

f(R397t) =To, (11)
and
2 _0V
R(0,t) = \/rg - EF@(TO,H,IS), (12)

where T is a linear operator acting on any function (with vanishing mean value)
of time as the pseudo-inverse of the derivative with respect to time, e.g., acting

on a function ¢(t) as
0 (L'(t))

- o(t). (13)

There is still a lot of freedom for the choice of the control term, even if all these
choices lead to the same equation for the transport barrier R given by Eq. (B)
We solve Eq. () using the following control terms:

fl(T,e,t) = r+w1(93t)5 (14)
Fa(r,0,8) = v e 7020 (0, 1), (15)

where the ; (0, t) are arbitrary functions of § and ¢ to be determined by Eq. ([L1]).
The first expression f; for the control term implies that the potential has to
be modified on the entire phase space. However it is desirable to only apply
the modifications on a particular region of the transverse plane. In order to
localize radially the control required for creating the transport barrier, a first
idea is to localize the potential modifications in a neighborhood of the barrier
R(6,t). The fact that this localization is varying in time makes this strategy
challenging for an experimental realization. In order to address this issue we
adopt a slightly different strategy: the control term f> leads to a modification
of the potential only in the neighborhood of a circle of radius 7y which is more
adapted to an experimental application since the control is envisaged through
a set of probes usually aligned along a circle, or a predefined fixed geometry.
A Gaussian function around the radius rg is used to describe this localization



and o is related to the width at half maximum. Using Eqs. (§), (L) and (1),
the controlled potentials associated with the control terms ([[4) and ([[§) are
respectively:

Vc(r,t?,t) :V(T+T07R595t)7 (16)
‘/c(ra 9) t) =
1% (T + (ro — R)e((R—T0)2_(T_T°)2)/(202), 0, t) ;

where R(6,t) is defined by Eq. ([12).

3 Numerical algorithm

We investigate numerically the effect of the controlled potential V., =V oT on
the dynamics of guiding centers. We have developed our algorithm such that it
is applicable for any potential known on a spatio-temporal grid as obtained in
numerical codes or as measured experimentally.

3.1 Computation of controlled electrostatic potential

The measurement of the electrostatic potential V' is performed on a grid of
M, x My x M; points called the measurement grid. The numbers M, and
My correspond to the number of probes. This is the input of our numerical
algorithm. This measurement can be given by experimental measurement or
numerical data. However the control term f is computed on a refined spatial
grid of N, x Ny x N; points where N,. > M, and Ny > Mpy in order to minimize
the error in the numerical scheme. The potential given by Eq. (E) is used in
order to create a local barrier of radial transport. The controlled potential V, is
calculated on the measurement grid or on the refined one if the original grid is
too coarse-grained (in order to avoid fake dissipation due to an imprecise way
of computing Hamilton’s equations). The output of this computation is the
modifications of the electrostatic potential given on the measurement grid.
The derivatives with respect to periodic variables (e.g., 6) as well as the I'-
operator given by Eq. (E) are computed using Fast Fourier Transform and for
non-periodic variables (e.g., r) with a fourth order finite-difference scheme.

As we can see from Eqgs. (L) and ([4), the controlled potential V, is simply
obtained from the original one V by a shift in the radial position r (which
depends on # and t). This means that for determining V. on a given spatial
grid one has to recover, by interpolation, the values of V on a deformed grid as
schematically represented in Fig. .

3.2 Computation of test particles

We compute and compare the dynamics of test particles given by the equations
of motion () and (f]) obtained with the uncontrolled and the controlled electro-
static potentials, V and V, = VoT respectively. In order to integrate these equa-
tions of motion, we use a fourth order Runge-Kutta integrator. Even though



Figure 1: The controlled potential V. on the initial grid is obtained by inter-
polating the uncontrolled potential V' (from the red grid) on the deformed blue
grid obtained from the map T given by Eq. (H)




this is not a symplectic scheme, we monitor the total energy E + V (z(t),y(t),1)
where the dynamics of E is given by E = —9JV/dt, so as to ensure that the
numerical error is negligible. This also constitutes a way to check globally our
numerical scheme. This last dynamical equation is integrated with the same
numerical scheme as Eqgs. (f) and (f)).

With a set of initial conditions inside the barrier r = R(0,t), we compute the
dynamics of test particles separately for the uncontrolled and for the controlled
electrostatic potential. If there is radial transport, the particles which are ini-
tially inside the barrier may leave the inner region. When the control creates
a radial transport barrier, the test particles are expected to remain inside this
barrier.

4 Numerical results

4.1 Computation with uncontrolled potential

In order to validate our method with the computation of test particles, we
use an analytic potential which mimics a turbulent potential with small and
large structures with a decay of the spatial modes consistent with experimental
measurements [[l]. We use only one frequency given that the frequency spectrum
does not introduce changes in the algorithm as shown in Ref. [2(]. This potential
has been studied in Ref. [E] and is given by:

al 1
V(T, (9, t) =a Z 73/2
nomeen (0% +m?) 18
712-71-7n2<N2 ( )
n#0,m#0

x sin (nr cos + mrsin6 + @, — ),

where a is the amplitude of the potential and ¢,,, are random phases in order
to model a turbulent potential with N = 25. The amplitude a is a parameter to
modulate the importance of chaotic transport. Figure E is a representation of
this potential at time ¢ = 0. We add a filter in a small circular region centered
in r = 0 to model the fact that the electrostatic fluctuations are weak at the
center of the device. This cancels the singularity of the equations of motion.
In order to obtain an accurate numerical simulation, we choose the number
of points N, = 256 (in the radial position r), Ny = 512 (in the poloidal angle
0) and Ny = 64 (in time) for the electrostatic potential grid. The total energy
conservation is accurate up to 104 up to a time of integration of 100 periods.
The initial positions of test particles are chosen near the center (inside the
position of the barrier obtained later with the controlled electrostatic potential).
Figure E shows the Poincaré section (stroboscopic plot with the period of the
potential) of test particles obtained with the uncontrolled electrostatic potential.
We notice that the diffusion of test particles is more pronounced in the peripheral
region than in the core region where the test particles are trapped for some time.



Figure 2: Potential V' given by Eq. ) at t =0 for a =0.4.
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Figure 3: Poincaré section of 100 test particles for the potential V given by
Eq. ([[§) for a = 0.4, up to t = 100 x 2.
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The green line defined by » = R(6,t) at t = 0 is added to show that guiding-
centers can diffuse (without control) in all the available plane perpendicular to
the magnetic field lines. More precisely, in the computation presented in Fig. ,
only 11% of the trajectories remain inside the barrier after 100 periods of the
potential.

4.2 Computation with controlled potential

Figure 4: Initial grid (red dots) where the uncontrolled potential V' is known.
Modified grid (blue lines) defined by Eq. ([) where V is interpolated to obtain
V. given by Eq. ([Lg) on the initial grid (red dots). The green line is the position
of the barrier fluctuating near the fixed point ro = 7.
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As described in the numerical algorithm, the measurement of the electro-
static potential is performed with (M., My) = (128,256). The control term and
electrostatic potential are computed on this measurement grid. A final step is
to interpolate the controlled potential on the initial grid (N;, Ny) using a spline
interpolation. We apply our control algorithm in order to confine test particles
inside the barrier. The controlled potential given by Eq. (E) is considered. It is
computed numerically performing an interpolation method of V' on the deformed
grid explicitly defined by V. = V o T following the procedure sketched in Fig. El
For example, in Fig. E we represent the deformation of the grid associated with
the computation of the controlled potential given by Eq. ([L6).
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Figure 5: Difference V, — V between V, given by Eq. (L) with o = 0.6 and V'
given by Eq. ([§) at ¢ = 0 for a = 0.4. This modification is centered around the
black circle with radius rg.
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The difference V. — V between the controlled electrostatic potential V. and
the potential V' given by Eq. (B) is shown in Fig. E for the computed controlled
potential given by Eq. ([[7).

The efficiency of the control algorithm is estimated from the dynamics of test
particles obtained by integrating Eqs. (E) and (E) with the controlled potential
V.. Figure | shows the Poincaré section of test particle trajectories obtained
with the controlled potential V. given by Eq. ) There are 90% of particles
which remain inside the barrier.

Figure 6: Poincaré section of 100 test particles for the potential V. given by
Eq. (@) where V' is given by Eq. (B) for a = 0.4, 0 = 0.6, up to t = 100 x 27.
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The position of the control barrier R(6, 2k7) = R(6,0) is represented by the
red solid line. The test particles are stopped at the barrier. A quantitative
estimate of the efficiency of the control scheme is obtained by comparing the
number of particles trapped inside the position of 1.2 times of the radial position
of the barrier for the controlled and uncontrolled potentials.

The time evolution of the percentage of particles which stay inside the barrier
is shown in Fig. ﬁ There is less than 5% of trapped particles without the control
and this is due to the trapping near resonant islands which exist inside the
barrier. For a = 0.4, up to t = 100 x 27, there are 11% of trapped particles
without the control (see Fig. E) in comparison to 90% for the control potential
(see Fig. E) On a longer time scale, up to t = 500 x 2w, there are 4% of
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Figure 7: Time evolution (in periods) of the percentage of trapped particles
which stay inside the barrier i.e. with (r,6) such that r > aR(6,t) where
a = 1.2. This picture show the results without (in solid black curve) or with
the control (in dashed blue curve) computed from 2000 particles.
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trapped particles without the control and there are 59% with control. We
notice that the control does not lead to 100% of trapped particles as expected
from Eq. ([[7) since the numerical algorithm (performed on a grid) introduces
some perturbation from the exact control. This is also to be expected from the
discrepancy between the measured potential and the actual one which prevents
the computation of a very accurate control. However nearly all trajectories are
trapped inside the transport barrier; it shows that the control method is robust
in the numerical implementation. From practical purposes the control given by
Eq. ([L7) is more interesting than the one given by Eq. ([Ld) since it allows one
to put all the probes on a fixed circle. However, the control given by Eq. ([Ld) is
more efficient compared to Eq. ([17) where we notice a drastic reduction of the
transport of particles.

Finally we would like to point out that our strategy does not depend on the
chosen potential whether it is known analytically or not, e.g., as a result of a
numerical simulation or an experimental measurement. The method only uses
a potential known on a spatio-temporal grid. From this grid, a modified grid
is computed and the controlled potential is equal to the original one on this
modified grid. The modifications of the grid are of the order of the fluctuations
of the potential V.

An important advantage of the proposed strategy concerns the relatively small
modifications of the potential. The mean average in angle 6 and time ¢ (denoted
(-)) of the potential modifications on the radial position r = rq, i.e. {|V (ro,0,t)—
Ve(ro,6,1)]), is about 30% of the mean average of the potential (|V(rg,0,t)|).
This has to be compared with a simpler version of the control which consists in
creating a potential barrier around r = r¢ such that V,.(r = rg, 0,¢) is small. In
order to obtain the same quantity of trapped particles (Nyrqppea ~ 60% up to
t =500 x 27), it would be necessary to cancel 90% of the electrostatic potential
which has to be compared with 30% of the modifications introduced by the
proposed strategy.
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