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[1] Ontario Lacus is the largest and best characterized lake in Titan’s south polar region.
In June and July 2009, the Cassini RADAR acquired its first Synthetic Aperture Radar
(SAR) images of the area. Together with closest approach altimetry acquired in December
2008, these observations provide a unique opportunity to study the lake’s nearshore
bathymetry and complex refractive properties. Average radar backscatter is observed to
decrease exponentially with distance from the local shoreline. This behavior is consistent
with attenuation through a deepening layer of liquid and, if local topography is known, can
be used to derive absorptive dielectric properties. Accordingly, we estimate nearshore
topography from a radar altimetry profile that intersects the shoreline on the East and West
sides of the lake. We then analyze SAR backscatter in these regions to determine the
imaginary component of the liquid’s complex index of refraction (�). The derived value,
� = (6.1−1.3

+1.7) × 10−4, corresponds to a loss tangent of tan D = (9.2−2.0
+2.5) × 10−4 and is

consistent with a composition dominated by liquid hydrocarbons. This value can be
used to test compositional models once the microwave optical properties of candidate
materials have been measured. In areas that do not intersect altimetry profiles, relative
slopes can be calculated assuming the index of refraction is constant throughout the liquid.
Accordingly, we construct a coarse bathymetry map for the nearshore region by measuring
bathymetric slopes for eleven additional areas around the lake. These slopes vary by a
factor of ∼5 and correlate well with observed shoreline morphologies.

Citation: Hayes, A. G., et al. (2010), Bathymetry and absorptivity of Titan’s Ontario Lacus, J. Geophys. Res., 115, E09009,
doi:10.1029/2009JE003557.

1. Introduction

[2] Ontario Lacus, originally imaged by the Instrument
Science Subsystem (ISS) in July 2004 and June 2005 [Turtle
et al., 2009], was Cassini’s first glimpse into Titan’s surface
hydrocarbon inventory. With an area of 15,600 km2, it re-
mains the largest lake observed in the south polar region.
The Visual and Infrared Mapping Spectrometer (VIMS)
observed Ontario in December 2007 and spectrally con-
firmed the presence of liquid ethane [Brown et al., 2008].
Infrared mapping of the shoreline at a resolution of 330–
2500 m/pixel suggested the presence of surrounding annuli

which Barnes et al. [2009] interpreted as evidence for
changes in lake level. Recent observations by ISS in March
2009 (E. P. Turtle et al., Shoreline retreat at Titan’s Ontario
Lacus and Arrakis Planitia from Cassini Imaging Science
Subsystem observations, submitted to Icarus Notes, 2010)
and Radar in June/July 2009 [Hayes et al., 2010] have
detected shoreline recession, confirming Ontario is an active
feature. Lorenz et al. [2009] discusses morphologic and
hydrologic similarities between Ontario Lacus and Racetrack
Playa, an ephemeral lake located in Death Valley National
Park, CA USA. In this work, we derive the imaginary com-
ponent of Ontario’s complex refractive index and create a
nearshore bathymetry map using a combination of radar
backscatter and altimetry.
[3] Cassini has observed Ontario Lacus with multiple

instruments between July 2004 and January 2010, making it
the best characterized lacustrine feature on Titan. Synthetic
Aperture Radar (SAR) images were acquired on June 22,
2009 (Titan flyby T57), July 8, 2009 (T58), and January 12,
2010 (T65). Closest approach altimetry observations were
obtained in December 21, 2008 (T49). The SAR images have
a resolution of 260–350 m/pixel and show varied shoreline
morphologies including landforms similar to drowned river
valleys and wave‐dominated beachheads [Wall et al., 2010].
Passive microwave radiometry, obtained coincident with
active SAR, shows Ontario is colder than both its local
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surroundings and northern counterparts, suggesting either
evaporative cooling or a lower emissivity [Wall et al., 2010;
Mitri et al., 2007]. Altimetry returns from the lake surface
are specular in nature and place an upper limit of 3 mm on
the root‐mean square (RMS) height of any surface waves
over the 100 m Fresnel zone of radar beam footprints during
the December 2008 flyby [Wye et al., 2009].
[4] The combination of closest‐approach altimetry and

high resolution SAR observations presents a unique oppor-
tunity to study Ontario Lacus. The normalized radar back-
scatter cross‐section (so) drops off exponentially with
distance from shoreline. This behavior is consistent with
attenuation through a deepening liquid medium and, if the
local topography is known, can be used to estimate the
imaginary component of the complex index of refraction
(�). The complex refractive index at microwave wavelength
determines the depth to which radar waves can penetrate
lakes on Titan, and is a function of liquid composition.
Complex refractive indices are calculated in two areas where
altimetry profiles intersect the lake shoreline. To within
errors, both measurements are consistent and are bounded
by the expected attenuation properties of liquid hydrocar-
bon at 90 K.
[5] The observed exponential fall‐off in radar return is

further used to estimate local bathymetric slopes in areas
where the topography was not sampled by altimetry. These
slopes are used to generate a coarse nearshore bathymetry
map assuming that refractive properties are uniform through-
out the lake. Using this method, we estimate bathymetric
slopes for eleven additional areas around the lake, ranging
from (0.5–2.7) × 10−3.
[6] We present our analysis in four parts: data reduction,

model fitting, model validation, and discussion of results.
Data processing steps taken for calculating lake‐depth and
average radar return are described in section 2. We develop
the best‐fit model to the reduced data in section 3, and
assess the validity of the model and its sensitivity to
underlying assumptions in section 4. Interpretation of model
results, including morphological and compositional implica-
tions, are presented in section 5.

2. Data Reduction

[7] The Cassini RADAR measures the normalized back-
scatter cross‐section (so) of Titan’s surface at 2.16 cm. The
normalized backscatter cross‐section is a non‐dimensional
quantity that describes the reflected power received by the
radar. For every element on the surface, the measured power
is converted into the effective area of an isotropic scat-
tering surface that would produce the observed signal. This
effective area is then divided by the imaged surface area
yielding a non‐dimensional so value for each pixel [Ulaby
et al., 1982]. For a given wavelength, polarization, and
incidence angle, so is an intrinsic property of the surface and
can be used to distinguish between different terrain models.
Unfortunately single measurements, or looks, of so are highly
dependent on small‐scale structure in the terrain, and thus
temporal or spatial averaging is required before analyzing the
effects of material properties or large‐scale structure. For
Ontario Lacus, the average so as function of distance from
shore is used to determine microwave absorption coefficients
and determine local bathymetric slopes.

[8] Noise in measurements of so have two common
sources: speckle noise and instrument noise. Speckle noise
is produced by mutually interfering electromagnetic waves
that are scattered off of a surface that is rough on the order
of the wavelength, and is thus embedded in the radar signal.
Conversely, instrument noise results primarily from thermal
noise in the antenna receiver, and is thus an artifact of radar
signal measurement. Instrument noise is nominally sub-
tracted during SAR processing and reported as the noise
equivalent backscatter (so

(ne)). Speckle noise for single‐look
data follows an exponential probability distribution of the
form [Goodman, 1976]

Pð�oÞd�o ¼ 1=�ðtÞo
� �

e��o=�
ðtÞ
o d�o ð1Þ

where so
(t) is the mean backscatter from the surface. Speckle

noise is typically suppressed by averaging multiple looks of
the same surface element. As the number of looks becomes
large, P(so) approaches a normal distribution in accordance
with the central limit theorem. For the T57, T58, and T65
radar observations, the number of looks varied from 1 to 4
and the average so, reported after subtraction of so

(ne), is
−22.3 ± 0.1 dB, −20.29 ± 0.03 dB and −18.25 ± 0.02 dB,
respectively. This difference in average lake backscatter is
not surprising given differences in incidence angle between
flybys: 42°–44° for T57, 26°–32° for T58, and 21°–29° for
T65. For a single look, the 95% confidence interval (CI)
varies from −15.9 dB to +5.7 dB about the mean value so

(t);
for four looks, this interval is reduced to only −5.6 dB to
+3.4 dB. These intervals span the total backscatter variation
observed in Ontario’s nearshore region (−10 to −20 dB) and
have significant probability of being below the average
radar noise floor, which varies between flybys: −17.46 ±
0.04 dB for T57, −20.09 ± 0.05 dB for T58, and −18.97 ±
0.01 dB for T65. Within ∼10 km of the shore, these so
values can be modeled as radiation penetrating a liquid
layer and interacting with the lakebed [Hayes et al., 2008,
2010; Paillou et al., 2006, 2008b, 2008a; Ventura et al.,
2009].
[9] For observations with few looks, additional averaging

is required to further reduce speckle noise. This is typically
achieved through spatial averaging using box filters, which
is reasonable assuming small spatial gradients in so [Elachi
and van Zyl, 2006]. In our study of Ontario’s nearshore
region, however, box filtering would average over the
exponential falloff with distance from shoreline. Therefore,
we modify the usual box averaging approach by using long
and narrow boxes oriented parallel to shoreline (Figure 1,
inset). Averaging in these along‐shore bins reduces speckle
noise while minimally affecting the expected exponential
decay in the nearshore region. The error in estimates of the
bin‐averaged backscatter hsoi are calculated using a boot‐
strap Monte Carlo technique [Press et al., 1992]. This
technique involves creating a large number of synthetic data
sets (1000) by randomly selecting, with replacement, values
from the observed data within a given distance bin. Addi-
tionally, we calculate statistical metrics, such as the mean
and skewness, for each synthetic data set. The 95% confi-
dence interval (CI) of these distributions are reported as the
error in the equivalent metrics for the observed data. After
binning and averaging, hsoi exhibits normally distributed
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errors, enabling the use of chi‐square minimization as a
maximum likelihood estimator for model parameters (see
section 3).
[10] In order to ensure a robust result, we calculate the

distance from shore using both simple and complex shor-
elines. Simple shorelines are defined by two points
connected by a line in the region of interest, which is 15 km

in along‐shore length, while the complex shorelines consist
of many points with an average separation distance equal to
the image resolution (260–350 m). Sensitivity to shoreline
selection is not large and is discussed in section 4. Bin
averaging is performed at a resolution 3 times finer than the
observed data. To accomplish this, the raw data are nearest‐
neighbor sub‐sampled to higher resolution, where depths are

Figure 1. Equidistant cylindrical projection of Ontario Lacus centered at 72°S. Study areas A through M
are outlined in red. T49 altimetry footprint centers are plotted over SAR data. Blue circles represent the
size of altimetry footprints. SAR and ISS outlines of the lake are shown in blue and cyan, respectively.
Nearshore bathymetry is presented within each region of interest. Regions of interest (excluding G, I, and
M) are ∼15 × 24 km and contain ∼104 pixels. Regions G, I, and M have along‐shore dimensions of 20, 4,
and 30 km, respectively. Each distance bin contains ∼102 pixels. Regions H, I, and J are located within
T57 while the remaining regions are located in T58. Inset: Region A with contours of constant distance
from shoreline. Bin size was increased by a factor of 3 as compared to analysis bin sizes for visualization
purposes.
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calculated for each sub‐pixel by multiplying distance from
shoreline with regional slope, as discussed below. Averag-
ing in this high‐resolution space reduces artifacts introduced
by finite pixel size, allowing pixels to be fractionally
apportioned into appropriate depth bins.
[11] Closest approach altimetry observations obtained in

December 2008 (T49) show a constant topographic slope of
S = (1.22 ± 0.03) × 10−3 for ∼100 km leading up to Ontario
Lacus (Figure 2). Assuming this measured slope extends at
least a few kilometers into the lake and that the direction of
steepest topographic descent is perpendicular to the shore-
line, we estimate the local bathymetric slope, or dip, as
D = S/cos y, where y is the angle between the altimetry
track and the local normal to shoreline. Given the bathy-
metric slope, we can obtain the depth of the lakebed d = Dr,
where r is the distance from the shoreline. In the southeast
altimetry intersection (region A of Figure 1) SA = (1.22 ±
0.03) × 10−3 and yA = 51.5 ± 1.5°. In the northwest altimetry
intersection (region L of Figure 1) SL = (1.7 ± 0.6) × 10−4

and yL = 80 ± 3°. Correcting for orientation, the estimated
bathymetric slopes are DA = (2 ± 0.1) × 10−3 and DL = (1 ±
0.5) × 10−3, similar to the topographic slopes in the lakebed
of Racetrack Playa on Earth [Lorenz et al., 2009]. For the
remainder of this manuscript, topographic slopes will refer
to measured slopes on the landward side of a shoreline while
bathymetric slopes will refer to slopes in the nearshore
region of a lakebed.
[12] Terrestrial examples support the assumption that

nearshore bathymetry contours are parallel to lake shores and,
in the absence of human intervention, are typically similar on
land and lake‐sides of a shoreline [Brunskill and Schindler,
1971; Waples et al., 2005; Gardner et al., 2001]. Nearshore
slopes of Lake Tahoe in northeastern California, for example,
are maintained for multiple kilometers away from the shore in
both directions [Gardner et al., 2001]. The consistent topo-
graphic slope, which extends for 100 km beginning imme-
diately offshore of region A in Ontario Lacus, suggests that
the lake lies in a shallow regional basin and that the slope
would likely continue a few kilometers into the lake. This

necessary assumption, while uncertain, is supported by the
exponential fall‐off of hsoi with distance from shore and
the consistency between derived bathymetric slopes and
observed morphologies (see section 5). In section 4, we test
the significance of this assumption using a fractal model for
small‐scale topography and find that, in this case, its effects
are minimal.

3. Model

[13] Together, observed SAR backscatter and estimated
nearshore lake depth provide a method for measuring the
complex index of refraction of Ontario Lacus. Assuming the
liquid surface and lake bottom have similar backscatter
properties between SAR pixels, the variation in radar‐return
can be described by a simple two‐layer model:

�ðmÞ
o ¼ �ð1Þ

o þ �ð2Þ
o e�8��d sec �liq=� ð2Þ

where � is the imaginary component of the index of
refraction and l is the SAR wavelength in vacuum. The
incidence angle in liquid hydrocarbon (�liq) is given by
Snell’s law:

�liq ¼ sin�1 natm=nliq sin �
� � ð3Þ

where the real components of the refractive indices for the
liquid and atmosphere at 13.6 GHz are approximately nliq ≈
1.3 and natm ≈ 1. The three unknown parameters in this
model are the combination of residual noise and backscatter
from the liquid surface (so

(1)), the lakebed backscatter at zero
depth (so

(2)), and the imaginary component of the refractive
index (�). The offset term so

(1) is likely composed of residual
instrument noise, and any surface backscatter from Bragg
waves, or other small‐scale roughness on the liquid surface
[Wright, 1968]. Small shifts in local shoreline selection
primarily add an offset to lake depth affecting so

(2) but do not
appreciably change the value of �, which is our primary
focus. It should be noted that we cannot disentangle the
effects of composition and particulate scattering in the total
value of � for the liquid medium.
[14] We fit the depth‐bin averaged so values and their

associated uncertainties to equation (1) using the Levenberg‐
Marquardt method for non‐linear least squares estima-
tion [Levenberg, 1944; Marquardt, 1963]. To find the best
fit, we minimize the reduced chi‐square fitness metric,
defined as

�2
� ¼

1

Ndof

XN
i¼1

h�oi � �
ðmÞ
o

� �2

varðh�oiÞ þ @�
ðmÞ
o
@d

� �2
varðdÞ

� � ð4Þ

where the modeled value so
(m) is defined by equation (2), var

(x) is the variance in x, N is the number of points in the
transition region, and Ndof is the number of degrees of
freedom. Uncertainties in hsoi are estimated using the
Monte Carlo routine described in section 2. Variance in
depth, var(d), is controlled by the combination of errors in
shoreline selection and unknown small‐scale roughness of
the lakebed. We fit assuming both perfect shoreline selec-
tion (var(d) = 0) and 1 pixel error in shoreline estimation

Figure 2. Analysis of December 2008 (T49) altimetry
track. Blue circles correspond to positions marked in
Figure 1. (a) Geoid subtracted altimetry using radar echo
center of mass. Geoid values obtained from Iess et al.
[2010]. Local slopes near altimetry intersections with On-
tario Lacus are shown. (b) Brightness temperature from
passive radiometry experiments. The highest value in On-
tario is ∼87 K, which is colder than the northern lakes.
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(var(d) = (D Dxpix)
2, where Dxpix is the pixel resolution

which varies from 260–350 m).
[15] We estimate confidence intervals using a bootstrap

Monte Carlo technique and report the maximum extent of
the 95% confidence ellipses in parameter space [Press et al.,
1992]. Using a bathymetric dip of (2 ± 0.1) × 10−3 to cal-
culate lake‐depth, we find the imaginary component of the
complex index of refraction for region A (Figure 3, top) to
be �A = (6.1−1.3

+1.7) × 10−4. The reduced chi‐square value of
the fit, assuming no error in depth estimation, is cn

2 = 5.0.
Allowing for 1 pixel errors on the distance from shoreline or
equivalent vertical noise, the reduced chi‐square is cn

2 = 1.2.
Incorporating ∼1 pixel errors in shoreline position does
not, to within errors, alter the values of the best‐fit coef-
ficients (see section 4). Fitting the average radar return from
region F, using a slope DL = (1 ± 0.5) × 10−3, the best‐fit
complex index of refraction is �L = (6.2−2.5

+3.5) × 10−4, con-
sistent with region A. Region L has a reduced chi‐square
value of cn

2 = 9.0 assuming perfect shoreline position and
cn
2 = 1.4 assuming 1 pixel error in shoreline position or

equivalent vertical noise. The highly oblique angle between

the altimetry track and shoreline near region L, however,
makes our determination of slope much more uncertain.
[16] In all regions around the lake backscatter variation

can be split into three components: shore response, near-
shore transition, and lake response. Figure 3 shows hsoi
versus d for regions A and L plotted alongside the models
for the best fit and 95% confidence intervals. The two
plateaus for large distances from the transition region are the
shore and lake response, respectively. We fit the two‐layer
model to data in the transition region, which is bounded by
vertical lines. Correlated noise arising from low SNR and
structure in the lake interior increases cn

2 when the transition
region is extended further offshore. The fit error can be
reduced in these regions by omitting outliers in the darkest
portions of the lake. The best fit coefficients, however,
are not significantly affected by this structure. Increased
amplitude of the noise structure outside the transition region
begins where the real aperture radar footprint includes only
dark lake pixels, thus hindering echo phase determination
during SAR processing.
[17] We determined fit coefficients for thirteen locations

around the lake (Figure 1, regions A–M), and present results
in Table 1. In regions other than A or L, where the altimetry
track intersects the shoreline, the resulting exponential
coefficient represents the product of the imaginary index of
refraction multiplied by the ratio of the local bathymetric
slope to the measured topographic slope in A. Assuming
that the index of refraction does not vary around the lake,
the difference in fit coefficients are equal to the relative
slope, representing a coarse lake bathymetry. Morphologic
correlations with variations in relative bathymetric slope are
discussed in section 5.
[18] The reported model coefficients are derived using the

T57 and T58 SAR data. The T65 SAR data was acquired
while this manuscript was in review and the final calibration
was not available at the time of publication. Preliminary
analysis of T65 data, however, returns similar results for �
and bathymetric slope despite differences in viewing geom-
etry, adding confidence to the results reported here.

4. Model Validation

[19] In order to model the observed nearshore backscatter
as exponential attenuation through a deepening liquid
medium, we assumed both that the shoreline is accurately
determined and that bathymetric contours are parallel to the
local shoreline. As shown in the previous section, we can
model the observed data well using these assumptions.
Nevertheless, it is important to explore how violations of
these assumptions might bias our results. In the following
section, we examine how errors in shore‐line selection and
realistic small‐scale lakebed topography might affect our
analysis. We demonstrate for both of these cases that error
sources large enough to significantly change our results also
noticeably alter the pixel brightness distribution statistics
within our SAR images, imprinting them with identifiable
markers. We do not find evidence for these markers in our
observed data, suggesting such significant errors are not
present.
[20] The variance in SAR pixel backscatter due to speckle

noise confounds shoreline selection. It is thus reasonable to
expect some mixing of true lake and shore pixels in the

Figure 3. (top) Along‐shore averaged radar backscatter and
model fits for Region A. (bottom) Along‐shore averaged
radar backscatter and model fits for Region L. The red and
brown lines represents the best‐fit and 95% CI models within
the transition region. Data from within the lake and on the
shoreline were not used in fitting. The left‐edge of the transi-
tion region was selected by hand. Zero‐depth corresponds to
pixels lying along the Ontario shoreline derived from image
data and does not necessarily correspond to the left edge of
the transition region.

HAYES ET AL.: ONTARIO LACUS BATHYMETRY AND ABSORPTIVITY E09009E09009

5 of 11



transition region when using an uncertain shoreline. Linear
mixing of bright and dark values may imitate the expected
backscatter fall‐off with distance from shore. Therefore, it is
important to limit the polluting effects of linear mixing by
restricting our analysis to regions of low shoreline com-
plexity (Figure 1, regions A–M). Additionally, we charac-
terize the effects of improper shoreline selection to ensure
that linear mixing is not skewing the results. This is
accomplished by analyzing the shape of backscatter dis-
tributions within each depth bin. We find that small errors in
shoreline selection do not significantly affect the results, and
large errors can be ruled out by the changes they induce in
distribution characteristics within the transition region.
[21] As a first test for the dependence of our analysis on

shoreline selection, we use both straight‐line (within the
region of interest) and smoothly varying shorelines to cal-
culate pixel depths. The resulting best‐fit coefficients do not
vary outside their error between the straight‐line and
smoothly varying cases, though the reduced chi‐square and
parameter variances for the straight‐line fits are character-
istically larger. In order to confidently rule out linear mix-
ing, a more careful study was performed by comparing the
data to two end‐member models. The first model uses a
highly complex shoreline and synthesizes images based on
linear mixing alone. In the second model, we assume the
backscatter in the transition region between shore and lake
pixels results purely from exponential decay through a
deepening liquid medium. Each model is two‐dimensional
and generates images that are processed using the same data
reduction and modeling techniques outlined in sections 2
and 3. The characteristics of the pixel distributions for
both models within each distance bin are then compared to
the observed data.
[22] The Linear Mixing Model (LM) uses a complex

shoreline created by following contours of so around On-
tario Lacus. Constant values for lake (slake) and shore
(sshore) backscatter are obtained using least squares mini-
mization, matching the backscatter inside and outside the
lake far from the transition region (Figure 3). For each

distance bin, we record the extent of mixing that results
from the meandering of the complex shoreline relative the
smoothly varying shoreline discussed in section 3. A syn-
thetic two dimensional image at the resolution of the SAR
data is generated by assigning lake or shore identities to
each pixel according to the complex shoreline, while dis-
tance bins for along‐shore averaging are generated using the
smooth shoreline. The backscatter of a pixel is then deter-
mined by averaging random draws from a speckle noise
distribution centered at slake or sshore (equation (1)). The
number of draws are determined by the number of looks for
each pixel in the original data.
[23] In contrast to LM, the Exponential Attenuation Model

(ExM) assumes no linear mixing. ExM generates a two
dimensional image using average backscatter values deter-
mined by the best‐fit coefficients from equation (2) for the
smooth shoreline defined in section 3. The purpose of ExM
is to understand the expected variation in so assuming
exponential attenuation through a deepening liquid medium.
Similar to LM, pixel values are assigned by averaging ran-
dom draws from an appropriate speckle noise distribution,
where the number of draws are given by the number of looks
in the actual data. In order to understand noise‐induced
variations, each model is generated many times and the
distributions of statistical metrics are recorded.
[24] While the effect of linear mixing on the average

backscatter in the transition region can be similar to expo-
nential attenuation, it causes large changes to the shape of
the pixel distributions for even small degrees of contami-
nation. One metric for the shape of a distribution is the
skewness (g1), which is a measure of asymmetry about the
mean [Press et al., 1992]. For single‐look observations,
speckle noise skewness is 1.6–2.6 (95% CI), regardless of
so
(t), and decreases with the square root of the total number

of looks. When draws are made from two or more speckle
noise distributions, such as in LM, data skewness can
increase to values of 8 or greater. Skewness is most sensitive
to small percentages of shore contamination in a bin mostly
composed of lake pixels. Other statistical metrics, such as

Table 1. Model Fitting Results for Regions A–Ma

Region

so
(1) so

(2) D (×10−3)

cn
2 Fit cn

2 LM cn
2 ExMMean LCL UCL Mean LCL UCL Mean LCL UCL

A 0.009 0.0080 0.0098 0.044 0.038 0.052 2.00b 1.90b 2.10b 1.2 5.9 1.4
B 0.018 0.0099 0.022 0.055 0.026 0.073 2.52 0.86 3.98 2.3 3.4 2.6
C 0.023 0.015 0.027 0.049 0.027 0.064 2.29 1.25 3.71 2.6 5.2 2.7
D 0.019 0.017 0.020 0.040 0.027 0.053 2.34 1.43 4.05 14.2 9.9 3.7
E 0.016 0.004 0.019 0.039 0.021 0.107 2.23 1.33 4.62 9.92 10.9 2.8
F 0.01 0.009 0.012 0.054 0.044 0.063 2.68 2.12 3.44 8.6 9.8 3.9
G 0.009 0.0082 0.010 0.022 0.016 0.027 1.85 1.56 2.52 8.9 23.6 5.5
H 0.0056 0.0037 0.0072 0.033 0.029 0.037 1.40 0.83 1.96 8.0 47.1 6.9
Ic 0.0097 0.0075 0.012 0.070 0.029 0.092 4.85 2.83 5.87 3.6 33.1 2.4
J 0.013 0.0046 0.021 0.026 0.018 0.036 1.24 0.71 2.16 6.5 7.0 3.4
K 0.0038 0.0014 0.007 0.056 0.047 0.065 0.74 0.60 0.88 8.7 75.0 6.9
L 0.0021 0.00056 0.048 0.041 0.037 0.046 1.00b 0.50b 1.50b 1.4 50.2 2.4
M 0.021 0.018 0.025 0.026 0.038 0.033 0.46 0.39 0.61 6.6 5.1 2.3

aCoefficient errors are the lower and upper confidence limits (LCL and UCL) of the 95% confidence interval. Local bathymetric dip (D) is determined by
referencing to the observed on‐land topographic dip at region A (DA = (2 ± 0.1) × 10−3) and assuming the imaginary component of the index of refraction
(�) is uniform throughout the lake. The model parameters so

(1) and so
(2) represent the surface backscatter and zero‐depth lakebed backscatter as defined by

equation (2) and discussed in section 3. Chi‐square goodness‐of‐fit metrics (cn) are reported for the data, Linear Mixing Model (LM), and Exponential
Attenuation Model (ExM) as described in section 4.

bDenotes that the slopes are measured using on‐land Altimetry measurements (Regions A and L) as opposed to estimated using the model coefficients.
cDenotes areas where there are less than four depth bins within the first two exponential skin depths of the transition region.
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the relative mean difference, non‐uniformity, and kurtosis,
are sensitive to greater percentages of contamination.
Skewness in region A, for the observed data and both
backscatter models, is shown in Figure 4. As expected,
LM shows a large increase in skewness within the transition
region. In contrast, ExM and observed data have similarly
low values of skewness in all regions, suggesting that the
observed data is dominated by exponential attenuation
rather than linear mixing. This relationship holds true for all
regions of interest.
[25] The reduced chi‐square between the ExM and

observed data in region A is 1.4, in agreement with the 1‐D
fits using equation (2). Goodness of fit between LM and
observed data, however, is significantly poorer (cn

2 = 5.9).
Reduced chi‐square values comparing ExM and LM to
observed data in other regions are listed in Table 1. Areas
where the transition region is as narrow as 1–2 pixels, such
as the northern mountainous terrain, reinforces the inter-
pretation that exponential attenuation in variable lake depth
is responsible for more gradual transitions, which can be as
wide as ∼40 pixels in region M.
[26] While the above test rules out pure linear mixing, it

relies on a particular choice for the smooth and complex
shorelines. In order to test sensitivity and error in shoreline
selection, we examine adding varying amounts of noise
to the nominal hand‐selected shoreline position. Obtaining
meaningful results, however, requires generating potential
shorelines which have characteristics that are similar to the
actual shoreline. We show in the following paragraphs that
the traced shoreline of Ontario Lacus is well‐described as a
fractal, and that results are robust with respect to plausible
alternate shoreline tracings generated with similar fractal
character.

[27] It is well‐established that natural landscapes can often
be described using a fractal relationship between measure-
ment length‐scale and the amplitude of topographic varia-
tion [Mandelbrot, 1983; Turcotte, 1997]. One of the first
and simplest applications of fractal analysis to natural geo-
morphic phenomena was the analysis of the British coastline
by Mandelbrot [1967]. In this and many subsequent in-
vestigations [e.g., Phillips, 1986; Jiang and Plotnick, 1998;
Schwimmer, 2008; Sharma and Byrne, 2008], researchers
have noticed that coastlines are often found to follow an
allometric relationship:

LðsÞ / s1�D ð5Þ

where L(s) is the observed length of a section of coastline
using a measure stick of length s, and D is the fractal
dimension of the coastline. We have observed an allometric
relationship for the extended smooth region of Ontario’s
eastern shoreline using the divider method defined in
[Klinkenberg and Goodchild, 2006]. From Figure 5, it is
clear that the shoreline trace is well described as a fractal
with D = 1.095 ± 0.003 on length‐scales between the SAR
image resolution (260–350 m) and ∼2 km. At length‐scales
larger than this crossover length, fractal behavior breaks
down yielding a smooth shoreline. While we do not inves-
tigate the cause of this behavior here, it may be the result of
wave action or some other erosional mechanism operating
predominantly at larger length‐scales.
[28] We generate fractals using the spectral method

described by Saupe et al. [1988] in order to test model sen-
sitivity. This method is based upon how the scale dependence
of a fractal feature expresses itself in the features’s power
spectrum. Saupe et al. [1988] show that the power spectral
density of a fractal curve is related to spatial frequency by a
power law. Using this relation, we generate random fractals
by creating power spectra of the desired spatial dimension,

Figure 4. Skewness (g1) for region A. The observed data is
plotted in blue. Skewness for the Linear Mixing Model
(LM) and Exponential Attenuation Model (ExM) is shown
in red and cyan, respectively. The lines are the lower and
upper bounds of the 95% CI for each model. Note the LM
shows a large increase in skewness within the transition
region that is not observed in the data, or ExM. This sug-
gests that the data does not have significant mixing of shore
and lake pixels within the same distance bin.

Figure 5. Allometric relationship between ruler size (s) and
observed length (L) for the eastern shore of Ontario Lacus.
Fractal behavior is observed between SAR image resolution
(few hundred meters) and s ∼ 2 km with a fractal dimension
D = 1.095 ± 0.003. The analyzed section of Ontario’s shore-
line is shown in bold on the dashed outline.
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and then apply an inverse fourier transform after random-
izing the phases of each frequency. This procedure is
applied down to the fractal crossover of ∼2 km, with zero
power at lower frequencies. In the following paragraphs, we
use this method in one and two dimensions in order to
explore model sensitivity to shoreline selection and small‐
scale lakebed topography.
[29] Sensitivity to shoreline selection is studied using one‐

dimensional fractals as realistic noise sources added per-
pendicular to the local shoreline trend. Alongshore‐averaged
backscatter and best‐fit parameters to equation (2) are
evaluated using distance bins recalculated for the new
shoreline. The calculation is repeated 100 times for each
noise amplitude. Figure 6a shows the percentage of shore-
line models whose skewness values are inconsistent with
exponential attenuation in region A. For shorelines with
RMS noise amplitudes >0.7 km, 95% of the models are
inconsistent with ExM, requiring draws from multiple so

(t)

distributions. Pixel resolution varies from 280–350 m in

range and 260–280 m in azimuth, suggesting shorelines
were selected to better than ∼2 pixel accuracy. The best‐fit
imaginary refractive index (Figure 6b), which decreases
with added shoreline noise, varies only slightly below the
lower bound of its 95% CI over this region (4.6 vs. 4.8 ×
10−4 for 95% detectability confidence, see Figure 6). LMs
generated using the artificially noisy shorelines have large
skewness, similar to Figure 4, and are hence all distin-
guishable from exponential attenuation. While we do not
perform a double‐blind control experiment to simulate
shoreline selection biases, our method of adding synthetic
noise provides a reasonable representation that offers the
advantage of numerical convenience and speed.
[30] In addition to assuming accurate shoreline selection,

we also assume that bathymetry contours are parallel to the
local shoreline. The amplitude of small‐scale variations
in lakebed depth, which result in deviations from this
assumption, are the second primary source of error in our
analysis. Speckle noise prevents measuring small‐scale
variations in lakebed topography from so itself, thus we
investigate its effects using two‐dimensional fractal surfaces
which are added to an average local slope. After generating
the surfaces, we test how the power spectral slope of the
topographic model relates to the fractal character of its
shoreline using a range of noise amplitudes and slope
magnitudes. We find that if the underlying topography
model is assumed to be fractal up to the crossover length‐
scale, we can easily detect this as a break in fractal slope of
the shoreline as is observed for Ontario. Conversely, when
we generate topographic models that are fractal at all length‐
scales, we find no break in slope for the corresponding
shoreline. This suggests that the underlying topographic
deviations from the local slope in the nearshore region of
Ontario likely contains a fractal crossover at ∼2 km, which
can also be verified visually. We adopt a practical approach
of utilizing a range of topographic models with spectral
slopes and amplitudes that result in shorelines with fractal
dimensions that bracket the observed value for Ontario’s
eastern shore. While the actual fractal dimension of the
topography surrounding Ontario is interesting and may
warrant further investigation, we do not attempt to study it
here. Instead, the fractal model is solely used to verify the
validity of our assumptions against reasonable topographic
variations.
[31] Using a fractal surface to approximate topographic

noise, we now test our sensitivity to local variations in lake‐
depth. Topographic models are generated by adding con-
stant local slopes to fractal noise surfaces with varying
amplitude and a fractal crossover at 2 km. We perform this
test using a range of model surfaces whose shoreline fractal
dimensions brackets that observed for Ontario. For each
model, SAR images are generated using backscatter values
determined from equation (2) with the best‐fit coefficients
for region A and a high‐resolution depth map from the
fractal noise model. After adding speckle noise, images are
analyzed using the same process described in sections 2 and
3 by assuming that depth bins lie parallel to the local shore-
line. For each model, we assess how added topographic
noise affects both the best‐fit parameters and recorded sta-
tistical metrics in each depth‐bin. For the topographic model
which best approximates the fractal character of Ontario’s
eastern shore, we find that the best‐fit value for � does not

Figure 6. Effect of shoreline selection for region A.
Abscissa denote RMS half‐amplitudes of fractal error intro-
duced into the shoreline position. Peak half‐amplitudes are
approximately twice the RMS. Pixel scale varies from
280–350 m. (a) Detectability confidence, defined as the
fraction of analysis runs for which transition region skew-
ness is outside the 95% CI of the expected distribution from
exponential attenuation. (b) Best‐fit imaginary refractive
index (�) derived using the noise modified shoreline. The
mean � (red line) remains above the lower 95% CI for
0 shoreline error for up to 90% detectability confidence,
suggesting minimal error contribution from mixing in the
reported � = (6.1−1.3

+1.7) × 10−4. (c) Distribution of skewness
values from model runs with 0 and 0.67 km RMS shore-
line noise (95% detectability confidence).
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vary outside its observed 95% CI for RMS noise amplitudes
of up to 0.83 m (Figure 7). For larger noise amplitudes, there
was greater than a 95% probability that skewness values of
depth‐bins in synthetic SAR images would be greater than
the upper 95% CI of those generated by ExM. For other
topographic models, the noise amplitude for 95% detect-
ability confidence (Figure 7 caption) varied slightly, but the
best‐fit values of � never exceeded the observed 95% CI
prior to crossing this threshold. This suggests that small‐
scale variation in lakebed backscatter would produce
detectable increases in skewness before affecting the best‐fit
value of �.
[32] In summary, the combination of differences in

skewness and residual chi‐square favor backscatter values
dominated by exponential attenuation in a deepening liquid
medium, as opposed to either linear mixing or significant
small‐scale topographic deviation from a smooth plane.

When the amount of linear mixing or amplitude of small‐
scale lakebed topography becomes large enough to signifi-
cantly impact the derived model parameters, the skewness of
pixel distributions in the transition region becomes identi-
fiably large. These results justify the simplifying assump-
tions of accurate shoreline determination and bathymetry
contours which are parallel to the local shoreline. The cor-
relation between relative slope and shoreline morphology,
discussed in section 5, also provides a consistency check of
our analysis.

5. Discussion

[33] In this work we find the first empirical estimate of the
imaginary dielectric properties of liquid hydrocarbons on
Titan using Cassini observations. Assuming a real dielectric
constant of 1.75 for liquid hydrocarbon [Paillou et al.,
2008a], the complex index of refraction of region A corre-
sponds to a loss tangent tanD = (9.2−2.0

+2.5) × 10−4 (tanD ≈ 2kffiffiffi
	r

p ,
where 	r is the real component of the dielectric constant).
This value is consistent with experimental measurements of
liquid natural gas (LNG) at 13 GHz (tan DLNG = 1.1 × 10−3)
[Paillou et al., 2008a] and the 10−3 upper limit for ethane
and methane loss tangents at 1.2 GHz calculated by Sen et al.
[1992]. LNG is primarily composed of methane (>90%),
with smaller amounts of higher order hydrocarbons. The
measured loss tangent is inversely proportional to the aver-
age effective topographic slope, or dip, at the intersection
with the altimetry profile near region A (DA = (2 ± 0.1) ×
10−3), and is consistent with a bulk composition of liquid
hydrocarbons. More finely resolved along‐track altimetry
profiles may reveal slope breaks in the shoreline setting;
such variations in slope would proportionally affect the
best‐fit value for � and derived bathymetric slopes (P. Ford,
personal communication, 2010). The low value determined
for the loss tangent suggests that Ontario’s margins do not
have large amounts of suspended absorptive material, such
as tholin (tan D ∼ 2 × 10−2 [Paillou et al., 2008a]).
[34] Reported values for � and other model coefficients

assume that nearshore lakebed backscatter (so
(2)) does not

significantly vary within the regions of interest. The
observed exponential drop‐off in backscatter supports this
assumption, as variations in so

(2) would disrupt this trend. In
addition, changes in study region size does not alter the
best‐fit model coefficients, adding further support. Last,
hsoi values just outside Ontario’s shoreline do not signifi-
cantly vary within the any of the regions of interest. Given
the observations of shoreline recession (Turtle et al., sub-
mitted manuscript, 2010; Hayes et al. [2010]), these regions
may represent previous lakebed surfaces. However, areas of
high backscatter are observed within Ontario Lacus in both
T57/T58 and T65 (Figure 1). These features are located far
from the study areas and suggest that Ontario is shallower or
has significantly brighter lakebed in these regions.
[35] The composition of Titan’s lakes is likely a mixture

of ethane, methane and propane, with smaller abundances of
nitrogen and higher order hydrocarbons/nitriles [Cordier
et al., 2009; Lunine et al., 1983]. Assuming thermody-
namic equilibrium at 90K, the methane to ethane ratio of a
surface lake is 1:8 [Cordier et al., 2009]. For a raindrop or
recently precipitated liquid body, the expected composition

Figure 7. Effect of small‐scale topography for region A.
Abscissa denote RMS half‐amplitudes of added fractal
noise. Peak amplitudes are approximately five times the
RMS. The noise amplitude for which there is a 95% proba-
bility of detecting an anomalous skewness is shown.
(a) Detectability confidence, defined as the fraction of anal-
ysis runs for which transition region skewness is outside the
95% CI of the expected distribution from exponential atten-
uation assuming smooth topography. (b) Best‐fit imaginary
refractive index (�) using so derived from fractal topogra-
phy. The mean � remains above the lower 95% CI of the
observed data for up to 95% Detectability confidence, sug-
gesting minimal error contribution from small‐scale topog-
raphy in the reported � = (6.1−1.3

+1.7) × 10−4. (c) Distribution
of skewness values from models runs using 0 and 0.83 m
RMS amplitudes (95% detectability confidence).
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is 25% nitrogen and 75% methane [Lorenz, 1993]. While
VIMS spectra confirm the presence of liquid ethane in
Ontario [Brown et al., 2008], the instrument was incapable
of estimating its abundance or distinguishing liquid
from atmospheric methane. Measurements of the cryogenic
microwave optical properties of pure methane and ethane, in
additional to other Titan relevant materials, are in develop-
ment (M. Barmatz and K. L. Mitchell, personal communi-
cation, 2009). When these measurements become available,
the complex dielectric constant of various mixtures can be
compared to the observed loss tangent of Ontario Lacus,
providing tests for the predicted liquid compositions.
[36] In areas where Ontario’s shore does not intersect the

T49 altimetry track, the coefficients of equation (2) can be
used to estimate local bathymetric slope, assuming uniform
refractive properties for the liquid. Along the eastern shore
of Ontario (regions B, C, D, E, F), bathymetric slopes are
consistent within errors and similar to the measured topo-
graphic slope at A (mean values of (2.2–2.7) × 10−3 vs.
2.0 × 10−3, see Figure 1 and Table 1). In this area, the
shoreline is smooth and morphologically similar to a beach-
head modified by either persistent wave action or periodic
oscillation in lake level [Wall et al., 2010]. West of region F,
bathymetric slopes shallow slightly (regions G andH) prior to
increasing as the shoreline approaches intersection with the
bright mountainous terrain which forms its northernmost
borders. In most of this area the transition region is of order
1 pixel, hindering analysis and suggesting bathymetric slopes
greater than 0.1 (∼ dtrans:

Dxpix
). The best‐fit slope in region I, the

only region in the area with a smooth shoreline segment and
relatively low skewness, was DI = (4.8−2.0

+1.0) × 10−3, although
only three points lie within the first two exponential skin
depths. Additional measurements of topographic slope will
become available after stereo processing has been completed
between T57/T58 and T65 SAR observations. When this
data is available, the bathymetric slopes reported in Table 1
can be compared to the nearshore topographic slopes on the
landward side of Ontario’s shoreline.
[37] The western shore of Ontario (regions J, K, L, and M)

has shallower bathymetric slopes as compared to the eastern
shore ((0.4–1.2) × 10−3 vs. (1.8–2.7) × 10−3). This obser-
vation is consistent with the larger values of shoreline
recession observed between the 2005 ISS and 2009 SAR
images of this coast (Hayes et al., submitted manuscript,
2010). Region K is located near deltaic lobate structures fed
by a large tributary system extending toward the lake from
the West. The returned bathymetric slope near the deltaic‐
like features are 1.4 times lower than the effective topo-
graphic slope of DL = (1 ± 0.5) × 10−3, as derived from
altimetry echo center‐of‐mass near region L. Gently sloping
depth profiles near these features are consistent with a mul-
tilobe shallow‐water delta created from distributary channel
switching [Wall et al., 2010].
[38] Region L intersects T49 and has a bathymetric slope

value consistent with the topographic slope calculated
using the altimetry data. The effective bathymetric slope in
region M, located in Ontario’s southeast corner, is 4 times
shallower than the topographic slope observed at A. This
region also contains a lower average hsoi within the lake
(−14 dB ± 3 dB) and is near the largest observations of
shoreline recession observed between the ISS and SAR
images [Hayes et al., 2010]. The inverse proportionality

between local bathymetric slope and shoreline recession
magnitude suggests a uniform drop in lake level.

6. Summary

[39] SAR backscatter in the nearshore region of Ontario
Lacus is observed to fall‐off exponentially with perpen-
dicular distance from the local shoreline. Closest approach
altimetry observations suggest that Ontario lies in a shal-
low regional basin with slopes ∼10−3. Together, these
observations allow the derivation of the liquid’s complex
index of refraction through comparison of hsoi to a simple
two‐layer model with exponential dependence on lake depth
(equation (2)). Model coefficients are derived using non‐
linear least squares minimization of reduced chi‐square
(equation (3)). Error estimations show that the observed
bathymetric slope variations are significant.
[40] The derived imaginary component of the refractive

index is � = (6.1−1.3
+1.7) × 10−4 and corresponds to a loss tangent

of tan D = (9.2−2.0
+2.5) × 10−4, supporting the prediction that

Ontario is filled with liquid hydrocarbons. This value is
inversely proportional to the observed nearshore altimetric
slope DA = (2 ± 0.1) × 10−3, consistent with previous lab-
oratory estimates and model extrapolations of methane and
ethane loss tangents, and will help constrain Ontario’s liquid
composition when additional laboratory data become
available. Significant amounts of highly absorptive material,
such as tholins, are inconsistent with the measured loss
tangent. The loss tangent can also be used to translate
temporal backscatter variations into depth changes within
Titan’s lakes.
[41] In areas where altimetry does not intersect Ontario’s

shore the derived model coefficients imply local slopes.
Absolute bathymetric slopes are calculated for eleven areas
around Ontario and a coarse bathymetry map follows by
referencing to the observed on‐land altimetry slopes at
regions A and L (Figure 1). The relative variation in these
slopes is independent of derived optical properties and alti-
metric profiles. Bathymetric slope values on the eastern
shore, which exhibits a beachhead morphology, are char-
acteristically steeper than the western shore, where a more
complex shoreline exists. The shallowest bathymetric slope
occurs in the southwestern tip of Ontario, where the greatest
magnitude of shoreline recession has been observed [Hayes
et al., 2010]. Bathymetric slope estimations are consistent
with and complement observed morphology.
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