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COMPOSITION OPERATORS ON HARDY-ORLICZ SPACES ON THE

BALL

STÉPHANE CHARPENTIER

Abstract. We give embedding theorems for Hardy-Orlicz spaces on the ball and then
apply our results to the study of the boundedness and the compactness of composition
operators in this context. As one of the motivations of this work, we show that there
exist some Hardy-Orlicz spaces, different from H

∞, on which every composition operator
is bounded.

1. Introduction and preliminaries

1.1. Introduction. The continuity and the compactness of composition operators Cφ, de-
fined by Cφ (f) = f ◦ φ, on usual analytic functions spaces have been studied in different
ways. On Hardy spaces Hp (BN ) and Bergman spaces Ap (BN), 1 ≤ p <∞, they have been
characterized for instance in terms of Carleson measures [4]. In one variable, the Little-
wood subordination principle permits to show that the Carleson necessary and sufficient
condition which deals with the boundedness of Cφ on these spaces is always satisfied, i.e.
that every composition operator is bounded in this context ([16]). Anyway, it appears that
both boundedness and compactness of Cφ on Hp (BN) (resp. Ap (BN )) is independent of
p. On the other side, it is not difficult to check that Cφ is compact on H∞ if and only if
‖φ‖∞ < 1, so that there is a “break of condition” between H∞ and Hp (D) (resp. Ap (D)),
regarding to the compactness of Cφ.
This observation motivated P. Lefèvre, D. Li, H. Queffélec and L. Rodŕıguez-Piazza to

study composition operators on Hardy-Orlicz spaces Hψ (D) (resp. Bergman-Orlicz spaces
Aψ (D)) of the disk which are an intermediate scale of spaces between H∞ and Hp (BN )
(resp. Ap (D)) and also generalize these classical Hardy (resp. Bergman) spaces. Since
2006, they produced some papers on this subject, e.g. [9, 10, 7, 8], in which they gave
characterizations of boundedness and compactness of Cφ on these spaces, for instance.
Moreover, they have been interesting in the question of the existence of some Hardy-Orlicz
spaces on which the compactness of Cφ is equivalent to that on H∞. Yet, they answer
this question to the negative, by proving in [10, Theorem 4.1] that, for every Hardy-Orlicz
space Hψ (D), we can construct a surjective map φ : D → D which induces a composition
operator Cφ which is compact on Hψ (D). In fact, this result extends that obtained by B.
MacCluer and J. Shapiro in the context of classical Hardy spaces ([12, Example 3.12]). The
same problem in Bergman-Orlicz framework has not been completely solved yet.
In the several-variables setting, this motivation appears to be even more important,

since it concerns continuity and not only compactness. Indeed, it is well-known that there
exist symbols φ such that Cφ is not bounded on the classical Hardy spaces Hp (BN ) (resp.
Bergman spaces Ap (BN)), although every Cφ is bounded on H∞. Precisely, one can ask the
question: is there some growth or regular condition on ψ in order that every composition
operator is bounded on such Hψ (BN ) (resp. A

ψ (BN )). This question has been treated in
[3], in which paper characterizations of boundedness and compactness of Cφ on weighted
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2 COMPOSITION OPERATORS ON HARDY-ORLICZ SPACES ON BN

Bergman-Orlicz spaces are given in satisfying generality. It reveals that the answer to the
question above is yes in this framework. The present paper intends to give similar results
in the context of Hardy-Orlicz spaces.
It is organized as follows: after recalling the definition of Hardy-Orlicz spaces and intro-

ducing the materials involved, we conclude the first section by giving some topological and
duality results on Hardy-Orlicz spaces. Section 2 is devoted to general adapted Carleson
embedding theorems, which are the main tools to get, in Section 3, characterizations of
boundedness and compactness of composition operators on these spaces. We will have to
face some difficulties in applying our Carleson embedding theorems, due to the fact that
Hardy-Orlicz spaces are not separable in general. We finish the section with some conse-
quences of these characterizations, especially the exhibition of a class of Orlicz functions ψ
defining Hardy-Orlicz spaces Hψ (BN ), on which every composition operator is bounded. It
turns out that this condition is the same than that given for Bergman-Orlicz spaces in [3].

1.2. Orlicz spaces - Notations.

1.2.1. Definitions. A strictly convex function ψ : R+ → R+ is called an Orlicz function

if ψ (0) = 0, ψ is continuous at 0 and
ψ (x)

x
−−−−→
x→+∞

+∞. If (Ω,P) is a probability space,

the Orlicz space Lψ (Ω) associated to the Orlicz function ψ on (Ω,P) is the set of all
(equivalence classes of) measurable functions f on Ω such that there exists some C > 0,

such that
∫

Ω
ψ
(

|f |
C

)

dP is finite. Lψ (Ω) is a vector space, which can be normed with the

so-called Luxemburg norm defined by

‖f‖ψ = inf

{

C > 0,

∫

Ω

ψ

(

|f |

C

)

dP ≤ 1

}

;

in this case, it is well-known that
(

Lψ (Ω) , ‖.‖ψ

)

is a Banach space.

It comes from the definition that, for every Orlicz function ψ, we have the inclusions
L∞ ⊂ Lψ (Ω) ⊂ Lp (Ω). Moreover, if ψ (x) = xp, for some 1 ≤ p < ∞ and for every x ≥ 0,
then Lψ (Ω) coincides with the usual Lebesgue space Lp (Ω).
We also introduce the Morse-Transue space Mψ (Ω) as the subspace of Lψ (Ω) generated

by L∞ (Ω), and for every Orlicz function ψ, we can consider its complementary function Φ
defined by Φ(y) = supx∈R+

{xy − ψ(x)}, which can be shown to be an Orlicz function too.

These two notions permit to identify (isomorphically) the dual space
(

Mψ (Ω)
)∗

of Mψ (Ω)

and LΦ, whenever both of these two spaces are normed with the Luxemburg norm, with
the natural integral duality crochet (see e.g. [14, IV, 4.1, Theorem 7]).

1.2.2. Four classes of Orlicz functions. In order to distinguish the Orlicz spaces and to get
a meaningful scale of intermediate such spaces between L∞ and Lp (Ω), we use to classify
the Orlicz functions, with respect to their growth or their regularity. In this paper, as in
[3], we introduce essentially four classes of Orlicz spaces.

• The first class is that of Orlicz functions which satisfy the so-called ∆2-Condition which
is a condition of moderate growth: an Orlicz function ψ satisfies the ∆2-Condition if
there exist x0 > 0 and a constant K > 1, such that ψ (2x) ≤ Kψ (x) for any x ≥ x0.

For example, x 7−→ axp (1 + b log (x)), p > 1, a > 0 and b ≥ 0, satisfies the ∆2-
Condition. Corollary 5, Chapter II of [14] reads:

Proposition 1.1. Let ψ be an Orlicz function satisfying the ∆2-Condition. Then there
are some p > 1 and C > 0 such that ψ (x) ≤ Cxp, for x large enough. Therefore,
Lp ⊂ Lψ ⊂ L1, for some p > 1.
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• The ∇2-class contains the Orlicz functions whose complementary ones Φ satisfy the ∆2-
condition. It is a condition of regularity and it is equivalent to the existence of some
β > 1 and some x0 > 0, such that ψ (βx) ≥ 2βψ (x), for x ≥ x0.

We need to mention that, if both Lψ (Ω) and LΦ (Ω) are normed by the Luxemburg
norm, then Lψ (Ω) is isomorphic to the dual of LΦ (Ω), as soon as ψ satisfies the ∇2-
Condition. Moreover, we have the following interpolation theorem, which is not general,
but which will be sufficient for our purpose. It is nothing but [9, Proposition 3.5]:

Proposition 1.2. Let ψ be an Orlicz function which satisfies the ∇2-Condition. Then
every linear, or sub-linear, operator which is of weak-type (1, 1) and strong type (∞,∞)
is bounded from Lψ into Lψ.

• The two following conditions are also regular conditions which are satisfied by most of
the Orlicz functions that we are interesting in: ψ satisfies the ∇0-Condition if there exist
some x0 > 0 and some constant C ≥ 1, such that for every x0 ≤ x ≤ y we have

ψ (2x)

ψ (x)
≤
ψ (2Cy)

ψ (y)
.

Proposition 4.6 of [9] ensures that this latter condition is still equivalent to the fact
that, for every (or equivalently one) β > 1, there exists a constant Cβ ≥ 1 such that

ψ (βx)

ψ (x)
≤
ψ (βCβy)

ψ (y)

for every x0 ≤ x ≤ y.

We shall consider the following subclass: ψ satisfies the uniform ∇0-Condition if it
satisfies the ∇0-Condition for a constant Cβ ≥ 1 independent of β > 1.

• Finally, one defines a class of Orlicz functions which grow fast: ψ satisfies the ∆2-
Condition if there exist x0 > 0 and a constant C > 0, such that ψ (x)2 ≤ ψ (Cx)
for every x ≥ x0.

The convexity and the non-decrease of Orlicz functions give the following proposi-
tion ([14, Chapter II, Paragraph 2.5, pages 40 and further] or [6, Chapter I, Section 6,
Paragraph 5]):

Proposition 1.3. Let ψ be an Orlicz function. The assertions:
(1)ψ satisfies the ∆2-Condition;

(2)There exist b > 1, C > 0 and x0 > 0 such that ψ (x)b ≤ ψ (Cx), for every x ≥ x0;

(3)For every b > 1, there exist Cb > 0 and x0,b > 0 such that ψ (x)b ≤ ψ (Cbx), for
every x ≥ x0,b.

are equivalent.

[14, Chapter II, Paragraph 2, Proposition 6]) says that an Orlicz function which satisfies
the ∆2-Condition need to have at least an exponential growth:

Proposition 1.4. Let ψ be an Orlicz function which satisfies the ∆2-Condition. There
exist a > 0 and x0 > 0 such that

ψ (x) ≥ eax,

for every x ≥ x0.

If ψ satisfies ∆2-Condition, we shall say that Lψ (Ω) is a “small” Orlicz space, i.e. “far”
from any Lp (Ω) and “close” to L∞.

To finish, Proposition 4.7 (2) of [9] establishes relations between these conditions:
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Proposition 1.5. Let ψ be an Orlicz function.

(1) If ψ satisfies the uniform ∇0-Condition, then it satisfies the ∇2-Condition;
(2) If ψ satisfies the ∆2-Condition, then it satisfies the uniform ∇0-Condition.

For any 1 < p < ∞, every function x 7−→ xp is an Orlicz function which satisfies
the uniform ∇0-Condition, (so ∇2 and ∇0-conditions too) and the ∆2-Condition. At the

opposite side, for any a > 0 and b ≥ 1, x 7−→ eax
b

− 1 belongs to the ∆2-Class (and then
to the uniform ∇0-Class), yet not to the ∆2-one. In addition, the Orlicz functions which

can be written x → exp
(

a (ln (x+ 1))b
)

− 1 for a > 0 and b ≥ 1, satisfy the ∇2 and

∇0-Conditions, but do not belong to the ∆2-Class.

For a complete study of Orlicz spaces, we refer to [6] and [14]. We can also find precise
and useful information in [9], such as other classes of Orlicz functions and their link together
with.

1.3. Hardy-Orlicz spaces on BN . The definition of Hardy-Orlicz spaces on the ball is
quite similar to that of classical Hardy spaces. With the notations above, (Ω,P) stands for
(SN , dσN), where SN = ∂BN is the unit sphere of CN and dσN is the normalized Lebesgue
measure on SN . Given an Orlicz function ψ, the Hardy-Orlicz space Hψ (BN) on BN is
the vector space of analytic functions f : BN → C such that sup0<r<1 ‖fr‖ψ < ∞, where

fr ∈ Lψ (SN ) is defined by fr (z) = f (rz).
Since Lψ (BN) ⊂ L1 (BN), H

ψ (BN) is contained in H1 (BN ). In particular, any f ∈
Hψ (BN ) admits a radial limit f ∗ almost everywhere on SN , and we have the following
theorem, which can be generalized from the well-known case ψ(x) = xp:

Theorem 1.6. Let f ∈ Hψ (BN ) and let f ∗ be its almost everywhere boundary limit. Then
f ∗ ∈ Lψ (SN ) and

‖f ∗‖ψ = sup
0<r<1

‖fr‖ψ .

If we denote by ‖f‖Hψ := ‖f ∗‖ψ, then H
ψ (BN ) endowed with the norm ‖.‖Hψ is a Banach

space.

The proof of this result is quite identical to that in the one variable setting ([9, Proposition
3.1]). When there is no possible confusion, we will indifferently denote by ‖.‖ψ the norm

‖.‖Hψ on Hψ (BN ) and we identify Hψ (BN) to a subspace of Lψ (SN). Similarly, if f ∈
Hψ (BN ), we will sometimes write f ∗ (or even just f) the function equal to f in BN and
equal to the boundary radial limits of f almost everywhere on SN .

In the sequel, we will denote by Pz the invariant Poisson kernel at z ∈ BN ,

Pz (ζ) = P (z, ζ) =

(

1− |z|2

|1− 〈z, ζ〉|2

)N

, z ∈ BN , ζ ∈ SN .

We will also use the notation uζ,r, ζ ∈ SN and 0 < r < 1, for the function

uζ,r (z) =

(

1− r

1− r 〈z, ζ〉

)2N

, z ∈ BN .

We easily check that uζ,r ∈ H∞ and that ‖uζ,r‖∞ = 1 and . If z ∈ SN , then

uζ,r (z) =

(

1− r

1 + r

)N

P (rz, ζ),
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so that ‖uζ,r‖L1(SN ) =

(

1− r

1 + r

)N

.

As usual we shall verify that the point evaluation linear functional maps δz at z ∈ BN ,
defined by δz (f) = f(z) for f ∈ Hψ (BN) are bounded.

Proposition 1.7. If z ∈ BN then

1

4N
ψ−1

(

(

1 + |z|

1− |z|

)N
)

≤ ‖δz‖(Hψ(BN ))
∗ ≤ ψ−1

(

(

1 + |z|

1− |z|

)N
)

.

Proof. Since Hψ (BN ) ⊂ H1 (BN ), for every f ∈ Hψ (BN ), we have

f (z) =

∫

SN

Pz (ζ) f (ζ) dσ (ζ) .

By Jensen’s Inequality and because ‖Pz‖∞ ≤

(

1 + |z|

1− |z|

)N

, we get

ψ

(∣

∣

∣

∣

∣

f (z)

‖f‖ψ

∣

∣

∣

∣

∣

)

≤

∫

SN

Pz (ζ)ψ

(

|f (ζ)|

‖f‖ψ

)

dσ (ζ) ≤

(

1 + |z|

1− |z|

)N

,

hence

|f (z)| ≤ ‖f‖ψ ψ
−1

(

(

1 + |z|

1− |z|

)N
)

.

For the lower bound, it is sufficient to compute δz (uζ,r) and ‖uζ,r‖ψ, thanks to [9, Lemme

3.9], with r = |z| and ζ ∈ SN such that 〈z, ζ〉 = r. The details are left to the reader. �

Contrary to what happens for the Hardy spaces, the ball algebra A (BN ) is not always
dense in Hψ (BN ), as the following result indicates (from now on, HMψ (BN ) denotes
Hψ (BN ) ∩M

ψ (BN).)

Theorem 1.8 (Chapter IX, Theorem 4 of [14] for Ω = BN). Let ψ be an Orlicz function.
A (BN ) is dense in Hψ (BN ) if and only if Hψ (BN ) is separable, which in turn is equivalent
to the fact that ψ satisfies the ∆2-Condition. However, HM

ψ (BN) is always separable.

The non-separability of Hψ (BN) will cause some problems when we will try to deduce
results on composition operators from embedding theorems. Yet, we have the following
result:

Theorem 1.9. Let ψ be an Orlicz function.

(1) HMψ (BN) is the closure of H∞ in Lψ (SN ); in particular the set of all polynomials
is dense in HMψ (BN) for the topology defined by ‖.‖ψ. More precisely, for every

f ∈ HMψ (BN ), ‖fr − f‖ψ −−→
r→1

0.

(2) On the unit ball of Hψ (BN ) (or equivalently on every ball), the induced weak-star
topology coincides with that of uniform convergence on compacta of BN .

(3) Hψ (BN) is weak-star closed in Lψ (SN ).
(4) If ψ satisfies the ∇2-Condition, then Hψ (BN) can be isometrically identified to

(

HMψ (BN )
)∗∗

. In particular, if ψ satisfies ∇2 and ∆2-Conditions, then Hψ (BN )
is reflexive.

Proof. 1) It suffices to show that ‖fr − f‖ψ −−→
r→1

0 for every f ∈ HMψ (BN); the proof of

this fact is identical to that of [9, Proposition 3.4].
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2) This is a classical use of Poisson kernel and Proposition 1.7.
3) It is sufficient to show that the balls of Hψ (BN ) are weak-star closed, i.e. compact.

Using point 2) and the fact that the topology of uniform convergence on compacta is
metrizable, we are led to show that, if (fn)n is a sequence in the unit ball of Hψ (BN ), then
we can extract from it a subsequence which converges uniformly on every compacta to some
f in the unit ball of Hψ (BN ). Now this follows from Proposition 1.7, which ensures that
(fn)n is a normal family, and from Fatou’s lemma.

4) Since
(

Mψ (SN)
)∗

= Lφ (SN) and since
(

Lφ (SN )
)∗

= Lψ (SN), because ψ satisfies the

∇2-Condition ([14, IV, 4.1, Corollary 9, p. 111]), then
(

Mψ (SN )
)∗∗

= Lψ (SN ). Now, using

[5, V, 5.6, Corollary 6], we get that
(

HMψ (BN)
)∗∗

is the weak-star closure of HMψ (BN) in

Lψ (BN ). Since H
ψ (BN) is itself weak-star closed, according to 3), the proof will be finished

if we show that every function f in Hψ (BN ) belongs to the weak-star closure of HMψ (BN )
in Lψ (SN). Now, let f ∈ Hψ (BN ); thanks to 1), fr −−→

r→1
f uniformly on every compacta,

and therefore (point 2) the convergence occurs for the weak-star topology, for ‖fr‖ψ ≤ ‖f‖ψ
for every 0 < r < 1. Therefore f ∈

(

HMψ (BN)
)∗∗

and the proof in complete. �

2. Embedding theorems for Hardy-Orlicz spaces

As usual, our embedding theorems will involve some geometric conditions. The non-
isotropic distance on the sphere SN , which we denote by d, is given by d (ζ, ξ) =

√

|1− 〈ζ, ξ〉|,

for (ζ, ξ) ∈ SN . It can be extended to BN , where it still satisfies the triangle inequality (e.g.
[15, Paragraph 5.1]). For ζ ∈ BN and h ∈ ]0, 1], we define the non-isotropic “ball” of BN
by

S (ζ, h) =
{

z ∈ BN , d (ζ, z)
2 < h

}

.

and its analogue in BN by

S (ζ, h) =
{

z ∈ BN , d (ζ, z)
2 < h

}

.

Let us also denote by

Q = S (ζ, h) ∩ SN

the “true” balls in SN . Next, for ζ ∈ SN and h ∈ ]0, 1], we define the so-called Carleson
windows

W (ζ, h) =

{

z ∈ BN , 1− |z| < h,
z

|z|
∈ Q (ζ, h)

}

and

W (ζ, h) =

{

z ∈ BN , 1− |z| < h,
z

|z|
∈ Qf (ζ, h)

}

,

its analogue in BN . Finally, we introduce the Korányi approach region D (η) for η ∈ SN by

D (η) =
{

z ∈ BN , d (z, η)
2 < 1− |z|2

}

.

Given f continuous on BN and ξ ∈ SN , the maximal function Nf of f associated to the
Korányi approach regions is defined as follows:

Nf (ξ) = sup
w∈D(ξ)

{|f (w)|} .

The Hardy-Littlewood maximal function Mf of f ∈ L1 (SN) is given by

Mf (ξ) = sup
δ>0

1

σ (Q (ξ, δ))

∫

Q(ξ,δ)

|f | dσN ,
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for ξ ∈ SN . It is well-known that the sub-linear maximal operatorM : f 7−→ Mf is of weak
type (1, 1) on SN (see [17], Lemma 4.8) and that it maps L∞ (SN) into itself boundedly.
Therefore, Proposition 1.2 yields the following result concerning Hardy-Littlewood maximal
function on Hardy-Orlicz spaces, under the ∇2-condition:

Theorem 2.1. Let ψ be an Orlicz function satisfying the ∇2-condition. Then, the Hardy-
Littlewood maximal operator M maps Lψ (SN ) into itself boundedly. More precisely, there
exists a constant Cψ > 0 such that

‖Mf‖ψ ≤ Cψ ‖f‖ψ ,

for every f ∈ Lψ (SN ).

Moreover, Nf is dominated by Mf in the “Hardy-Orlicz following sense”:

Theorem 2.2. Let ψ be an Orlicz function. Then there exists a constant C > 0 such that

Nf (ξ) ≤ CMf∗ (ξ)

for every f ∈ Hψ (BN ) and for every ξ ∈ SN , where f
∗ ∈ Lψ (SN) is the radial limit of f .

Proof. First, f ∗ ∈ L1 (SN ) since f ∈ Hψ (BN), so f
∗dσN is a finite complex Borel measure on

SN and we can use [17, Theorem 4.10] to get NP [f∗] ≤ CMf∗ for some constant C > 0, where
P [f ∗] (ξ) =

∫

SN
P (ξ, z) f ∗ (z) dσN (z). We finish the proof by noticing that P [f ∗] = f , for

instance because f ∈ H1 (BN ). �

We get a result similar to Theorem 2.1 for the maximal operator N associated to Korányi
approach regions:

Corollary 2.3. Let ψ be an Orlicz function satisfying the ∇2-condition. Then, the maximal
operator N associated to Korányi approach regions maps Hψ (BN ) into L

ψ (SN ) boundedly.
More precisely, there exists a constant Cψ > 0 such that

‖Nf‖Lψ(SN ) ≤ Cψ ‖f‖Hψ(BN ) ,

for every f ∈ Hψ (BN ).

Proof. It is an immediate consequence of Theorem 2.1 and Theorem 2.2, using the fact that
‖f ∗‖Lψ(SN ) = ‖f‖Hψ(BN ) for every f ∈ Hψ (BN ). �

For any positive finite Borel measure µ on BN , we introduce the two following functions
̺µ and Kµ:

̺µ (h) = sup
ξ∈SN

µ (W (ξ, h)) and Kµ (h) = sup
0<t<h

µ (W (ξ, t))

tN
, for h ∈ (0, 1) .

We recall that µ is a Carleson measure if Kµ (h) is finite for some h ∈ (0, 1).

In the sequel, we will assume that the restrictions to SN of all the measures µ on BN

that we will consider are absolutely continuous with respect to the Lebesgue measure on
the sphere.

Theorem 2.4. There exist two constants C̃ > 0 and C > 1 such that, for every f ∈
H1 (BN ) and every positive finite Borel measure µ on BN , we have

µ
({

z ∈ BN , |z| > 1− h and |f (z)| > t
})

≤ C̃Kµ (Ch) σN ({Nf > t})

for every h ∈ (0, 1/C) and every t > 0.

For the proof of this theorem, we will need a covering lemma:
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Lemma 2.5. Let g be a continuous function on BN , a > 0 and h ∈ (0, 1). Then, either
|g (w)| < a in BN \ (1− h)BN or there exist w1, w2, . . . in BN \ (1− h)BN such that:

(1) |g (wi)| ≥ a for every i ≥ 1;
(2) the following inclusion holds:

{

w ∈ BN , |g (w)| ≥ a
}

∩ (BN \ (1− h)BN ) ⊂
⋃

i≥1

S
(

wi, 4
(

1− |wi|
2));

(3) the sets Q
(

wi,
(

1− |wi|
2)), i ≥ 1, are pairwise disjoints.

Proof. This lemma is stated in a slightly different form and for h = 1/2 in [13]. There is
no difficulty to extend it in the above form and for any h ∈ (0, 1). �

Proof of Theorem 2.4. We fix t > 0. We may suppose that there exists a ∈ BN \ (1− h)BN
such that |f (a)| > t, with |a| > 1 − h. Then the previous lemma ensures that there exists
(wi)i≥1 ⊂ BN \ (1− h)BN such that

(2.1) µ
({

z ∈ BN , |z| > 1− h and |f (z)| > t
})

≤
∑

i≥1

µ
(

S
(

wi, 4
(

1− |wi|
2))
)

.

Moreover, because of the definition of the Korányi approach region D (η), η ∈ SN , and that
of Q, we may verify that Nf (η) ≥ t whenever η ∈ Q

(

wi, 1− |wi|
2). Therefore, since the

sets Q
(

wi, 1− |wi|
2) are pairwise disjoints, we have

(2.2)
∑

i≥1

σN
(

Q
(

wi, 1− |wi|
2)) ≤ σN ({Nf ≥ t}) .

Now, the triangle inequality ensures that if we set r = 9
(

1− |wi|
2), then

µ
(

S
(

wi, 4
(

1− |wi|
2))
)

≤ µ

(

S

(

wi
|wi|

, r

))

≤ µ

(

W

(

wi
|wi|

, C0r

))

for some C0 > 1. By definition of Kµ and as r ≤ 2h, we can find some absolute constant
C > 1 (in fact, we can take C = 2C0) such that

(2.3) µ
(

S
(

wi, 4
(

1− |wi|
2))
)

≤ CN
0 r

N
µ
(

W
(

wi
|wi|
, C0r

))

CN
0 r

N
≤ CN

0 r
NKµ (Ch) .

Now, by using [17, Lemma 4.6] and by homogeneity of the Lebesgue measure on SN , we
get

(2.4) rN . σN

(

Q

(

wi
|wi|

, r

))

. σN
(

Q
(

wi, 1− |wi|
2)) .

Hence, inequalities (2.1), (2.2), (2.3) and (2.4) give that there exist two constants C > 1
and C̃ > 0 such that

µ
({

z ∈ BN , |z| > 1− h and |f (z)| > t
})

≤ C̃Kµ (Ch) σN ({Nf ≥ t}) .

�

The next technical lemma is a consequence of Theorem 2.4.

Lemma 2.6. Let µ be a finite positive Borel measure on BN and let ψ1 and ψ2 be two
Orlicz functions. Let C ≥ 1 be the constant appearing in Theorem 2.4. Assume that there
exist A > 0, η > 0 and hA ∈ (0, 1/C) such that

Kµ (h) ≤ η
1/hN

ψ2

(

Aψ−1
1 (1/hN)

)
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for every h ∈ (0, hA). Then, there exist three constants B > 0, xA > 0 and C1 > 0
(this latter does not depend on A, η and hA) such that, for every f ∈ Hψ1 (BN) such that
‖f‖ψ1

≤ 1 and every Borel subset E of BN ,

∫

E

ψ2

(

|f |

B

)

dµ ≤ µ (E)ψ2 (xA) + C1η

∫

SN

ψ1 (Nf ) dσN .

Proof. For f ∈ Hψ1 (BN), ‖f‖ψ1
≤ 1, using a classical Fubini integration argument, we have

(2.5)

∫

E

ψ2 (|f |) dµ =

∫ ∞

0

ψ
′

2 (t)µ ({|f | > t} ∩ E) dt.

We shall pay attention to µ ({|f | > t}). If |f (z)| > t, Proposition 1.7 gives

t ≤ 2N+1ψ−1
1

(

(

1

1− |z|

)N
)

,(2.6)

since ‖f‖ψ1
≤ 1, which is clearly equivalent to

|z| > 1−

(

1

ψ1

(

t
2N+1

)

)1/N

.

Theorem 2.4 then yields

µ ({|f | > t}) = µ



{|f | > t} ∩







|z| > 1−

(

1

ψ1

(

t
2N+1

)

)1/N










≤ Kµ











C









1

ψ1

(

t

2N+1

)









1/N










σN ({Nf > t}) .(2.7)

Now, let A, η, hA and E be as in the statement of the lemma. We set

xA :=
A

(C + 1)CN−1
ψ−1
1

(

(

C

hA

)N
)

;

the assumption of the lemma ensures that, if
1

CN
ψ1

(

(C + 1)CN−1

A
s

)

> 1/hNA i.e. if s ≥

xA, then

(2.8) Kµ











C









1

ψ1

(

(C + 1)CN−1

A
s

)









1/N










≤
ηC̃

CN

ψ1

(

(C + 1)CN−1

A
s

)

ψ2

(

C+1
C
s
) .
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Therefore, applying (2.5) to
A

2N+1 (C + 1)CN−1
|f |, we deduce from inequalities (2.7) with

t =
2N+1 (C + 1)CN−1s

A
and (2.8) that

(2.9)

∫

E

ψ2

(

A

2N+1 (C + 1)CN−1
|f |

)

dµ ≤

∫ xA

0

ψ
′

2 (s)µ (E) ds

+
ηC̃

CN

∫ ∞

xA

ψ
′

2 (s)

ψ1

(

(C + 1)CN−1

A
s

)

ψ2

(

C+1
C
s
) σN

({

Nf >
2N+1 (C + 1)CN−1

A
s

})

ds.

Now, it is not difficult to check that, for any Orlicz function ψ, we have

xψ
′

(x) ≤ Cψ

(

(C + 1)x

C

)

for every C > 0 and every x ≥ 0, so that

ψ
′

2 (s)

ψ2

(

C+1
C
s
) ≤

C

s
;

So inequality (2.9) becomes
∫

E

ψ2

(

A

2N+1 (C + 1)CN−1
|f |

)

dµ ≤ ψ2 (xA)µ (E)

+
ηC̃

CN−1

(C + 1)CN−1

A

∫ ∞

0

ψ
′

1

(

(C + 1)CN−1

A
s

)

σN

({

Nf >
2N+1 (C + 1)CN−1

A
s

})

ds,

using the convexity of ψ1 one more time. A change of variable gives:
∫

E

ψ2

(

A |f |

2N+1CN−1 (C + 1)

)

dµ ≤ ψ2 (xA)µ (E) +
ηC̃

CN−1

∫ ∞

0

ψ
′

1 (u)σN
(

Nf > 2N+1u
)

du

≤ ψ2 (xA)µ (E) +
ηC̃

2N+1CN−1

∫

SN

ψ1 (Nf) dσ,

which finishes the proof. �

2.1. The canonical embedding Hψ1 (BN ) →֒ Lψ2 (µ). The main theorem of this section
is the following:

Theorem 2.7. Let µ be a finite positive Borel measure on BN and let ψ1 and ψ2 be two
Orlicz functions; we suppose that ψ1 satisfies the ∇2-condition. Then:

(1) If inclusion Hψ1 (BN ) ⊂ Lψ2 (µ) holds and is continuous, then there exists some
A > 0 such that

(2.10) ̺µ (h) = Oh→0

(

1

ψ2

(

Aψ−1
1 (1/hN)

)

)

.

(2) If there exists some A > 0 such that

(2.11) Kµ (h) = Oh→0

(

1/hN

ψ2

(

Aψ−1
1 (1/hN)

)

)

then inclusion Hψ1 (BN) ⊂ Lψ2 (µ) holds and is continuous.
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(3) If in addition ψ1 = ψ2 = ψ satisfies the uniform ∇0-Condition, then Conditions
(2.10) and (2.11) are equivalent.

Proof. Let us denote by jµ the embedding Hψ1 (BN) →֒ Lψ2 (µ) and Cµ its norm (possibly
infinite). Note that Cµ is finite as soon as jµ is well-defined, because of the closed graph
theorem.
1) We assume that jµ is well-defined (or equivalently that it is bounded). For a ∈ SN

and h ∈ (0, 1), we define

fa,h = ψ−1

(

1

hN

)

ua,1−h,

where ua,1−h (z) =

(

h

1− (1− h) 〈z, a〉

)2N

. As we saw in the previous section, f lays in the

unit ball ofHψ1 (BN ), so that ‖jµ (fa,h)‖Lψ2 (µ) = ‖fa,h‖Lψ2 (µ) must be not greater than Cµ. It

follows that
∫

BN
ψ2 (|f | /Cµ) dµ ≤ 1. Now, we may easily check that |1− (1− h) 〈z, a〉| ≤ 2h

whenever z ∈ S (a, h), hence |ua,1−h (z)| ≥
1

4N
and |f (z)| ≥

1

4N
ψ−1
1

(

1

hN

)

for any z ∈

S (a, h). Consequently, integrating on S (a, h), we get

1 ≥

∫

S(a,h)

ψ2

(

1

4N
ψ−1
1

(

1

hN

))

dµ ≥ ψ2

(

1

4N
ψ−1
1

(

1

hN

))

µ (S (a, h)) ,

which yields Condition (2.10) and the first part of the theorem.
2) This part need Lemma 2.6. Since ψ1 satisfies ∇2-Condition, Corollary 2.3 ensures

that there exists some constant CM ≥ 1 such that, for any f ∈ Lψ1 (SN), ‖Nf‖Lψ1 (SN ) ≤

CM ‖f‖Hψ1 (BN ). We fix f in the unit ball ofHψ1 (BN ) and we intend to show that ‖f‖Lψ2(µ) ≤

C0 for some C0 > 0 independent of f . We also introduce a constant C̃ ≥ 1 whose value will
be fixed later.
Now, since Condition (2.10) is supposed to be realized, we shall apply Lemma 2.6 to

f/CM , with E = BN , η and hA, and we get the existence of B > 0, xA > 0 and C1 > 0, all
independent of f such that

∫

BN

ψ2

(

|f |

BCM C̃

)

dµ ≤
1

C̃

∫

BN

ψ2

(

|f |

BCM

)

dµ

≤
1

C̃

(

µ
(

BN

)

ψ2 (xA) + C1η

∫

SN

ψ1

(

1

CM
Nf

)

dσN

)

≤
1

C̃

(

µ
(

BN

)

ψ2 (xA) + C1η
)

.

Of course, C1 may be chosen so that C1η ≥ 1 and putting C̃ = µ
(

BN

)

ψ2 (xA) + C1η ≥ 1,

we get ‖f‖Lψ2 (µ) ≤ C0 := BCMC̃, hence the second part of Theorem 2.7.

3) First, it is clear that Condition (2.11) implies Condition (2.10). The converse is based
on the following claim:

Claim. If Condition (2.10) is satisfied, then there exist some A as large as we want and
η > 0 such that

(2.12) ̺µ (h) ≤ η
1

ψ2

(

Aψ−1
1 (hA/hN)

)

for some hA, 0 < hA ≤ 1 and for any 0 < h < hA.



12 COMPOSITION OPERATORS ON HARDY-ORLICZ SPACES ON BN

Proof of the claim. We assume that Condition

(2.13) ̺µ (h) ≤ η
1

ψ2

(

Ãψ−1
1 (1/hN)

)

holds for some Ã ≥ 0, h̃A, 0 < h̃A ≤ 1, η > 0 and any 0 < h < h̃A. We fix A > 1 and we
look for some constant hÃ,A ≤ 1 such that

(2.14)
1

ψ2

(

Ãψ−1
1 (1/hN)

) ≤
1

ψ2

(

Aψ−1
1

(

(

hÃ,A/h
)N
))

for 0 < h < hÃ,A. Now it is easy to verify that Inequality (2.14) is equivalent to

A

Ã
≤

ψ−1
1

(

1/hN
)

ψ−1
1

(

(

hÃ,A/h
)N
) ≤

1

hN
Ã,A

by concavity of ψ−1
1 . Then the claim follows by choosing hÃ,A small enough. �

We finish the proof of the third point of the theorem. Let assume that ψ1 = ψ2 = ψ
belongs to the uniform ∇0-Class and that Condition (2.10) is satisfied for some constant
A > 0. The previous claim says that we can find B ≥ 1 and 0 < K = KB,A ≤ 1 such that

̺µ (h) ≤ η
1

ψ
(

Bψ−1
(

(K/h)N
))

for every 0 < h < K. Therefore, we have

Kµ (h) = sup
0<t≤h

̺µ (t)

tN
≤ η sup

0<t≤h

1/tN

ψ
(

Bψ−1
(

(K/t)N
)) = η sup

x≥ψ−1((K/h)N)

1

KN

ψ (x)

ψ (Bx)
,

for any 0 < h ≤ K. Let C be the constant induced by the uniform ∇0-Condition satisfied
by ψ and let β be such that B = βC. According to the claim, B can be chosen large enough
so that β > 1. Then, using uniform ∇0-Condition, we get

ψ
(

βψ−1
(

(K/h)N
))

(K/h)N
≤
ψ (Bx)

ψ (x)

for any x ≥ ψ−1
(

(K/h)N
)

. Hence, for every 0 < h ≤ K,

Kµ (h) ≤ η
1/hN

ψ
(

βψ−1
(

(K/h)N
)) ≤ η

1/hN

ψ (βKNψ−1 (1/hN))

by concavity of ψ−1, which is (2.11). �

The previous theorem leads us to introduce the ψ-Carleson measures:

Definition 2.8. Let µ be a finite positive Borel measure on BN and let ψ be an Orlicz
function. We say that µ is a ψ-Carleson measure if there exists A > 0, such that

(2.15) µ (S (ξ, h)) = Oh→0

(

1

ψ (Aψ−1 (1/hN))

)

uniformly with respect to ξ ∈ SN .

We remark that (2.15) is equivalent to (2.10), and we have the following corollary, by
noticing that the uniform ∇0-Condition implies the ∇2-Condition (Proposition 1.5):
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Corollary 2.9. Let µ be a finite positive Borel measure on BN and let ψ be an Orlicz
function. Then, if ψ satisfies the uniform ∇0-Condition, then inclusion Hψ (BN ) ⊂ Lψ (µ)
holds (and is continuous) if and only if µ is a ψ-Carleson measure.

2.2. Compactness of the canonical embedding Hψ1 (BN ) →֒ Lψ2 (µ). For this purpose,
we need a criterion of compactness for embedding operators from Hψ1 (BN ) into Lψ2 (µ).
First of all, we shall state the following proposition:

Proposition 2.10. Let µ be a finite positive Borel measure on BN (whose restriction to
SN is absolutely continuous with respect to σN ); let ψ1 and ψ2 be two Orlicz functions. If
the canonical embedding Hψ1 (BN ) →֒ Lψ2 (µ) is compact, then µ (SN) = 0.

Proof. We assume that jµ : Hψ1 (BN ) →֒ Lψ2 (µ) is compact. Let f : BN → C be an inner
function ([1]); the sequence (fn)n lays in the unit ball of Hψ1 (BN ) hence, by compactness
of jµ and up to an extraction of a subsequence, we may suppose that (jµ (f

n))n = (fn)n is
a Cauchy sequence in L1 (µ), for Lψ2 (µ) ⊂ L1 (µ). Now, since µ|SN is absolutely continuous
with respect to the Lebesgue measure σN , and since f is inner, we must have

‖fn − fm‖L1(µ|SN )
=
∥

∥1− fm−n
∥

∥

L1(µ|SN )
−−−−→
n,m→∞

0.

By contradiction, we assume that µ|SN > 0. We can then extract a subsequence (fnk)nk
which converges to 1 µ|SN -a.e. and by Egoroff’s theorem, the convergence is uniform on a
set E ⊂ SN of measure µ|SN positive. Because µ|SN is absolutely continuous with respect
to σN , we must have σN (E) > 0. Now, by subharmonicity of log |1− fnk |, it follows that

log |1− fnk (0)| ≤

∫

E

log |1− fnk | dσN +

∫

SN\E

log |1− fnk | dσN .

The right hand side of this inequality now tends to −∞ as k → ∞, because log |1− fnk |
is uniformly convergent to −∞ on E and log |1− fnk | ≤ log 2 a.e. We get a contradiction,
for fnk (0) tends to 0 as k → ∞. �

We give a necessary and sufficient condition for the canonical embedding Hψ1 (BN) →֒
Lψ2 (µ) to be compact.

Proposition 2.11. Let µ be a finite positive measure on BN and let ψ1 and ψ2 be two
Orlicz functions. We suppose that the canonical embedding jµ : Hψ1 (BN ) →֒ Lψ2 (µ) holds
(and is bounded).

(1) The two following assertions are equivalent:
(a) The canonical embedding Hψ1 (BN) →֒ Lψ2 (µ) is compact;
(b) Every sequence in the unit ball of Hψ1 (BN), which is convergent to 0 uniformly

on every compact subset of BN , is convergent to 0 in Lψ2 (µ).
(2) If Hψ1 (BN ) is continuously embedded in Lψ2 (µ) and if limr→1− ‖Ir‖ = 0, where

Ir (f) = f.χ
BN\rBN

, then the canonical embedding Hψ1 (BN ) →֒ Lψ2 (µ) is compact.

Proof. 1) (a)⇒ (b) Let (fn)n be a sequence in the unit ball of Hψ1 (BN ), which converges
to 0 uniformly on every compact subset of BN . Since jµ is compact, µ|SN = 0 according
to Proposition 2.10, so that fn −−−→

n→∞
0 µ-a.e. By contradiction, suppose up to extract a

subsequence that lim infn ‖fn‖Lψ2(µ) > 0. By compactness of jµ, up to an other extraction,

we may assume that (fn)n converges to some g in Lψ2 (µ), which must satisfy ‖g‖Lψ2(µ) > 0.
Then, fn −−−→

n→∞
g µ-a.e and we get a contradiction.

(b)⇒ (a) Conversely, let (fn)n be a sequence in the unit ball of Hψ1 (BN ). In particular,
(fn)n is in the unit ball of H1 (BN ) and Cauchy’s formula ensures that (fn)n is uniformly
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bounded on every compact subset of BN , so that, up to an extraction, we may suppose
that (fn)n is uniformly convergent on compact subsets of BN to f holomorphic in BN , by
Montel’s theorem. Now, Lebesgue’s theorem ensures that f ∈ Hψ1 (BN) and, up to divide
by a constant large enough, we may assume that fn − f , which converges to 0 on every
compact subset of BN , lays in the unit ball of Hψ1 (BN ). Therefore, our assumption implies
that (jµ (fn)− jµ (f))n converges to 0 in the norm of Lψ2 (µ) and jµ is compact, as expected.
2) Thanks to 1), it is sufficient to show that if limr→1− ‖Ir‖ = 0, then (b) is satisfied. Let

(fn)n be in the unit ball of Hψ1 (BN ) converging to 0 uniformly on every compact subset of
BN . We have

lim sup
n→∞

‖fn‖Lψ2(µ) = lim sup
r→1−

lim sup
n→∞

‖Ir (fn) + fn.χrBN‖Lψ2 (µ)

. lim sup
r→1−

‖Ir‖+ lim sup
r→1−

lim sup
n→∞

‖fn.χrBN‖∞

= 0.

�

We shall now state and prove our main theorem about compactness of the canonical
embedding Hψ1 (BN) →֒ Lψ2 (µ).

Theorem 2.12. Let µ be a finite positive Borel measure on BN , and let ψ1 and ψ2 be two
Orlicz functions. We assume that ψ1 satisfies the ∇2-condition. Then:

(1) If inclusion Hψ1 (BN ) ⊂ Lψ2 (µ) holds and is compact, then for every A > 0 we have

(2.16) ̺µ (h) = oh→0

(

1

ψ2

(

Aψ−1
1 (1/hN)

)

)

.

(2) If

(2.17) Kµ (h) = oh→0

(

1/hN

ψ2

(

Aψ−1
1 (1/hN)

)

)

for every A > 0, then inclusion Hψ1 (BN ) ⊂ Lψ2 (µ) holds and is compact.
(3) If in addition ψ1 = ψ2 = ψ satisfies both ∇0 and ∇2-Conditions then Conditions

(2.16) and (2.17) are equivalent.

Proof. 1) By contradiction, we assume that Hψ1 (BN ) ⊂ Lψ2 (µ) is compact, whereas Con-
dition (2.16) is not satisfied: there exist ε0 ∈ (0, 1), A > 0, a sequence (hn)n ⊂ (0, 1)
decreasing to 0, and a sequence ξn ⊂ SN , such that

µ (S (ξn, hn)) ≥
ε0

ψ2

(

Aψ−1
1 (1/hN)

) ,

for any n ∈ N. We consider the test functions introduced in the proof of Theorem 2.7:

fn = ψ−1
1

(

1/hNn
)

uξn,1−hn.

Each fn lays in the unit ball of Hψ1 (BN) and (fn)n tends to 0 uniformly on every compacta
of BN so that Proposition 2.11 ensures that (fn)n tends to 0 in Lψ2 (µ). Now, we showed
in Theorem 2.7 that

|f (z)| ≥
1

4N
ψ−1
1

(

1

hN

)

,
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for any z ∈ S (ξn, hn). Hence
∫

BN

ψ2

(

4NA

ε0
|fn|

)

dµ ≥ ψ2

(

A

ε0
ψ−1
1

(

1

hN

))

µ (S (ξn, hn))

≥ ψ2

(

A

ε0
ψ−1
1

(

1

hN

))

ε0

ψ2

(

Aψ−1
1 (1/hN)

)

≥ 1

using convexity of ψ2. Therefore, ‖fn‖Lψ2 (µ) ≥
ε0

4NA
for any n, which contradicts the fact

that ‖fn‖Lψ2(µ) tends to 0.

2) We assume that Condition (2.17) is satisfied. Theorem 2.7 ensures that inclusion
Hψ1 (BN ) ⊂ Lψ2 (µ) holds (and is bounded). Thanks to Proposition 2.11, it is sufficient
to show that, for every ε > 0, if we denote by Ir : Hψ1 (BN ) → Lψ2

(

BN \ rBN , µ
)

as in
the second point of Proposition 2.11, then ‖Ir‖ < ε whenever r is closed enough to 1. Let

η ∈ (0, 1) and let us set A =
2N+1 (C + 1)CN−1

ε
> 0, where C is the constant involved in

Theorem 2.4; Condition (2.17) yields the existence of a constant hA ∈ (0, 1/C) such that

Kµ (h) ≤ η
1/hN

ψ2

(

Aψ−1
1 (1/hN)

) ,

for any h ≤ hA. Now, if f is in the unit ball of Hψ1 (BN ) and if r ∈ (0, 1) is given,
Lemma 2.6, applied to E = BN \ rBN and to f , provides a constant B > 0, given by

B =
2N+1 (C + 1)CN−1

A
= ε, and xA > 0 and C1 > 0 independent of f , such that

∫

BN\rBN

ψ2

(

|f |

ε

)

dµ =

∫

BN\rBN

ψ2

(

|f |

B

)

dµ

≤ µ
(

BN \ rBN
)

ψ2 (xA) + C1η

∫

SN

ψ1 (Nf ) dσN .(2.18)

Furthermore, η > 0 is chosen in order that C1η

∫

SN

ψ1 (Nf ) dσN ≤
1

2
(which is possible

thanks to Corollary 2.3, since ψ1 satisfies the ∇2-Condition). For the end of the proof, we
need a lemma:

Lemma 2.13. Under the assumptions of Theorem 2.12, if Condition (2.17) is satisfied,
then µ (SN ) = 0.

Proof. Thanks to [15, Lemma 5.2.3], for any h ∈ (0, 1), if C (h) denotes the minimal number
of non-isotropic balls Q (ζ, h) which are needed to cover SN , then there exists C > 0,

independent of h, such that C (h) ≤
C

hN
. Therefore, if Condition (2.17) holds, then

µ
(

BN \ (1− h)BN
)

≤ C
̺µ (h)

hN
≤ CKµ (h) −−→

h→0
0.

�

We finish the proof of Theorem 2.12 by considering some r0 ∈ (0, 1) such that

µ
(

BN \ rBN
)

ψ2 (xA) ≤
1

2
for any r, r0 < r < 1, thanks to µ (SN ) = 0. We deduce that ‖Ir (f)‖Lψ2(µ) ≤ ε in (2.18),
for each r > r0, which ends the proof.
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3) This is quite similar to [9, Theorem 4.11, 3)]. �

The third point of the theorem leads us to define what one calls vanishing ψ-Carleson
measures:

Definition 2.14. Let µ be a finite positive Borel measure on BN and let ψ be an Orlicz
function. We say that µ is a vanishing ψ-Carleson measure if, for every A > 0,

(2.19) µ (S (ξ, h)) = oh→0

(

1

ψ (Aψ−1 (1/hN))

)

uniformly with respect to ξ ∈ SN .

We now state the following corollary:

Corollary 2.15. Let ψ be an Orlicz function and let µ be a finite positive Borel measure
on BN . If ψ satisfies the ∇0 ∩∇2-Condition, then the embedding Hψ (BN ) →֒ Lψ (µ) holds
and is compact if and only if µ is a vanishing ψ-Carleson measure.

3. Application to composition operators on Hardy-Orlicz spaces

In this section, we denote by φ : BN → BN an holomorphic map and by φ∗ : BN → BN

the map which is equal to φ on BN and which is equal to the σN -a.e. boundary limit of φ
on SN , as usual; we define the pull-back measure µφ on BN induced by φ∗ as the image of
the normalized Lebesgue measure σN on SN :

µφ (E) = σN

(

φ∗−1

(E) ∩ SN

)

for every Borel subset E ⊂ BN .
We will need a classical criterion of compactness of composition operators on Hardy-

Orlicz spaces. Its proof is an easy adaptation of that of [4, Proposition 3.11].

Proposition 3.1. Let ψ be an Orlicz function and let φ : BN → BN be holomorphic. Cφ
is compact on Hψ (BN ) if and only if, for every sequence (fn)n in the unit ball of Hψ (BN )
converging to 0 uniformly on every compact subset of BN , fn ◦φ converges to 0 in Hψ (BN).

Due to the non-separability of small Hardy-Orlicz spaces, the following general theorem
will not be a trivial consequence of embedding theorems, as it might be the case for classical
Hardy spaces.

Theorem 3.2. Let ψ be an Orlicz function which satisfies the ∇2-Condition and let φ :
BN → BN be holomorphic.

(1) If ψ satisfies the uniform ∇0-Condition, then Cφ is bounded from Hψ (BN ) into itself
if and only if µφ is a ψ-Carleson measure.

(2) If ψ satisfies the ∇0-Condition, then Cφ is compact from Hψ (BN ) into itself if and
only if µφ is a vanishing ψ-Carleson measure.

Proof. The difficult part of the theorem is the sufficient part: if µφ is a ψ-Carleson mea-
sure (resp. vanishing ψ-Carleson measure), then, under uniform ∇0-Condition (resp. ∇0-
Condition), Cφ is bounded (resp. compact) on Hψ (BN ). The converse is quite similar to
the proof of 1) of Theorem 2.7 (resp. Theorem 2.12), using test functions.
We turn to the proof of the sufficiency in 1). Since ψ satisfies ∇2-Condition, Theorem

1.9 ensures that
(

HMψ (BN )
)∗∗

= Hψ (BN ), and therefore that the bi-adjoint of Cφ|HMψ is

equal to Cφ itself. Hence, if Cφ is bounded from HMψ (BN ) into itself, then it is bounded
from Hψ (BN) into itself (note that the converse is trivially true, since Cφ (f) ∈ HMψ (BN )
if f ∈ HMψ (BN ), whenever Cφ is bounded on Hψ (BN )). So, for ψ satisfying the uniform
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∇0-Condition, it is sufficient to show that, if µφ is a ψ-Carleson measure, then Cφ is bounded
fromHMψ (BN ) into itself. Thanks to Theorem 2.7, it is still sufficient to prove that, for any
f ∈ HMψ (BN ),

∥

∥jµφ (f)
∥

∥

ψ
= ‖Cφ (f)‖ψ, where jµφ is the embedding Hψ (BN ) →֒ Lψ (µφ).

Now, it is not difficult to show that

(3.1)
∥

∥jµφ (f)
∥

∥

ψ
= ‖Cφ (f)‖ψ ,

for any f in the ball algebra A (BN ), and (3.1) can be extended to HMψ (BN ), by density
of A (BN ) into HM

ψ (BN), which concludes 1).
The proof of sufficiency for compactness, in 2), follows exactly the same argument as

above and uses the fact that, if µφ is a vanishing ψ-Carleson measure then, under ∇0-
Condition, jµφ is compact (Theorem 2.12) so that Cφ is compact from HMψ (BN) into
itself, because of Proposition 2.11 and Proposition 3.1. �

Remark 3.3. If we do not assume that ψ satisfies the uniform ∇0-Condition (resp. ∇0-
Condition), then Theorem 2.7 (resp. Theorem 2.12) provides a priori non-equivalent nec-
essary and sufficient conditions to the boundedness (resp. compactness) of Cφ on Hψ (BN ).

The following corollary is a particular case of Theorem 3.2:

Corollary 3.4. Let ψ be an Orlicz function which satisfies the ∆2 and ∇2-Condition (i.e.
Hψ (BN ) is reflexive) and let φ : BN → BN be holomorphic.

(1) Cφ is bounded from Hψ (BN) into itself if and only if µφ is a Carleson measure.
(2) Cφ is compact from Hψ (BN ) into itself if and only if µφ is a vanishing Carleson

measure.

Proof. It suffices to observe that

1

ψ (Aψ−1 (1/h))
≈ hN

for every A > 0, whenever ψ is an Orlicz function which satisfies the ∆2-Condition (see
Remark 2 (a) following Theorem 4.11 in [9]). In particular, this allows not to assume that
ψ satisfies the ∇0-Condition.

�

A first consequence of the previous results is the following corollary:

Corollary 3.5. Let φ : BN → BN be holomorphic and let ψ, ν be two Orlicz functions which
both satisfy ∇2-Condition. We assume that ν also satisfies the ∆2-Condition. Then

(1) If Cφ is bounded on Hν (BN) (e.g. on any Hp (BN)), then it is bounded on Hψ (BN );
(2) If in addition ψ satisfies the ∇0-Condition and if Cφ is compact on Hψ (BN ), then

it is compact on Hν (BN) (e.g. on any Hp (BN )).

Proof. The first point follows from Remark 3.3 and from the fact that if µ is a Carleson
measure, i.e. if Kµ ≤ C for some constant C ≥ 1, then µ satisfies Condition (2.11) for some
0 < A ≤ 1.
For the second point, it suffices to show that Condition (2.17) implies that µ is a vanishing

Carleson measure, what is trivial if we apply it for A = 1. �

One of the main motivations of this paper is to investigate whether there exist some
Hardy-Orlicz spaces on which composition operators are always bounded. To this purpose,
we will use a result, which is mentionned in [11], yet not proven:
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Proposition 3.6. If φ : BN → BN is holomorphic, then there exists a constant B > 0 such
that

(3.2) µφ (S (ξ, h)) ≤ B.h

uniformly with respect ot ξ ∈ SN and for every 0 < h < 1.

To be more precise, in their paper, B. MacCluer and P. Mercer proved a quite similar
result, where µφ is the pull-back measure by φ of the weigthed Lebesgue volume measure vα
on strictly pseudo-convex domains. Since we did not find the proof of the above proposition
written anywhere, we prefer to give it here:

Proof. We fix ξ ∈ SN and 0 < h < 1. We denote by χ(φ∗)−1(S(ξ,h)) the characteristic function

of (φ∗)−1 (S (ξ, h)). The formula of integration by slices ([15, Proposition 1.4.7, (1)]) yields

µφ (S (ξ, h)) =

∫

SN

χ(φ∗)−1(S(ξ,h)) (ζ)dσN (ζ)

=

∫

SN

∫

T

χ(φ∗)−1(S(ξ,h)) (uζ)dλ (u) dσN (ζ) ,

where λ is the Lebesgue measure on the torus T. Let us observe that χ(φ∗)−1(S(ξ,h)) (uζ) = 1
is equivalent to

(3.3) |1− 〈φ∗ (uζ) , ξ〉| < h.

For every ζ ∈ SN , let ϕζ,ξ : D → D be the function defined by ϕζ,ξ (z) = 〈φ (zζ) , ξ〉 for any
z ∈ D. ϕζ,ξ is holomorphic and it is not difficult to verify that ϕ∗

ζ,ξ (u) = 〈φ∗ (uζ) , ξ〉 for
λ-almost every u ∈ T, where ϕ∗

ζ,ξ is the λ-almost everywhere radial limit of ϕζ,ξ. Inequality
(3.3) is then equivalent to ϕ∗

ζ,ξ (u) ∈ S1 (1, h), where S1 (1, h) is the one-dimensional disk of
radius h, centered at 1, intersected with D. Now, by the Littlewood subordination principle
together with the classical (automatic) characterization of boundedness of Cφ on Hp (D),
there exists a constant B > 0, independent of ζ and ξ, such that

λ
(

(

ϕ∗
ζ,ξ

)−1
(S1 (1, h))

)

≤ B.h,

which concludes the proof. �

Now, if we compare Condition (3.2) and Condition (2.10), written for ψ1 = ψ2 = ψ, it
clear that, if we can find some ψ, among those satisfying the uniform ∇0-Condition, which
satisfies the following condition P:

P: for every K > 0, there exist A > 0 and h0 > 0 such that

(3.4) Kh ≤
1

ψ (Aψ−1 (1/hN))
,

for any 0 < h ≤ h0,

then every composition operator will be bounded on the Hardy-Orlicz space Hψ (BN ),
according to Theorem 3.2. The next proposition characterizes those Orlicz functions which
satisfy this condition P:

Proposition 3.7. Let ψ be an Orlicz function. ψ satisfies Condition P if and only if, for
every K > 0 (or equivalently for one K > 0), there exists C > 0 such that, for every x > 0
large enough, we have

ψ (x)N ≤ Kψ (Cx) .

In particular, Condition P is trivial if N = 1 and coincides with ∆2-Condition whenever
N > 1.



STÉPHANE CHARPENTIER 19

Proof. The first part comes from a straightforward rewritening of Inequality (3.4). The
second part is a direct application of Proposition 1.3, using convexity of ψ. �

When N = 1, [8, Theorem 4.19] permits to remove the necessary uniform ∇0-Condition
in the the first point of Theorem 3.2. When N > 1, this trick fails as it is not difficult
to check that if this result could be extended to the several complex variables setting,
then it would imply that every composition operator is bounded on Hp (BN). Moreover,
thanks to the factorization of a function f ∈ Hψ (D) (hence in H1 (D)) by a Blaschke
product formed with its zeros and a non-zeros function in Hψ (D) (see the remark which
precedes the proof of [9, Theorem 4.10], and [2, Section 7, Theorem 1.1]), it is also possible
to remove the ∇2-Condition, when N = 1. Nevertheless, this argument cannot still be
extended to N > 1. Yet, we know (Proposition 1.5) that every Orlicz function satisfying
the ∆2-Condition satisfies the uniform ∇0-Condition, and then the ∇2-Condition too.
Therefore, Theorem 3.2, Proposition 3.6 and Proposition 3.7 immediately yields the

following result:

Theorem 3.8. Let ψ be an Orlicz function.

(1) Every composition operator is bounded from Hψ (D) into itself;
(2) When N > 1, if ψ satisfies the ∆2-Condition, then every composition operator is

bounded from Hψ (BN ) into itself.
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Sud, F-91405, Orsay, France

E-mail address : stephane.charpentier@math.u-psud.fr


	1. Introduction and preliminaries
	1.1. Introduction
	1.2. Orlicz spaces - Notations
	1.2.1. Definitions
	1.2.2. Four classes of Orlicz functions

	1.3. Hardy-Orlicz spaces on BN

	2. Embedding theorems for Hardy-Orlicz spaces
	2.1. The canonical embedding H1(BN)-3muL2().
	2.2. Compactness of the canonical embedding H1(BN)-3muL2().

	3. Application to composition operators on Hardy-Orlicz spaces
	References

