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WEIGHTED MOURRE’S COMMUTATOR THEORY,

APPLICATION TO SCHRÖDINGER OPERATORS WITH

OSCILLATING POTENTIAL

GOLÉNIA, SYLVAIN AND JECKO, THIERRY

Abstract. We present a variant of Mourre’s commutator theory. We apply it
to prove the limiting absorption principle for Schrödinger operators with a per-
turbed Wigner-Von Neumann potential at suitable energies. To our knowledge,
this result is new since we allow a long range perturbation of the Wigner-Von
Neumann potential. Furthermore, we can show that the usual Mourre theory,
based on differential inequalities and on the generator of dilation, cannot apply
to our Schrödinger operators.
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1. Introduction.

Since its introduction in 1980 (cf., [M]), many papers have shown the power of
Mourre’s commutator theory to study the point and continuous spectra of a quite
wide class of self-adjoint operators. Among others, we refer to [BFS, BCHM, CGH,
DJ, FH, GGM1, GGo, HuS, JMP, Sa] and to the book [ABG]. One can also find
parameter dependent versions of the theory (a semi-classical one for instance) in
[RoT, W, WZ]. Recently it has been extended to (non self-adjoint) dissipative op-
erators (cf., [BG, Roy]).
In [GJ], we introduced a new approach of Mourre’s commutator theory, which is
strongly inspired by results in semi-classical analysis (cf., [Bu, CJ, J1, J2]). In
[Gé], Gérard gave a very close approach to ours. These approaches furnished an
alternative way to develop the original Mourre Theory and do not use differential
inequalities.
The aim of the present paper is to present a new theory, which is quite close to
Mourre’s commutator theory but relies on slightly different assumptions. It is in-
spired by the approaches in [GJ] and in [Gé]. It is actually a new theory since we
can produce an example for which it applies while the strongest versions of Mourre’s
commutator theory (cf., [ABG, Sa]) with (variants of) the generator of dilation as
conjugate operator cannot be applied to it.
Our example is a perturbation of a Schrödinger operator with a Wigner-Von Neu-
mann potential. Furthermore we can allow a long range perturbation which is not
covered by previous results in [DMR, ReT1, ReT2]. A similar situation is considered
in [MU] but at different energies.

Let us now briefly recall Mourre’s commutator theory and present our results. We
need some notation and basic notions (see Section 2 for details). We consider two
self-adjoint (unbounded) operators H and A acting in some complex Hilbert space
H . Let ‖ · ‖ denote the norm of bounded operators on H . With the help of A, we
study spectral properties of H , the spectrum σ(H) of which is included in R. Let
I,J be open intervals of R. Given k ∈ N, we say that H ∈ Ck

J (A) if for all χ ∈
C∞c (R) with support in J , for all f ∈ H , the map R ∋ t 7→ eitAχ(H)e−itAf ∈ H

has the usual Ck regularity. Denote by EI(H) the spectral measure of H above I.
We say that the Mourre estimate holds true for H on I if there exist c > 0 and a
compact operator K such that

EI(H)[H, iA]EI(H) ≥ EI(H) (c + K)EI(H),(1.1)

in the form sense on (D(A) ∩ D(H)) × (D(A) ∩ D(H)). In general, the l.h.s. of
(1.1) does not extend, as a form, on H × H but it is the case if H ∈ C1

J (A)
and I ⊂ J (cf., [Sa, GJ]). We say that the strict Mourre estimate holds true
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if the Mourre estimate (1.1) holds true with K = 0. In the first case (resp. the
second case), it turns out that the point spectrum of H is finite (resp. empty) in
compact sub-intervals I ′ of I if H ∈ Ck

J (A) and I ⊂ J . The main aim of Mourre’s
commutator theory is to show, when the strict Mourre estimate holds true for H
on I, the following limiting absorption principle (LAP) on compact sub-intervals
I ′ of I. Given such a I ′ and s > 1/2, we say that the LAP, respectively to the
triplet (I ′, s, A), holds true for H if

(1.2) sup
Rez∈I′,Imz 6=0

‖〈A〉−s(H − z)−1〈A〉−s‖ <∞,

where 〈t〉 = (1+ |t|2)1/2. In that case, it turns out that the spectrum of H is purely
absolutely continuous in I ′ (cf., Theorem XIII.20 in [RS4]). Notice that (1.2) holds
true for s = 0 if and only if I ′ ∩ σ(H) = ∅.
In [ABG, Sa], such LAPs are derived under a slightly stronger regularity assumption
than H ∈ C1

J (A) with I ⊂ J . Actually, stronger results are proved. In particular,
in the norm topology of bounded operators, one can defined the boundary values
of the resolvent:

(1.3) I ′ ∋ λ 7→ lim
ε→0±

〈A〉−s(H − λ− iε)−1〈A〉−s

and show some Hölder continuity for them.
Implicitly in [GJ] and explicitly in [Gé], one can derive, using H ∈ C2

J (A) with
I ⊂ J , the LAP (1.2) on compact sub-intervals I ′ of I from the Mourre estimate
(1.1) with K = 0 via a strict, weighted Mourre estimate:

(1.4) EI(H)[H, iϕ(A)]EI(H) ≥ c1EI(H)〈A〉−1−εEI(H),

where ε = 2s − 1 > 0 and ϕ is some appropriate non-negative, bounded, smooth
function on R. Note that the l.h.s. of (1.4) is a well defined form on H × H . It
seems that the use of such kind of inequality to derive resolvent estimates appears
in [J1] for the first time.
Our new idea is to take the strict, weighted Mourre estimate (1.4) as starting point,
instead of the strict Mourre estimate. This costs actually less regularity of H w.r.t.
A. Precisely, we show

Theorem 1.1. Let I be a bounded, open interval of R and assume that H ∈ C1
I(A).

Assume that, for some ε0 > 0, for any ε ∈ (0; ε0], there exists some real borelian
bounded function ϕ such that the strict, weighted Mourre estimate, i.e. (1.4), holds
true. Then, for any s > 1/2 and for any closed sub-interval I ′ of I, the LAP (1.2)
for H respectively to (I ′, s, A) holds true.

Remark 1.2. Notice that the LAP (1.2) for H respectively to (I ′, s, A) implies the
LAP (1.2) for H respectively to (I ′, s′, A), for any s′ ≥ s. Therefore, it is enough
to prove Theorem 1.1 for s close to 1/2.

Remark 1.3. Using Gérard’s energy method in [Gé], we can upper bound the size of
the l.h.s. of (1.2) in terms of the constant c1 appearing in (1.4). See Corollary 3.7.

Actually Theorem 1.1 will follow from the more general result obtained in Theo-
rem 3.4. The new theory that we present here and that we call “weighted Mourre
theory” is essentially a part of the variant of the Mourre theory in [Gé, GJ]. As
such, it is simpler than the usual Mourre theory (it does not use differential in-
equalities). However, we do not know if such approach gives continuity results on
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the boundary values of the resolvent (1.3). We shall give two (almost equivalent)
ways to view the new theory (cf., Subsections 3.2 and 3.3).

As announced above, we want to derive the LAP (1.2) (for some A) on carefully
chosen intervals I ′ for a certain class of Schrödinger operators. Let d ∈ N∗ and let
H0 be the self-adjoint realization of the Laplacian −∆x in L2(Rd

x). Given q ∈ R∗

and k > 0, the function W : Rd −→ R defined by W (x) = q(sin k|x|)/|x| is called
the Wigner-Von Neumann potential. We consider another real valued function V
satisfying some long range condition (see Section 4 for details) such that the opera-
tor H1 := H0+W +V is self-adjoint on the domain of H0. This is our Schrödinger
operator with a perturbed Wigner-Von Neumann potential. It is well known that
its essential spectrum is [0;+∞[. Now we look for an interval I ′ ⊂]0; +∞[ on which
we can get the LAP (1.2). As operator A, it is natural to choose the generator of
dilation A1, the self-adjoint realization of (x · ∇x +∇x · x)/(2i) in L2(Rd

x). Indeed,
when W is absent, such LAPs have been derived. As mentioned above, the pure
point spectrum σpp(H1) of H1 has to be empty in I ′.
There are many papers on the absence of positive eigenvalue for Schrödinger op-
erators: see [K, Si, A, FHHH2, FH, IJ, RS4, CFKS]. They do not apply to the
present situation because of the behaviour of the Wigner-Von Neumann W . One
can even show that k2/4 is actually an eigenvalue of H1 for a well chosen, radial,
short range potential V (cf., [RS4] p. 223 and [BD]).
In dimension d = 1, the eigenvalue at k2/4 is preserved under suitable perturba-
tion (see [CHM]). Furthermore it is proved in [FH, FHHH1] that, if |q| < k, the
usual Mourre estimate (1.1) holds true on compact intervals I ⊂]0; +∞[ and there
is no eigenvalue in ]0;+∞[, and otherwise that, on compact I ⊂]0; +∞[\{k2/4},
no eigenvalue is present and the usual Mourre estimate (1.1) holds true. Actually
if k2/4 is an eigenvalue of H1 then the usual Mourre estimates cannot hold true
on a compact neighbourhood of k2/4, with the generator of dilation as conjugate
operator. This follows from the arguments of the proof of Corollary 2.6 in [FH].
Thus the eigenvalue k2/4 is a threshold.
We focus on compact intervals I satisfying {0, k2/4} ∩ I = ∅ and, when d > 1,
I ⊂]0; k2/4[. Using pseudodifferential calculus and recycling arguments from [FH],
we prove the usual Mourre estimate (1.1) on such I, the operator A being A1,
yielding the finiteness of the pure point spectrum σpp(H1) in I. Then, in Theorem
4.15, we derive a strict, weighted Mourre estimate (1.4) and show that Theorem 1.1
applies, leading to the LAP (1.2). For short range perturbation V , we partially re-
cover results from [DMR, ReT1, ReT2] but, in contrast to these papers, we are
able to treat a long range perturbation V . In particular this proves the absence of
singular spectrum over I for H1. This result seems to be new, even in dimension
1. Concerning this question for potentials, which are decaying faster than 1/x at
infinity, we refer to [K] and references therein. We mention that in [MU], for high
enough energies, one proves a LAP for long-range perturbations of a larger class of
oscillating potentials.
Finally we show that H1 does not have the required regularity w.r.t. (variants of)
A1 to apply the usual Mourre theory from [ABG, GGM1, Sa]. For the same rea-
son, the derivation of our strict, weighted Mourre estimate (1.4) for H1 from the
corresponding strict Mourre estimate, i.e. (1.1) with K = 0, along the lines in [Gé],
is not allowed.
We did not optimize our study of Schrödinger operators with oscillating potential.
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We believe that we can handle more general perturbations. Because of a difficulty
explained in Remark 4.5 below, we did not consider intervals I above k2/4 for
d > 1. However we believe that a variant of the present theory is applicable in this
case. We think that a general study of long range perturbations of the Schrödinger
operator with Wigner-Von Neumann potential is interesting in itself and hope to
develop it in a forthcoming paper.
The paper is organized as follows. In Section 2, we introduce some notation and
basic but important notions. In Section 3, we show a stronger version of Theo-
rem 1.1, namely Theorem 3.4. In Section 4, we study Schrödinger operators with
perturbed Wigner-Von Neumann potentials. In Subsection 4.3, we derive usual
Mourre estimates below the “threshold” k2/4. In Subsection 4.4, we essentially
apply Theorem 1.1 to our Schrödinger operators. In Section 5, we prove that they
cannot be treated by the usual Mourre theory in [ABG, Sa]. In Appendix A, we
prove a key pseudodifferential result to control the behaviour of the Wigner-Von
Neumann potential (extending a result by [FH] in dimension one). In Appen-
dix B, we review functional calculus for pseudodifferential operators (cf., [Bo1]). In
Appendix C, we establish the boundedness of some operator using interpolation.
Finally, in Appendix D, we present, in dimension one, a simpler proof of Lemma 5.5,
this lemma being used to show that the regularity assumption of the usual Mourre
theory is not satisfied by our Schrödinger operators.

Acknowledgement: The authors thank Jean-Michel Bony, Vladimir Georgescu,
Ira Herbst, Andreas Knauf, Jacob Schach Møller, Nicolas Lerner, Karel Pravda-
Starov, and Erik Stibsted for fruitful discussions.

2. Basic notions and notation.

In this section, we introduce some notation and recall known results. For details,
we refer to [ABG, DG, GJ, Sa] on regularity and to [H3, Bo1, Bo2, BC, L] on
pseudodifferential calculus.

2.1. Regularity. For an interval I of R, we denote by I (resp. I̊) its closure (resp.
its interior). The scalar product 〈·, ·〉 in H is right linear and ‖ · ‖ denotes the
corresponding norm and also the norm in B(H ), the space of bounded operators
on H . Let A be a self-adjoint operator. Let T be a closed operator. The form
[T,A] is defined on (D(A) ∩D(T ))× (D(A) ∩ D(T )) by

(2.1) 〈f , [T,A]g〉 := 〈T ∗f , Ag〉 − 〈Af , T g〉 .
If T is a bounded operator on H and k ∈ N, we say that T ∈ Ck(A) if, for all
f ∈ H , the map R ∋ t 7→ eitATe−itAf ∈ H has the usual Ck regularity. The
following characterization is available.

Proposition 2.1. ([ABG, p. 250]). Let T ∈ B(H ). Are equivalent:

(1) T ∈ C1(A).
(2) The form [T,A] defined on D(A) × D(A) extends to a bounded form on

H × H associated to a bounded operator denoted by ad1A(T ) := [T,A]◦.
(3) T preserves D(A) and the operator TA−AT , defined on D(A), extends to

a bounded operator on H .
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It follows that T ∈ Ck(A) if and only if the iterated commutators adpA(T ) :=

[adp−1A (T ), A]◦ are bounded for p ≤ k. In particular, for T ∈ C1(A), T ∈ C2(A) if
and only if [T,A]◦ ∈ C1(A).
Let H be a self-adjoint operator and I be an open interval. As in the Introduction
(Section 1), we say that H is locally of class Ck(A) on I, we write H ∈ Ck

I(A), if,
for all ϕ ∈ C∞c (I), ϕ(H) ∈ Ck(A).
It turns out that T ∈ Ck(A) if and only if, for a z outside σ(T ), the spectrum of T ,
(T − z)−1 ∈ Ck(A). It is natural to say that H ∈ Ck(A) if (H − z)−1 ∈ Ck(A) for
some z 6∈ σ(H). In that case, (H − z)−1 ∈ Ck(A), for all z 6∈ R. This regularity is
stronger than the local one as asserted in the following

Proposition 2.2. ([ABG, p. 244]) If H ∈ Ck(A) then H ∈ Ck
I(A) for all open

interval I of R.

Next we recall Proposition 2.1 in [GJ] which gives a sufficient condition to get the
C1(A) regularity for finite range operators.

Proposition 2.3. ([GJ]) If f, g ∈ D(A), then the rank one operator |f〉〈g| : h 7→
〈g, h〉f is in C1(A).

For ρ ∈ R, let Sρ be the class of functions ϕ ∈ C∞(R) such that

∀k ∈ N, Ck(ϕ) := sup
t∈R

〈t〉−ρ+k|ϕ(k)(t)| <∞.(2.2)

Here ϕ(k) denotes the kth derivative of ϕ. Equipped with the semi-norms defined
by (2.2), Sρ is a Fréchet space. We recall the following result from [DG] on almost
analytic extension.

Proposition 2.4. ([DG]) Let ϕ ∈ Sρ with ρ ∈ R. There is a smooth function
ϕC : C → C, called an almost analytic extension of ϕ, such that, for all l ∈ N,

ϕC|R = ϕ,
∣
∣∂zϕ

C(z)
∣
∣ ≤ c1〈Re(z)〉ρ−1−l|Im(z)|l ,(2.3)

suppϕC ⊂ {x+ iy; |y| ≤ c2〈x〉},(2.4)

ϕC(x+ iy) = 0, if x 6∈ suppϕ,(2.5)

for constants c1, c2 depending on the semi-norms (2.2) of ϕ in Sρ.

Next we recall Helffer-Sjöstrand’s functional calculus (cf., [HeS, DG]). For ρ < 0,
k ∈ N, and ϕ ∈ Sρ, the bounded operators ϕ(k)(A) can be recovered by

ϕ(k)(A) =
i(k!)

2π

∫

C

∂zϕ
C(z)(z −A)−1−kdz ∧ dz,(2.6)

where the integral exists in the norm topology, by (2.3) with l = 1. For ρ ≥ 0, we
rely on the following approximation:

Proposition 2.5. ([GJ]) Let ρ ≥ 0 and ϕ ∈ Sρ. Let χ ∈ C∞c (R) with χ = 1 near 0
and 0 ≤ χ ≤ 1, and, for R > 0, let χR(t) = χ(t/R). For f ∈ D(〈A〉ρ), there exists

ϕ(k)(A)f = lim
R→+∞

i

2π

∫

C

∂z(ϕχR)
C(z)(z −A)−1−kf dz ∧ dz.(2.7)

The r.h.s. converges for the norm in H . It is independent of the choise of χ.
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Notice that, for some c > 0 and s ∈ [0; 1], there exists some C > 0 such that, for
all z = x+ iy ∈ {a+ ib | 0 < |b| ≤ c〈a〉} (like in (2.4)),

∥
∥〈A〉s(A− z)−1

∥
∥ ≤ C〈x〉s · |y|−1.(2.8)

Observing that the self-adjointness assumption on B is useless, we pick from [GJ]
the following result in two parts.

Proposition 2.6. ([GJ]) Let k ∈ N∗, ρ < k, ϕ ∈ Sρ, and B be a bounded operator
in Ck(A). As forms on D(〈A〉k−1)×D(〈A〉k−1),

[ϕ(A), B] =

k−1∑

j=1

1

j!
ϕ(j)(A)adj

A(B)(2.9)

+
i

2π

∫

C

∂zϕ
C(z)(z −A)−kadkA(B)(z −A)−1dz ∧ dz.(2.10)

In particular, if ρ ≤ 1, then B ∈ C1(ϕ(A)).

The rest of the previous expansion is estimated in

Proposition 2.7. ([GJ]) Let B ∈ Ck(A) bounded. Let ϕ ∈ Sρ, with ρ < k. Let
Ik(ϕ) be the rest of the development of order k (2.9) of [ϕ(A), B], namely (2.10).
Let s, s′ ≥ 0 such that s′ < 1, s < k, and ρ + s + s′ < k. Then, for ϕ staying
in a bounded subset of Sρ, 〈A〉sIk(ϕ)〈A〉s

′

is bounded and there exists a A and ϕ

independent constant C > 0 such that ‖〈A〉sIk(ϕ)〈A〉s
′‖ ≤ C‖adkA(B)‖.

We refer to [BG] for some generalization of Propositions 2.6 and 2.7 to the case
where B is unbounded and [A,B]◦ is bounded.

2.2. Pseudodifferential calculus. In this subsection, we briefly review some ba-
sic facts about pseudodifferential calculus that we need in the treatment of our
Schrödinger operators. We refer to [H3][Chapters 18.1, 18.4, 18.5, and 18.6] for a
traditional study of the subject but also to [Bo1, Bo2, BC, L] for a modern and
powerful version. Other results are presented in Appendix A and B.

Denote by S(M) the Schwartz space on the spaceM and by F the Fourier transform
on Rd given by

Fu(ξ) := (2π)−d
∫

Rd

e−ix·ξu(x) dx ,

for ξ ∈ Rd and u ∈ S(Rd). For test functions u, v ∈ S(Rd), let Ω(u, v) and Ω′(u, v)
be the functions in S(R2d) defined by

Ω(u, v)(x, ξ) := v(x)Fu(ξ)eix·ξ ,

Ω′(u, v)(x, ξ) := (2π)−d
∫

Rd

u(x− y/2)v(x+ y/2)e−iy·ξ dy ,

respectively. Given a distribution b ∈ S ′(T ∗Rd), the formal quantities

(2π)−d
∫

R3d

ei(x−y)·ξb(x, ξ)v(x)u(y) dxdydξ ,

(2π)−d
∫

R3d

ei(x−y)·ξb((x+ y)/2, ξ)u(x)u(y) dxdydξ
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are defined by the duality brackets 〈b,Ω(u, v)〉 and 〈b,Ω′(u, v)〉, respectively. They
define continuous operators from S(Rd) to S ′(Rd) that we denote by Op b(x,Dx)
and bw(x,Dx) respectively. Sometimes we simply write Op b and bw, respectively.
Choosing on the phase space T ∗Rd a metric g and a weight function m with ap-
propriate properties (cf., admissible metric and weight in [L]), let S(m, g) be the
space of smooth functions on T ∗Rd such that, for all k ∈ N, there exists ck > 0 so
that, for all x∗ = (x, ξ) ∈ T ∗Rd, all (t1, · · · , tk) ∈ (T ∗Rd)k,

(2.11) |a(k)(x∗) · (t1, · · · , tk)| ≤ ckm(x∗)gx∗(t1)
1/2 · · · gx∗(tk)

1/2 .

Here, a(k) denotes the k-th derivative of a. We equip the space S(m, g) with
the semi-norms ‖ · ‖ℓ,S(m,g) defined by max0≤k≤ℓ ck, where the ck are the best
constants in (2.11). S(m, g) is a Fréchet space. The space of operators Op b(x,Dx)
(resp. bw(x,Dx)) when b ∈ S(m, g) has nice properties (cf., [H3, L]). Defining
x∗ = (x, ξ) ∈ T ∗Rd, we stick here to the following metrics

(2.12) gx∗ :=
dx2

〈x〉2 +
dξ2

〈ξ〉2 and (g0)x∗ := dx2 +
dξ2

〈ξ〉2 ,

and to weights of the form, for p, q ∈ R,

m(x∗) := 〈x〉p〈ξ〉q.(2.13)

The gain of the calculus associated to each metric in (2.12) is given respectively by

h(x∗) := 〈x〉−1〈ξ〉−1 and h0(x
∗) = 〈ξ〉−1.(2.14)

We note that S(m, g) ⊂ S(m, g0) with continuous injection. Take weights m1, m2

as in (2.13), let g̃ be g or g0, and denote by h̃ the gain of g̃. For any a ∈ S(m1, g̃)
and b ∈ S(m2, g̃), there are a symbol a#rb ∈ S(m1m2, g̃) and a symbol a#b ∈
S(m1m2, g̃) such that Op aOp b = Op(a#rb) and awbw = (a#b)w. The maps
(a, b) 7→ a#rb and (a, b) 7→ a#b are continuous and so are also (a, b) 7→ a#rb−ab ∈
S(m1m2h̃, g̃) and (a, b) 7→ a#b − ab ∈ S(m1m2h̃, g̃). If a ∈ S(m1, g̃), there exists

c ∈ S(m1, g̃) such that aw = Op c. The maps a 7→ c and a 7→ c− a ∈ S(m1m2h̃, g̃)
are continuous. If a ∈ S(1, g̃), aw and Op a are bounded on L2(Rd). For a ∈ S(1, g̃),

(2.15) Opa is compact ⇐⇒ aw is compact ⇐⇒ lim
|x∗|→∞

a(x∗) = 0 .

3. Weighted Mourre theory.

In this section, we present our new strategy to get the LAP (1.2). As in [GJ] (see
also [CGH]), we consider a more general version of the LAP, namely the LAP for the
reduced resolvent (see (3.1) below). First we make use of a kind of weighted Weyl
sequence introduced in [GJ], that we call “special sequence”. Then we present an
adapted version of the method introduced in [Gé] and based on energy estimates.
Both methods are quite close, the latter having the advantage to give an idea of
the size of the l.h.s. of (1.2) (resp. (3.1)).

3.1. Reduced resolvent. Let P be the orthogonal projection onto the pure point
spectral subspace of H and P⊥ = 1− P . For s ≥ 0 and I ′ an interval of R, we say
that the reduced LAP, respectively to the triplet (I ′, s, A), holds true for H if

(3.1) sup
Rez∈I′,Imz 6=0

‖〈A〉−s(H − z)−1P⊥〈A〉−s‖ <∞.
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Let I be an interval in R containing I ′ in its interior. Since (H − z)−1(1−EI(H))
is uniformly bounded for Re(z) ∈ I ′ and Im(z) 6= 0, (3.1) is equivalent to the same
estimate with P⊥ replaced by EI(H)P⊥. If no point spectrum is present in I, then
(H − z)−1EI(H)P⊥ = (H − z)−1 for Rez ∈ I and (3.1) is equivalent to the usual
LAP (1.2).
In [CGH] and more recently in [FMS2], it is shown that the reduced LAP can be
derived from the Mourre estimate (1.1). In this case, it is well known that the point
spectrum of H is finite in I (but non empty in general, see [ABG, M]). In [GJ], the
reduced LAP is deduced from a projected version of this Mourre estimate, namely

(3.2) P⊥EI(H)[H, iA]EI(H)P⊥ ≥ cEI(H)P⊥ + P⊥KP⊥,

for some compact operator K. In the proofs, one uses the compactness of K and
the fact that the strong limit

(3.3) s− lim
δ→0

E]λ−δ;λ+δ[(H)P⊥ = 0,

to derive from (3.2) a strict Mourre estimate (with K = 0) on all small enough
intervals inside I. Notice that the traditional theory (cf., [ABG, M]) performs the
same derivation. So both methods rely on some strict Mourre estimate. Here, to
get the reduced LAP (3.1) as shown in Theorem 3.4 below, we also starts from
a convenient strict estimate namely a strict, weighted, projected Mourre estimate
like (1.4). We discuss the possibility to derive it from a more general one in Sub-
section 3.4. Since we work with projected estimates, we need some regularity of
P⊥ w.r.t. A.

3.2. Special sequences. We work in a larger framework.

Definition 3.1. Let C be an injective, bounded, self-adjoint operator. Let I ′ be
an interval of R.

(1) A special sequence (fn, zn)n∈N for H associated to (I ′, C) is a sequence
(fn, zn)n ∈ (D(H) × C)N such that, for some η ≥ 0, Re(zn) ∈ I ′, 0 6=
Im(zn) → 0, ‖Cfn‖ → η, P⊥fn = fn, (H−zn)fn ∈ D(C−1), and ‖C−1(H−
zn)fn‖ → 0. The limit η is called the mass of the special sequence.

(2) The reduced LAP, respectively to (I ′, C), holds true for H if

(3.4) sup
Rez∈I′,Imz 6=0

‖C(H − z)−1P⊥C‖ <∞.

Notice that (3.4) for C = 〈A〉−s with s ∈]1/2; 1[ gives the LAP (3.1), thanks to
Remark 1.2.

Proposition 3.2. Let I ′ be an interval of R. Take an injective, bounded, self-
adjoint operator C such that, for some χ, a bounded, borelian function on R with
χ = 1 near I ′, the operator Cχ(H)P⊥C−1 extends to a bounded operator. Let θ be
a borelian function on R such that θχ = χ. Then the reduced LAP (3.4) holds true
if and only if, for all special sequence (fn, zn)n for H associated to (I ′, C) such that
θ(H)fn = fn for all n, the corresponding mass is zero.

Proof. Assume the LAP (3.4) true. Then, for any special sequence (fn, zn)n for H
associated to (I ′, C), for all n,

‖Cfn‖ ≤ ‖C(H − zn)
−1P⊥C‖ · ‖C−1(H − zn)fn‖,
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yielding η = 0. Now assume the LAP (3.4) false. Then there exists some complex
sequence (zn) such that Rezn ∈ I ′, Imzn → 0, and ‖C(H − zn)

−1P⊥C‖ → ∞.
Since ((H − zn)

−1(1−χ)(H)) is uniformly bounded, we can find, for all n, nonzero
un ∈ H and 0 < κn → 0 such that

‖C(H − zn)
−1χ(H)P⊥Cun‖ = ‖un‖/κn.

We set fn := κn(H − zn)
−1χ(H)P⊥Cun/‖un‖. Notice that θ(H)fn = P⊥fn = fn

and ‖Cfn‖ = 1. Since Cχ(H)P⊥C−1 is bounded, χ(H)P⊥ preserves D(C−1), the
image of C. Thus (H − zn)fn ∈ D(C−1), for all n. We conclude by noticing that
‖C−1(H − zn)fn‖ ≤ κn · ‖C−1χ(H)P⊥C‖ = o(1). �

Proposition 3.3. Let I ′, C be as in Proposition 3.2. Let (fn, zn)n be a special se-
quence for a self-adjoint operator H associated to (I ′, C). For any bounded opera-
tor B, such that CBC−1 extends to a bounded operator, limn→∞〈fn, [H,B]fn〉 = 0.

Proof. Since (fn, zn)n is a special sequence and CBC−1 is bounded, we obtain that
〈(H−zn)fn , Bfn〉 = o(1) and 〈(H−zn)fn , fn〉 = o(1). Therefore, 2iImzn‖fn‖2 =
Im〈(H − zn)fn , fn〉 = o(1). Hence

〈fn , [H, iB]fn〉 = 〈(H − zn)fn , iBfn〉 − 〈B∗fn , i(H − zn)fn〉
= −2iImzn · 〈fn , iBfn〉 − 2Im〈(H − zn)fn , Bfn〉 = o(1). �

Theorem 3.4. Let I be an open interval and I ′ be a closed sub-interval of I.
Let B,C be two bounded self-adjoint operators, C being injective. Assume that,
for some bounded, borelian function χ on R with χ = 1 on I ′ and suppχ ⊂ I,
Cχ(H)P⊥C−1 and CBC−1 extend to bounded operators. Assume further that the
following strict weighted projected Mourre estimate

(3.5) P⊥EI(H)[H, iB]EI(H)P⊥ ≥ P⊥EI(H)C2EI(H)P⊥

is satisfied. Then the LAP (3.4) on I ′ holds true.

Proof. Let (fn, zn)n be a special sequence for H associated to (I ′, C) such that
EI(H)fn = fn for all n. By Proposition 3.2, it suffices to show that the mass η of
the special sequence is zero. Letting (3.5) act on both sides on fn, we infer that

〈fn , [H, iB]fn〉 ≥
∥
∥Cfn

∥
∥
2
. Now Proposition 3.3 yields η = 0. �

Proof of Theorem 1.1. Thanks to Remark 1.2, we may assume that s ∈]1/2; 1[ with
ε := 2s− 1 ∈]0; ε0]. If, for f ∈ D(H) and for E ∈ I, Hf = Ef then, by (1.4), 0 ≥
c1‖〈A〉−(1+ε)/2f‖2 and f = 0. Thus EI(H)P⊥ = EI(H) and (1.4) may be rewritten
as (3.5) with B = ϕ(A) and C =

√
c1〈A〉−(1+ε)/2 =

√
c1〈A〉−s. Notice that the

function of A, given by CBC−1, extends to a bounded operator. Let χ ∈ C∞c (I)
such that χ = 1 on I ′. Since χ(H)P⊥ = χ(H)EI(H)P⊥ = χ(H)EI(H) = χ(H)
and H ∈ C1

I(A), χ(H)P⊥ ∈ C1(A). By Proposition 2.6, [χ(H)P⊥, 〈A〉s] extends to
a bounded operator. Thus, so does 〈A〉−sχ(H)P⊥〈A〉s = 〈A〉−s[χ(H)P⊥, 〈A〉s] +
χ(H)P⊥. This is also true for Cχ(H)P⊥C−1. By Theorem 3.4, (3.4) holds true.
Since EI(H)P⊥ = EI(H), (H−z)−1P⊥ = (H−z)−1 for Rez ∈ I ′. Therefore (3.4)
yields (1.2). �
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3.3. Energy estimates. Here we extend a little bit Gérard’s method in [Gé]. We
work in the general framework of Subsection 3.2 and get the following improvements
of Theorem 3.4 and Theorem 1.1.

Theorem 3.5. Under the assumptions of Theorem 3.4, let σ ∈ {−1; 1} and choose
a real µ such that σB′ ≥ 0 with B′ := B + µ. Then

sup
Rez∈I′,−σImz>0

‖C(H − z)−1P⊥C‖(3.6)

≤ 2 · ‖CB′C−1‖ · ‖C−1χ(H)P⊥C‖ + d−1 · ‖1− χ‖L∞ · ‖C‖2 ,
where d is the distance between the support of 1− χ and I ′.
Remark 3.6. Note that, for σ and B as in Theorem 3.5, one can always take
µ = σ‖B‖ to ensure σ(B + µ) ≥ 0.

Proof of Theorem 3.5. By functional calculus,

(3.7) ‖C(H − z)−1(1− χ)(H)P⊥C‖ ≤ d−1‖1− χ‖L∞ · ‖C‖2 .
For f ∈ H and z ∈ C with −σImz > 0, let u = (H − z)−1χ(H)P⊥Cf . Notice that
EI(H)P⊥u = u. By (3.5) and a direct computation,

‖Cu‖2 ≤ 〈u, [H, iB′]u〉 = 2Im〈B′u, (H − z)u〉+ 2σImz〈u , σB′u〉
≤ 2Im〈B′u, (H − z)u〉 ,

since σB′ ≥ 0. Recall that Cχ(H)P⊥C−1 is bounded. Thus (H − z)u ∈ D(C−1).
In particular, since CB′C−1 = CBC−1 + µ is bounded,

2−1‖Cu‖2 ≤ Im〈CB′C−1Cu,C−1(H − z)u〉 ≤ ‖CB′C−1‖ · ‖Cu‖ · ‖C−1(H − z)u‖,
yielding ‖Cu‖ ≤ 2‖CB′C−1‖ · ‖C−1χ(H)P⊥C‖ · ‖f‖. Together with (3.7), this
implies (3.6). �

By combining the proof of Theorem 1.1 at the end of Subsection 3.2 with Theo-
rem 3.5, we derive:

Corollary 3.7. Under the assumptions of Theorem 1.1, take s > 1/2, σ ∈ {−1; 1},
and χ ∈ C∞c (I) with χ = 1 on I ′. Choose a real µ such that σ(ϕ(A) + µ) ≥ 0.

Then the l.h.s. of (1.2) is bounded by the r.h.s. of (3.6) for C =
√
c1〈A〉−s

′

and
B′ = ϕ(A) + µ with 1/2 < s′ < 1, 2s′ − 1 ≤ ε0, and s

′ ≤ s.

3.4. Application. In practice, it is natural to try to derive a strict, weighted,
projected Mourre estimate (1.4) from a similar estimate containing some compact
perturbation. Precisely (1.4) should follow from

P⊥EI(H)[H, iϕ(A)]EI(H)P⊥(3.8)

≥ EI(H)P⊥〈A〉−(1+ε)/2(c + K)〈A〉−(1+ε)/2P⊥EI(H),

for some compact operator K and c > 0. But to remove the influence of K using
(3.3), we need to commute P⊥EI(H) (or a regularized version of it) through the
weight 〈A〉−(1+ε)/2. We are able to do this in the following situation.

Corollary 3.8. Let I be an open interval. Assume that, for all θ ∈ C∞c (I;C),
P⊥θ(H) ∈ C1(A). Let ε0 ∈]0; 1]. Assume further that, for all ε ∈]0; ε0], there exist
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c > 0 and a compact operator K such that, for all R ≥ 1, there exists a real bounded
borelian function ϕR such that the weighted projected Mourre estimate

P⊥EI(H)[H, iϕR(A/R)]EI(H)P⊥(3.9)

≥ P⊥EI(H)〈A/R〉−(1+ε)/2(c + K)〈A/R〉−(1+ε)/2EI(H)P⊥

is satisfied. Then, for any s > 1/2 and for any compact sub-interval I ′ of I, the
reduced LAP (3.1) for H respectively to (I ′, s, A) holds true.

Proof. By Remark 1.2, we may assume that s ∈]1/2; 1[ such that ε := 2s−1 ∈]0; ε0].
By compactness of I ′, it is sufficient to show that, for any λ ∈ I ′, (3.1) holds true
with I ′ replaced by some open interval containing λ. It is enough to get (3.1) with
A replaced by A/R, for some R ≥ 1. Let λ ∈ I ′. Since K in (3.9) is compact, we
can use (3.3) to find χ ∈ C∞c (I;R) such that χ = 1 near λ and ‖P⊥χ(H)K‖ ≤ c/8
(where c appears in (3.9)). Let I1 be an open sub-interval of I ′ containing λ. From
(3.9), we get, for all R ≥ 1,

P⊥EI1(H)[H, iϕR(A/R)]EI1(H)P⊥ ≥(3.10)

P⊥EI1(H)〈A/R〉−(1+ε)/2 ·
(
3c/4 + (1 − P⊥χ(H))K(1− P⊥χ(H))

)

· 〈A/R〉−(1+ε)/2EI1(H)P⊥.

Since 1− P⊥χ(H) = (1− χ)(H) + Pχ(H),

P⊥EI1(H)〈A/R〉−(1+ε)/2(1− P⊥χ(H)) = −P⊥EI1(H)
[
〈A/R〉−(1+ε)/2 , P⊥χ(H)

]

= −P⊥EI1(H)〈A/R〉−(1+ε)/2 ·BR,

where ‖BR‖ = O(1/R) by Propositions 2.6 and 2.7 (with k = 1). Taking R large
enough (but fixed), we derive from (3.10) the estimate

P⊥EI1(H)[H, iϕR(A/R)]EI1(H)P⊥ ≥ c

2
P⊥EI1(H)〈A/R〉−1−εEI1(H)P⊥.

By Theorem 3.4, we obtain (3.4) with C = 〈A/R〉−s on some neighbourhood of λ,
yielding (3.1) there with A replaced by A/R. �

4. Perturbed Wigner-Von Neumann potentials.

In this section, we apply our new theory to some special Schrödinger operators
(see Theorem 4.15). As explained in Section 1, we want to derive, on suitable
intervals, a usual Mourre estimate (in Subsection 4.3) and a weighted, projected
Mourre estimate (in Subsection 4.4) for the Schrödinger operator H1, see (4.1).

4.1. Definitions and regularity. Let d ∈ N∗. We denote by 〈·, ·〉 and ‖ · ‖ the
right linear scalar product and the norm in L2(Rd), the space of squared integrable,
complex functions on R

d. Recall thatH0 is the self-adjoint realization of the Laplace
operator −∆ in L2(Rd) and that the Wigner-Von Neumann potentialW : Rd −→ R

is defined by W (x) = q(sin k|x|)/|x|, with k > 0 and q ∈ R∗. Now we add to W
the multiplication operator by the sum V = Vs +Vl of real-valued functions, Vs has
short range, and Vl has long range. Precisely we require

Assumption 4.1. The functions Vl, 〈x〉Vs, and the distribution x · ∇Vl(x) belong
to L∞(Rd).
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Under this assumption, on the Sobolev space H2(Rd
x), the domain D(H0) of H0,

H1 := H0 +W + V = −∆+ q| · |−1 sin(k| · |) + Vs + Vl(4.1)

is self-adjoint. Let P1 be the orthogonal projection onto its pure point spectral
subspace and P⊥1 = 1− P1.
Consider the strongly continuous one-parameter unitary group {Wt}t∈R acting by:

(4.2) (Wtf)(x) = edt/2f(etx), for all f ∈ L2(Rd
x).

This is the C0-group of dilation. A direct computation shows that

(4.3) Wt H
2(Rd

x) ⊂ H2(Rd
x), for all t ∈ R .

The generator of this group is the self-adjoint operator A1, given by the closure of
(Dx · x + x · Dx)/2 on C∞c (Rd) in L2(Rd

x). For these reasons, the operator A1 is
called the generator of dilation.
The form [W, iA1] (defined onD(A1)×D(A1)) extends to a bounded form associated
to the multiplication operator by the function W −W1, where

(4.4) W1(x) = qk cos(k|x|) = (qk/2) · (eik|x| + e−ik|x|) .

In particular, W ∈ C1(A1) by Proposition 2.1. Furthermore, we prove

Proposition 4.2. We have H0 ∈ C2(A1). Moreover, under Assumption 4.1, the
form [Vs, iA1], defined on D(A1) ∩ D(H0), extends to a bounded operator from
H1(Rd

x) to H−1(Rd
x). In particular, H1 ∈ C1(A1).

Proof. We use Section 5. As form onD(A1)∩D(H0), [H0, iA1] = 2H0. In particular,
(5.2) holds true with A = A1 and H = H0. By (4.3) and Theorem 5.2, H0 ∈ C1(A1)
and [H0, iA1]◦ = 2H0. For z 6∈ R, R0(z) := (H0 − z)−1 belongs to C1(A1). Using
(5.3) with A = A1 and H = H0, we see that the form [[R0(z), iA1]◦, iA1] on
D(A1) ∩ D(H0) extends to bounded one. Thus R0(z) ∈ C2(A1) and H0 ∈ C2(A1).
Since D(H1) = D(H0) by Assumption 4.1, H1 ∈ C1(A1) follows from (4.3) and
Theorem 5.2 if (5.2) holds true with A = A1 and H = H1. We consider the form
[H1, iA1] on D(A1) ∩ D(H0). It is the sum of [H0, iA1] = 2H0, of the bounded
terms [W, iA1] =W −W1 and [Vl, iA1] = x · ∇Vl, and of

〈f, [Vs, iA1]g〉 = 〈Vsf, iA1g〉 − 〈A1f, iVsg〉
= 〈〈x〉Vsf, 〈x〉−1(x · ∇x + d/2)g〉+ 〈〈x〉−1(x · ∇x + d/2)f, 〈x〉Vsg〉 ,(4.5)

for f, g ∈ D(A1) ∩ D(H0). Since 〈x〉Vs is bounded, (4.5) extends to a bounded
operator from H1(Rd

x) to H−1(Rd
x) and also from H2(Rd

x) to H−2(Rd
x). This gives

(5.2) for (H,A) = (H1, A1). Thanks to (4.3) and to Theorem 5.2, H1 ∈ C1(A1). �

4.2. Energy localization of oscillations. To prepare the derivation of Mourre
estimates, we take advantage of some “smallness” of energy localizations of W1 of
the form θ(H0)W1θ(H0), extending a result by [FH] in dimension one. As seen in
[FH], this term is not expected to be small if θ is localized near k2/4. Using pseudo-
differential calculus, one have the same impression if d ≥ 2 and if θ is supported in
]k2/4;+∞[ (see Remark 4.5). However, if θ lives in a small enough compact interval
I ⊂]0; k2/4[, then the same smallness as in [FH] is valid as stated in Lemma 4.3
below. The proof combines an idea in [FH] with pseudodifferential calculus (see
Subsection 2.2 for notation). In the sequel, we shall write x̂ for x/|x|.
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supp θ(| · |2) supp θ(| · −kx̂|2)

Figure 1. supp θ ⊂]0, k2/4[.

Lemma 4.3. Let λ ∈]0; k2/4[. Recall that g is given by (2.12) and W1 by (4.4).
Take χ1 ∈ C∞(Rd) such that χ1 = 0 near 0 and χ1 = 1 near infinity, and set
e±(x) = χ1(x)e

±ik|x|. For θ ∈ C∞c (R) with small enough support about λ, there
exist symbols b0, bj,σ ∈ S(〈x〉−1〈ξ〉−1, g), for j ∈ {1; 2} and σ ∈ {+,−}, such that

(4.6) θ(H0)W1θ(H0) = bw1,+e+ + bw1,−e− + θ(H0)
(
e+b

w
2,+ + e−b

w
2,−

)
+ bw0 .

In particular, 〈A1〉εθ(H0)W1θ(H0) is compact on L2(Rd
x), for ε ∈ [0; 1[.

Remark 4.4. In dimension d = 1, this result is proved in [FH] and it also holds true
if λ > k2/4. Our proof below covers also this case.

Proof of Lemma 4.3. By pseudodifferential calculus, θ(H0)(1 − χ1)W1θ(H0) = bw0
with b0 ∈ S(〈x〉−1〈ξ〉−1, g). By (4.4) and the proof of Proposition A.1, we can
find χ3 ∈ C∞(Rd) such that χ3 = 0 near 0 and χ3 = 1 near infinity, and bj,σ ∈
S(〈x〉−1〈ξ〉−1, g), for j ∈ {0; 2} and σ ∈ {+,−}, such that

2(qk)−1θ(H0)χ1W1θ(H0)

= θ(H0)
((
θ(|ξ − kx̂|2)χ3(x)

)w
e+ +

(
θ(|ξ + kx̂|2)χ3(x)

)w
e−

)

+ θ(H0)
(
bw0,+e+ + bw0,−e− + e+b

w
2,+ + e−b

w
2,−

)

=
(
θ(|ξ|2)θ(|ξ − kx̂|2)χ3(x)

)w
e+ +

(
θ(|ξ|2)θ(|ξ + kx̂|2)χ3(x)

)w
e−

+ bw1,+e+ + bw1,−e− + θ(H0)(e+b
w
2,+ + e−b

w
2,−) ,(4.7)

by composition. Now we choose the support of θ small enough about λ such that
θ(|ξ|2)θ(|ξ−kx̂|2) = 0 = θ(|ξ|2)θ(|ξ+kx̂|2), for all x 6= 0 and ξ ∈ Rd. This is possible
since 0 ≤ λ < k2/4, see Figure 1. Now (4.7) reduces to (4.6). By Appendix C,
〈A1〉ε〈Dx〉−ε〈x〉−ε extends to a bounded operator. For b ∈ S(〈x〉−1〈ξ〉−1, g), there
exists b ∈ S(〈x〉ε−1〈ξ〉ε−1, g) such that 〈x〉ε〈Dx〉εbw = bw1 and bw1 is compact by
(2.15). Using (4.6), this implies that 〈A1〉εθ(H0)W1θ(H0) is compact since we can
write θ(H0)e+b

w
2,+ = θ(H0)〈x〉−1e+〈x〉bw2,+ with 〈x〉bw2,+ bounded and θ(H0)〈x〉−1 =

bw with b ∈ S(〈x〉−1〈ξ〉−1, g). �
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Figure 2. supp θ ⊂]k2/4,+∞[.

Remark 4.5. If λ > k2/4 and d > 1, the first two terms on the r.h.s. of (4.7) do not
vanish anymore, see Figure 2. In this case, our proofs of the Mourre estimate (cf.,
Proposition 4.8) and of the strict, weighted Mourre estimate (cf., Subsection 4.4)
do not work.
In dimension d = 1, we note that the first two terms on the r.h.s. of (4.7) do vanish
as soon as λ 6= k2/4. See Figures 1 and 2 and recall that ξ is co-linear to x̂. We
recover a result in [FH].

4.3. Usual Mourre estimate. Now we derive the Mourre estimate (1.1) below
k2/4 under the following strengthening of Assumption 4.1:

Assumption 4.6. The functions Vl, 〈x〉Vs, and the distribution x · ∇Vl(x) belong
to L∞(Rd

x) and, as operator of multiplication, compact from H2(Rd
x) to L2(Rd

x).

Lemma 4.7. Under Assumption 4.6, ϕ(H1) − ϕ(H0) is compact from H2(Rd
x) to

L2(Rd
x), for ϕ ∈ C∞c (R).

Proof. Using (2.6), one has
(
ϕ(H1)− ϕ(H0)

)
〈H0〉 =

i

2π

∫

C

∂z ϕ
C(z)(z −H1)

−1(W + Vs + Vl) (z −H0)
−1〈H0〉 dz ∧ dz.

For z /∈ R, the integrand is compact. Using (2.8), the integral converges in norm.
Hence it is also compact. �

Proposition 4.8. Under Assumption 4.6, for any open interval I with I ⊂
]0; k2/4[, the Mourre estimate (1.1) holds true for (H,A) = (H1, A1). In particular,
the point spectrum σpp(H1) of H1 is finite in I.

Proof. It suffices to show (1.1) on some compact neighborhood of any λ ∈ I. Take
such a λ ∈ I and let θ ∈ C∞c (I; [0, 1]) such that θ = 1 near λ. Like in the proof of
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Proposition 4.2, as form on D(H0) ∩ D(A1)×D(H0) ∩ D(A1),

[H0 + V, iA1] = 2H0 − x · ∇Vl −∇ · x〈x〉−1〈x〉Vs − 〈x〉Vs〈x〉−1x · ∇.
We recall that [W, iA1]◦ = W −W1. Hence [H1, iA1]◦ is bounded from D(H0) =
H2(Rd

x) to D(H0)
∗ = H−2(Rd

x). Moreover, by Lemma 4.7, the bounded operator
θ(H1)[H1, iA1]◦θ(H1) is equal to θ(H0)(2H0 −W1)θ(H0), up to some compact op-
erator. By Lemma 4.3, we can choose the support of θ such that θ(H0)W1θ(H0) is
compact. Thus, there exist c > 0 and compact operators K,K ′ such that

θ(H1)[H1, A1]◦θ(H1) ≥ c θ(H0)
2 + K ′ ≥ c θ(H1)

2 + K.

This yields the Mourre estimate (1.1) near λ. �

As explained in Subsection 3.1, we need some information on possible eigenvalues
embedded in the interval on which the LAP takes place. Recall that P1 denotes
the orthogonal projection onto the pure point spectral subspace of H1.

Proposition 4.9. Under Assumption 4.6, take an open interval I with I ⊂]0; k2/4[
such that, for all µ ∈ I, Ker(H1 − µ) ⊂ D(A1). Then EI(H1)P1 ∈ C1(A1).

Proof. By Proposition 4.8, the point spectrum is finite in I. Thus EI(H1)P1 ∈
C1(A1), by Proposition 2.3. �

We now explain how to check the hypothesis Ker(H1 − µ) ⊂ D(A1). The abstract
Theorems given in [C, FMS1] do not apply here because of the low regularity of H1

w.r.t. A1, see the inclusions (5.6), the implication (5.7), and Proposition 5.4. For
j ∈ {1; · · · ; d}, the multiplication operator by xj in L2(Rd

x) is also denoted by xj .
As preparation, we show, using a Lithner-Agmon type equality, the following

Lemma 4.10. Let n ∈ N. If v ∈ C2(Rd
x)∩H2(Rd

x)∩D(〈x〉2n) then ∇xv ∈ D(〈x〉n).

Proof. Define Φ(x) = n ln〈x〉 for x ∈ Rd and let R > 1. Using Green’s formula, we
can show that

(4.8)

∫

|x|≤R

∣
∣∇(eΦv)

∣
∣
2
dx = a(R) + Re

∫

|x|≤R

e2Φv
(
−∆v + |∇Φ|2v

)
dx ,

where the term a(R) contains surface integrals on {|x| = R} and tends to 0 as
R → ∞, thanks to v ∈ D(〈x〉2n) and v ∈ C2(Rd). Since v ∈ H2(Rd

x), the last term
in (4.8) converges as R → ∞, yielding ∇(eΦv) ∈ L2(Rd

x). Since eΦv∇Φ ∈ L2(Rd
x),

〈x〉n∇v = eΦ∇v ∈ L2(Rd
x). �

Lemma 4.11. Under Assumption 4.6, let u ∈ C2(Rd) ∩ H2(Rd
x) and λ ∈]0; k2/4[

such that (H1 − λ)u = 0. Then u ∈ D(A1). Moreover, if Vl = 0, then u = 0.

Proof. By Proposition 4.8, the usual Mourre estimate holds true near λ. Thus,
one can apply Theorem 2.1 in [FH]. Therefore u ∈ D(〈x〉n), for all n ∈ N. By
Lemma 4.10, Dαu ∈ D(〈x〉n), for all n and all α ∈ Nd with |α| = 1. In particular,
x · ∇u ∈ L2(Rd

x) and u ∈ D(A1). If Vl = 0, we can apply Theorem 14.7.2 in [H2] to
u yielding u = 0. �

Remark 4.12. If the potential V = Vs + Vl belongs to Cm(Rd) for some integer
m > d/2 then, by elliptic regularity, any eigenvector u of H1 belongs to C2(Rd).
In particular, by Lemma 4.11, Proposition 4.9 applies to any open interval I such
that I ⊂]0; k2/4[.
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4.4. Weighted Mourre estimate. Here we establish forH1 a projected, weighted
Mourre estimate like (3.9) in order to prove a limiting absorption principle (cf.,
Theorem 4.15). To this end, we use the following assumption, which is stronger
than Assumption 4.6.

Assumption 4.13. For some ρ0 ∈]0, 1], the functions 〈x〉ρ0Vl, 〈x〉1+ρ0Vs, and the
distribution 〈x〉ρ0x · ∇Vl(x) belong to L∞(Rd

x).

We start by strengthening Lemma 4.7.

Lemma 4.14. Under Assumption 4.13, for ε ∈ [0; ρ0[ and ϕ ∈ C∞c (R),

(4.9) (ϕ(H1)− ϕ(H0))〈A1〉ε is compact from L2(Rd
x) to H2(Rd

x).

Proof. For z 6∈ R, (z − H0)
−1 = rwz where rz satisfies (B.3) with m = 〈ξ〉2. By

composition, we can find, for all ℓ ∈ N, Cℓ > 0 and Nℓ ∈ N such that, for all z 6∈ R,

‖〈x〉−ρ0#rz#(〈x〉ε〈ξ〉ε)‖ℓ,S(〈x〉ε−ρ0〈ξ〉ε−2,g) ≤ Cℓ〈z〉Nℓ+1|Im(z)|−Nℓ−1 .

Now thanks to Assumption 4.13, (2.15), (2.3), (2.4), and (2.5), we infer that

〈H1〉 (ϕ(H1)− ϕ(H0)) 〈x〉ε〈Dx〉ε =
i

2π

∫

C

∂z ϕ
C(z)〈H1〉(z −H1)

−1

(W + Vs + Vl)〈x〉ρ0 〈x〉−ρ0 (z −H0)
−1〈x〉ε〈Dx〉ε dz ∧ dz

is a compact operator, as norm convergent integral of compact operators. To con-
clude, we recall 〈x〉−ε〈Dx〉−ε〈A1〉ε is bounded by Lemma C.1. �

The main result on our Schrödinger operators with oscillating potential is

Theorem 4.15. Let λ ∈]0; k2/4[ and suppose that Assumption 4.13 is satisfied.
Take a small enough, open interval I ⊂]0; k2/4[ about λ such that, for all µ ∈ I,
Ker(H1 − µ) ⊂ D(A1). Then, for any s > 1/2 and any interval I ′ ⊂ I ′ ⊂ I, the
reduced LAP (3.1) for H1 respectively to (I ′, s, A1) holds true.

Remark 4.16. Of course, a compactness argument shows that we can remove the
smallness condition on I. We also get an estimate like in (3.6) in Theorem 3.5.
If d = 1, the proof of Theorem 4.15 works also if λ > k2/4, by Remark 4.4.
Under Assumption 4.13, Theorem 4.15 ensures that H1 has no singular spectrum
above I. For Vl = 0 and d = 1, this result was already obtained in [K] (see references
therein). It seems to be new to us that one can handle long-range contributions,
even in dimension 1.
If I contains an eigenvalue µ of H1, the condition Ker(H1−µ) ⊂ D(A1) is satisfied
if V = Vs + Vl is smooth enough (cf., Proposition 4.9 and Remark 4.12).

Proof of Theorem 4.15: Let θ, χ, τ ∈ C∞c (]0; k2/4[) such that τχ = χ, χθ = θ, and
θ = 1 near I. Later we shall adjust the size of the support of χ. By Proposi-
tion 4.2 and (5.7), χ(H1) ∈ C1(A1). Since EI(H1)P1 ∈ C1(A1) by Proposition 4.9,
χ(H1)P

⊥
1 = χ(H1)− χ(H1)EI(H1)P1 belongs to C1(A1).

Let s ∈]1/2; 1[. As in [Gé], we define ψ : R −→ R by

(4.10) ψ(t) :=

∫ t

−∞

〈u〉−2s du.
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Note that ψ ∈ S0 and is in particular bounded. Let R ≥ 1. As forms, using the
fact that H1τ(H1) is a bounded operator and belongs to C1(A1) and using (2.9),

F := P⊥1 θ(H1)[H1, iψ(A1/R)]θ(H1)P
⊥
1 = P⊥1 θ(H1)[H1τ(H1), iψ(A1/R)]θ(H1)P

⊥
1

=
i

2π

∫

C

∂zψ
C(z)P⊥1 θ(H1)(z −A1/R)

−1[H1τ(H1), iA1/R]◦

(z −A1/R)
−1θ(H1)P

⊥
1 dz ∧ dz .

Next to P⊥1 θ(H1) we let appear χ(H1)P
⊥
1 and commute it with (z−A1/R)

−1. Since
χ(H1)P

⊥
1 ∈ C1(A1), we obtain, using (2.3), (2.4), and (2.8), for some uniformly

bounded operator B1 w.r.t. R ≥ 1,

F =
i

2π

∫

C

∂zψ
C(z)P⊥1 θ(H1)(z −A1/R)

−1P⊥1 χ(H1)[H1τ(H1), iA1/R]◦

χ(H1)P
⊥
1 (z −A1/R)

−1θ(H1)P
⊥
1 dz ∧ dz(4.11)

+ P⊥1 θ(H1)〈A1/R〉−sR−2B1〈A1/R〉−sθ(H1)P
⊥
1 .

Let ε := ρ0/2. Using (4.9), notice that

G := P⊥1 χ(H1)[H1τ(H1), iA1/R]◦χ(H1)P
⊥
1 = P⊥1 χ(H1)[H1, iA1/R]◦χ(H1)P

⊥
1

= P⊥1 χ(H1)[H1, iA1/R]◦χ(H0)P
⊥
1 + P⊥1 χ(H1)K1R

−1B2〈A1/R〉−εP⊥1 ,
where the operator K1 := τ(H1)[H1, iA1]◦(χ(H1) − χ(H0))〈A1〉ε is compact and
B2 := 〈A1/R〉ε〈A1〉−ε is uniformly bounded. Similarly, there is K2 compact so that

G =P⊥1 χ(H0)[H1, iA1/R]◦χ(H0)P
⊥
1 + P⊥1 χ(H1)K1R

−1B2〈A1/R〉−εP⊥1
+ P⊥1 〈A1/R〉−εB2K2R

−1χ(H0)P
⊥
1 .(4.12)

We focus on the potential contribution in G. Choosing τ appropriately and using
Assumption 4.13, we claim that there exist a compact operatorK3 and an uniformly
bounded operator B3 such that

χ(H0)[W + V, iA1/R]◦χ(H0) = R−1χ(H0)K3B3〈A1/R〉−εχ(H0).(4.13)

By Lemma 4.3, we take the support of τ small enough to ensure the compactness
of τ(H0)W1τ(H0)〈A1〉ε. By writing

(W + x · ∇Vl)τ(H0)〈A1〉ε = (W + x · ∇Vl)〈x〉ρ0 · bw · 〈x〉−ε〈Dx〉−ε〈A1〉ε,
with b ∈ S(〈x〉−ε〈ξ〉−1, g), τ(H0)[W+Vl, iA1]◦τ(H0)〈A1〉ε is compact by (2.15) and
Lemma C.1. Similarly, we prove the compactness of τ(H0)[Vs, iA1]◦τ(H0)〈A1〉ε,
making use of the fact that, by (4.5), 〈Ds〉−1[Vs, iA1]◦〈x〉ρ0 〈Ds〉−1 extends to a
bounded operator. This yields (4.13).
Taking advantage of [H0, iA1]◦ = 2H0, of (4.13), and of (4.12), we rewrite (4.11):

F =
i

2π

∫

C

∂zψ
C(z)P⊥1 θ(H1)(z −A1/R)

−1P⊥1 2R−1H0χ
2(H0)

P⊥1 (z −A1/R)
−1θ(H1)P

⊥
1 dz ∧ dz(4.14)

+ P⊥1 θ(H1)〈A1/R〉−s(R−2B1 +R−1K4)〈A1/R〉−sθ(H1)P
⊥
1 ,

with compact K4 such that, for some c1 > 0,

(4.15) ‖K4‖ ≤ c1(‖P⊥1 χ(H1)K1‖+ ‖K2χ(H0)‖+ ‖χ(H0)K3‖) .
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Next we commute (z −A1/R)
−1 with P⊥1 2R−1H0χ

2(H0)P
⊥
1 . Recalling (2.6) with

k = 1 and (4.10), there are B4 and B5, uniformly bounded, such that

F = P⊥1 θ(H1)ψ
′(A1/R)P

⊥
1 2R−1H0χ

2(H0)P
⊥
1 θ(H1)P

⊥
1

+ P⊥1 θ(H1)〈A1/R〉−s(R−2B4 +R−1K4)〈A1/R〉−sθ(H1)P
⊥
1 ,

= P⊥1 θ(H1)〈A1/R〉−s2R−1H0χ
2(H0)〈A1/R〉−sθ(H1)P

⊥
1

+ P⊥1 θ(H1)〈A1/R〉−s(R−2B5 +R−1K4)〈A1/R〉−sθ(H1)P
⊥
1 ,

≥ 2R−1c2P
⊥
1 θ(H1)〈A1/R〉−sχ2(H0)〈A1/R〉−sθ(H1)P

⊥
1

+ P⊥1 θ(H1)〈A1/R〉−s(R−2B5 +R−1K4)〈A1/R〉−sθ(H1)P
⊥
1 ,

where c2 > 0 is the infimum of I. Finally, since K5 := χ2(H0)−χ2(H1) is compact
by (4.9), we find an uniformly bounded B6, such that

F ≥ 2R−1c2P
⊥
1 θ(H1)〈A1/R〉−sχ2(H1)〈A1/R〉−sθ(H1)P

⊥
1

+ P⊥1 θ(H1)〈A1/R〉−s(R−2B5 +R−1K4 +R−1K5)〈A1/R〉−sθ(H1)P
⊥
1

≥ 2R−1c2P
⊥
1 θ(H1)〈A1/R〉−2sθ(H1)P

⊥
1 + P⊥1 θ(H1)〈A1/R〉−s·

(R−2B6 +R−1K4 +R−1K5χ(H1)P
⊥
1 )〈A1/R〉−sθ(H1)P

⊥
1 .

To conclude, using (4.15), we decrease the support of χ to ensure that ‖K4‖ +
‖K5χ(H1)P

⊥
1 ‖ < c2. Subsequently, we choose R > 1 large enough to guarantee

F ≥ R−1c2P
⊥
1 θ(H1)〈A1/R〉−2sθ(H1)P

⊥
1 . Letting act the projector EI(H1) on

both sides of this inequality and recalling the definition of F , we get the projected,
weighted Mourre estimate (3.5) with H = H1, P = P1, B = ψ(A1/R), and C =
√

c2/R〈A1/R〉−s. By Theorem 3.4, we obtain the result. �

5. Usual Mourre theory.

In this section, we explain why the usual Mourre theory with conjugate operator
A1 cannot be applied to H1, our Schrödinger operator with oscillating potential.
We have proved that H1 ∈ C1(A1) and established a Mourre estimate for H1 w.r.t.
A1, see Propositions 4.2 and 4.8. However, in order to apply the standard Mourre
theory, one has to prove that H1 is in a better class of regularity w.r.t. A1. In
this section, we prove that this is not the case. If one replaces A1 by some nat-
ural variants, we explain in Remark 5.6 below that the required regularity is not
available. On the other hand, a consequence of Theorem 4.15 is that under the As-
sumption 4.13, the operator H1 has no singular continuous spectrum. By abstract
means, see [ABG, Proposition 7.2.14], there exists a conjugate operator Ã, such

that H1 ∈ C∞(Ã) and such that a strict Mourre estimate holds true for H1, w.r.t.

Ã, on every interval that contains neither an eigenvalue nor {0, k2/4}. It seems

very difficult to find explicitly Ã.

We first continue the description of different classes of regularity appearing in the
Mourre theory that we began in Subsection 2.1. We refer again to [ABG, GGM1,
GGé] for more details. Recall that a self-adjoint operator H belongs to the class
C1(A) if, for some (hence for all) z /∈ σ(H), the bounded operator (H − z)−1

belongs to C1(A). Lemma 6.2.9 and Theorem 6.2.10 in [ABG] gives the following
characterization of this regularity:
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Theorem 5.1. ([ABG]) Let A and H be two self-adjoint operators in the Hilbert
space H . For z /∈ σ(H), set R(z) := (H−z)−1. The following points are equivalent:

(1) H ∈ C1(A).
(2) For one (then for all) z /∈ σ(H), there is a finite c such that

|〈Af,R(z)f〉 − 〈R(z)f,Af〉| ≤ c‖f‖2, for all f ∈ D(A).(5.1)

(3) a. There is a finite c such that for all f ∈ D(A) ∩ D(H):

(5.2) |〈Af,Hf〉 − 〈Hf,Af〉| ≤ c
(
‖Hf‖2 + ‖f‖2

)
.

b. The set {f ∈ D(A); R(z)f ∈ D(A) andR(z)f ∈ D(A)} is a core for
A, for some (then for all) z /∈ σ(H).

Note that the condition (3.b) could be uneasy to check, see [GGé]. We mention
[GM][Lemma A.2] to overcome this subtlety. Note that (5.1) yields that the commu-
tator [A,R(z)] extends to a bounded operator, in the form sense. We shall denote
the extension by [A,R(z)]◦. In the same way, from (5.2), the commutator [H,A]
extends to a unique element of B

(
D(H),D(H)∗

)
denoted by [H,A]◦. Moreover, if

H ∈ C1(A) and z /∈ σ(H),
[
A, (H − z)−1

]

◦
= (H − z)−1

︸ ︷︷ ︸

H←D(H)∗

[H,A]◦
︸ ︷︷ ︸

D(H)∗←D(H)

(H − z)−1
︸ ︷︷ ︸

D(H)←H

.(5.3)

Here we use the Riesz lemma to identify H with its anti-dual H ∗. It turns out
that an easier characterization is available if the domain of H is conserved under
the action of the unitary group generated by A.

Theorem 5.2. ([ABG, p. 258]) Let A and H be two self-adjoint operators in the
Hilbert space H such that eitAD(H) ⊂ D(H), for all t ∈ R. Then H ∈ C1(A) if
and only if (5.2) holds true.

Remark 5.3. Some arguments used in the proof of Proposition 4.2 may be performed
in an abstract way. Take a Hilbert space G , such that G →֒ H with a continuous,
dense embedding and such that the C0-group {eitA}t∈R stabilizes G (hence also G ∗

by duality). Let T ∈ B(G ,G ∗). We say that T ∈ C1(A;G ,G ∗) if the strong limit
of t 7→ t−1(eitATe−itA − T ) exists in B(G ,G ∗), as t goes to 0. The limit is denoted
by [T, iA]◦. Assuming the invariance of D(H) under the C0-group {eitA}t∈R and
taking a G with continuous, dense embeddings D(H) →֒ G →֒ H , then {eitA}t∈R
stabilizes G by interpolation. If T ∈ C1(A;G ,G ∗) then T ∈ C1(A;D(H),D(H)∗).
If H ∈ C1(A;D(H),D(H)∗), [H, iA]◦ coincide with the previous definition. One
can reformulate Theorem 5.2 as follows: H ∈ C1(A;D(H),D(H)∗) if and only if
H ∈ C1(A).

We need to introduce others classes inside C1(A). Let T ∈ B(H ). We say that
T ∈ C1,u(A) if the map R ∋ t 7→ eitATe−itA ∈ B(H ) has the usual C1 regularity.
We say that T ∈ C1,1(A) if

(5.4)

∫ 1

0

∥
∥[[T, eitA], eitA]

∥
∥ t−2 dt < ∞.

We say that T ∈ C1+0(A) if T ∈ C1(A) and

(5.5)

∫ 1

0

∥
∥eitA[T,A]e−itA

∥
∥ t−1 dt < ∞.
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Thanks to [ABG, p. 205], it turns out that

(5.6) C2(A) ⊂ C1+0(A) ⊂ C1,1(A) ⊂ C1,u(A) ⊂ C1(A).

Given a self-adjoint operator H and an open interval I of R, we consider the corre-

sponding local classes defined by: H ∈ C[·]
I (A) if, for all ϕ ∈ C∞c (I), ϕ(H) ∈ C[·](A).

We say that H ∈ C[·](A) if, for some z 6∈ σ(H), R(z) ∈ C[·](A). Proposition 2.2 also
works for the new classes: for all open interval I of R and all ϕ ∈ C∞c (I),

(5.7) H ∈ C[·](A) =⇒ ϕ(H) ∈ C[·]
I (A) .

In [ABG], the LAP is obtained for H ∈ C1,1(A) (see p. 308 and p. 317) and this
class is shown to be optimal among the global classes (see the end of Section 7.B).
In [Sa], for H ∈ C1+0

I (A), the LAP is obtained on compact sub-interval of I. It is

expected that the class C1,1
I (A) is sufficient. Section 7.B in [ABG] again shows that

one cannot use in general a bigger local class to get the LAP.
Now we explore the regularity properties ofH1 under Assumption 4.6. From Propo-
sition 4.2, we know that H1 ∈ C1(A1). IfH1 would belong to C1,1(A1) then, by (5.6)

and (5.7), H1 would belong to C1,u
I (A1) for any open interval I ⊂]0; +∞[. If H1

would belong to C1+0
I (A1) or even to C1,1

I (A1), for some open interval I ⊂]0; +∞[,

then H1 would belong to C1,u
I (A1) by (5.6). In both cases, this would contradict:

Proposition 5.4. Under Assumption 4.6, for any open sub-interval I of ]0; +∞[,

H1 6∈ C1,u
I (A1).

Proof. Take such an interval I and ϕ ∈ C∞c (I). By Proposition 4.2, (5.6), and (5.7),
ϕ(H0) ∈ C1,u(A1). Assume that ϕ(H1) ∈ C1,u(A1). Then K := ϕ(H1) − ϕ(H0) ∈
C1,u(A1) and K is a compact operator on L2(Rd

x), thanks to Lemma 4.7. Thus

[K, iA1]◦ = lim
t→0

t−1
(
e−itA1KeitA1 −K

)

in B(L2(Rd
x)) and [K, iA1]◦ is also compact. So is B[K, iA1]◦B

′, for any B,B′ ∈
B(L2(Rd

x)). This contradicts Lemma 5.5 below. �

Lemma 5.5. Assume Assumption 4.6. For any open interval I ⊂]0; +∞[, there
exist a function ϕ ∈ C∞c (I) and bounded operators B,B′ on L2(Rd

x) such that
B[ϕ(H1)− ϕ(H0), iA1]◦B

′ is not compact on L2(Rd
x).

We refer to Appendix D for a proof of this Lemma for d = 1, which does not rely
on pseudodifferential calculus.

Proof of Lemma 5.5. In the sequel, for C,D ∈ B(L2(Rd
x)), we write C ≃ D if

C − D is compact on L2(Rd
x). By Proposition 4.2, H1, H0 ∈ C1(A). Then B1 :=

[ϕ(H1)−ϕ(H0), iA1]◦ is bounded. Furthermore, thanks to (2.9), (2.10), and by the
resolvent formula, with a norm convergent integral,

B1 =
i

2π

∫

C

∂z ϕ
C(z)

[
(z −H1)

−1(W + V )(z −H0)
−1, iA1

]

◦
dz ∧ dz.(5.8)

We recall that given a continuous function F : Rd → C, that tends to 0 at infinity,
the multiplication by F is compact from Hs(Rd

x) to L2(Rd
x), for all s > 0. Using
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again Proposition 4.2 and expanding the commutator, using the computation of
[W, iA1]◦ (see just before (4.4)) and the resolvent formula again, it yields:

B1 ≃ i

2π

∫

C

∂zϕ
C(z)(z −H1)

−1[W + V, iA1]◦(z −H0)
−1 dz ∧ dz,

≃ −i
2π

∫

C

∂zϕ
C(z)(z −H1)

−1W1(z −H0)
−1 dz ∧ dz,

≃ −i
2π

∫

C

∂zϕ
C(z)(z −H0)

−1W1(z −H0)
−1 dz ∧ dz,(5.9)

≃ −i
2π

∫

C

∂zϕ
C(z)(z −H0)

−1χ1W1(z −H0)
−1 dz ∧ dz,(5.10)

with χ1 ∈ C∞(Rd), χ1 = 0 near 0, and χ1 = 1 near infinity.

At this point, we use pseudodifferential techniques and, in particular, Appendix A.
For x ∈ Rd, let e±(x) = χ1(x)e

±ik|x|. By (4.4), (χ1W1)(x) = kq2−1(e+(x)+e−(x)).
Now we apply Proposition A.1 to a(x, ξ) = |ξ|2 ∈ S(〈ξ〉2, g). By its proof, a± can
be chosen real and aw± is self-adjoint. Using the resolvents of aw± and aw,

e±(z −H0)
−1 = e±(z − aw)−1 = (z − aw±)

−1e±

+ (z − aw±)
−1(e±b

w
± + cw±e±)(z − aw)−1 ,(5.11)

for all z 6∈ R. We obtain from (5.10), (5.11), and Proposition A.1:

B1 ≃ −
∑

σ=±

ikq

4π

∫

C

∂zϕ
C(z)(z −H0)

−1(z − awσ )
−1eσ dz ∧ dz .

According to [Bo1] (see Appendix B), (z−H0)
−1 = pwz and (z−awσ )−1 = pwσ,z where

the symbols pz , pσ,z belong to S(〈ξ〉−2, g) and satisfy (B.3) with m = 〈ξ〉2. Using
the continuity of the map S(〈ξ〉−2, g)2 ∋ (r, t) 7→ r#t − rt ∈ S(h〈ξ〉−2, g), we can
find, for all ℓ ∈ N, Cℓ > 0 and Nℓ ∈ N such that

(5.12) ‖pz#pσ,z − pzpσ,z‖ℓ,S(h〈ξ〉−4,g) ≤ Cℓ〈z〉Nℓ+1|Im(z)|−Nℓ−1 .

Using (2.3), (2.4), and (2.5), we see that, for σ ∈ {+;−},
∫

C

∂zϕ
C(z)(pz#pσ,z − pzpσ,z) dz ∧ dz

converges in S(h〈ξ〉−4, g) = S(〈x〉−1〈ξ〉−5, g). Thanks to (2.15),

B1 ≃ −
∑

σ=±

ikq

4π

(∫

C

∂zϕ
C(z)(z − |ξ|2)−1(z − aσ(x, ξ))

−1 dz ∧ dz
)w

eσ .

We take b ∈ S(1, g) such that bχ1 = b. By the previous arguments,

bwB1 ≃ −
∑

σ=±

(∫

C

∂zϕ
C(z)b(x, ξ)(z − |ξ|2)−1(z − aσ(x, ξ))

−1 dz ∧ dz
)w

· ikq(4π)−1eiσk|x| .(5.13)

Now we choose ϕ with a small enough support near some λ ∈ I and b ∈ S(1, g)
such that b(x, ξ) = χ4(x)b0(x̂, ξ), χ4 ∈ C∞(Rd) with χ4 = 0 near 0 and χ4 = 1 near
infinity, ϕ(|ξ|2)b0(x̂, ξ) = 0 = ϕ(|ξ + kx̂|2)b0(x̂, ξ), b0 = 0 near ξ · x̂ = ±k/2, and
such that ϕ(|ξ − kx̂|2)b0(x̂, ξ) is nonzero, see Figure 3. In the last requirement, we
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Figure 3. supp b0

use the fact that I ⊂]0; +∞[. Note that, on the support of b0(x̂, ξ) and for |x| large
enough, b1(x, ξ) := |ξ|2 − |ξ + σkx̂|2 does not vanish, for σ ∈ {+;−}. Thus,

(z − |ξ|2)−1(z − aσ(x, ξ))
−1 = (b1(x, ξ))

−1
(
(z − |ξ|2)−1 − (z − aσ(x, ξ))

−1
)
,

in this region. Inserting this in (5.13) and using the support properties of b and ϕ,

bwB1 ≃ −kq2−1
∑

σ=±

(

b(x, ξ)(b1(x, ξ))
−1

(
ϕ(|ξ|2)− ϕ(|ξ + σkx̂|2)

))w

eiσk|x|

≃ kq2−1
(

b(x, ξ)(b1(x, ξ))
−1ϕ(|ξ − kx̂|2)

)w

e−ik|x| .

Setting B = bw and B′ = eik|x|, BB1B
′ ≃ cw with an explicit c ∈ S(1, g) that does

not tend to 0 at infinity. By (2.15), neither cw nor BB1B
′ is compact. �

Remark 5.6. As alternative to A1, it is natural to try Â1 = (τ(ξ)ρ(x)x · ξ)w, where
1 − ρ ∈ C∞c (Rd) and τ ∈ S(1, g) satisfies τ(ξ) = 1 if |ξ|2 ∈ I. But Proposition 5.3

holds true with A1 replaced by Â1.

Let us sketch a justification of Remark 5.6. One can verify that ϕ(H0) ∈ C2(Â1).
We follow the proof of Lemma 5.5 and arrive at (5.10) where χ1W1 is replaced by:

−
∑

σ=±

ikq

4π

∫

C

∂z̄ϕ
C(z)(z −H0)

−1bwτ,σ dz ∧ dz̄ eσ

with, for χ2 = 0 near 0 and χ2χ1 = χ1,

bτ,σ = χ2(x)
(
τ(ξ)x̂ · ξ − τ(ξ − σkx̂)x̂ · (ξ − σkx̂)

)
.

Since the bτ,σ do not depend on z, we can estimate pz#bτ,σ#pσ,z − bτ,σpzpσ,z in a
similar way as in (5.12) and get (5.13) with b replaced by bbτ,σ. Following the last
lines, we find that BB1B

′ ≃ (bτ,−c)
w, bτ,−c ∈ S(1, g), and bτ,−c does not tend to

zero at infinity. We arrive at the same conclusion as in Lemma 5.5.
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Appendix A. Oscillating terms.

In our study of Schrödinger operator with a perturbed Wigner-Von Neumann po-
tential (see Section 4), we need a good understanding of operator compositions
like awχ1W1, where a ∈ S(m, g), g and m given by (2.12) and (2.13), W1 given
by (4.4), and where χ1 ∈ C∞(Rd) such that χ1 = 0 near 0 and χ1 = 1 near in-
finity. More precisely, we are looking for an explicit pseudodifferential operator
A such that awχ1W1 = A + bw1 B1 + B2b

w
2 , with bounded operators B1, B2 and

symbols b1, b2 ∈ S(m〈x〉−1〈ξ〉−1, g0) (g0 given in (2.12)). Although a ∈ S(m, g0)
and χ1W1 ∈ S(〈x〉−1, g0), the symbolic calculus associated to g0 is not well suited
for our analysis, in particular to guarantee b1, b2 ∈ S(m〈x〉−1〈ξ〉−1, g0). It is bet-
ter to work with g with the drawback that W1 does not belong the corresponding
calculus. Taking into account the special form of W1, we provide the previous
decomposition with b1, b2 ∈ S(m〈x〉−1〈ξ〉−1, g), using standard arguments of pseu-
dodifferential calculus. In Appendix D, we give a simpler result in dimension d = 1
that essentially follows from facts used in [FH].

For m of the form (2.13), we denote by S(m〈x〉−∞, g) the intersection of all classes
S(m〈x〉k, g) for k ∈ Z. We denote by S(−∞, g) the intersection of all classes S(m, g)
with m satisfying (2.13). It suffices to study awe± where e±(x) = χ1(x)e

±ik|x|. To
this end, we shall use the oscillatory integrals defined in Theorem 7.8.2, p. 237,
in [H1], which actually works for symbols in the classes S(m, g) we consider here.
These oscillatory integrals can also be viewed as tempered distributions. Note that
usual operations on integrals (like integration by parts or change of variable) are
valid for oscillatory integrals.

Proposition A.1. Let a ∈ S(m, g) with m and g given by (2.13) and (2.12). Let
e± be the functions defined just above. Then there exist symbols a± ∈ S(m, g), b± ∈
S(m〈x〉−∞, g), and c± ∈ S(mh, g) (with h defined in (2.14)), such that e±a

w =
aw±e± + e±b

w
± + cw±e± and such that a±(x, ξ) = a(x, ξ ∓ k|x|−1x), if χ1(x) 6= 0.

Proof. Let χ2, χ̌2 ∈ C∞(Rd) such that χ2 = 0 and χ̌2 = 0 near 0, χ̌2χ1 = χ1, and
χ̌2(1 − χ2) = 0. Notice that χ2χ1 = χ1. We write e±a

w = e±a
w(χ2 + 1 − χ2) =

e±a
wχ2e

∓ik|x|e± + e±χ̌2a
w(1− χ2) and arrive at

(A.1) e±a
w = e±a

wχ2e
∓ik|x|e± + e±b

w

where b := χ̌2#a#(1− χ2) ∈ S(−∞, g), since χ̌2(1− χ2) = 0. For f ∈ S (Rd), the
Schwartz space on Rd, using an oscillatory integral in the ξ variable,

f1(x) := (e±a
wχ2e

∓ik|x|f)(x)

= (2π)−d
∫

ei〈x−y,ξ〉a((x+ y)/2; ξ)χ1(x)e
±ik|x| · χ2(y)e

∓ik|y|f(y) dydξ

= (2π)−d
∫

ei〈x−y,ξ〉±ik(|x|−|y|)a((x+ y)/2; ξ) · χ1(x)χ2(y)f(y) dydξ .

We take ε ∈]0; 1/4[ and τ ∈ C∞c (R) such that τ(t) = 1 if |t| ≤ 1− 4ε and τ(t) = 0 if
|t| ≥ 1−2ε. We insert τ(|x−y|〈x〉−1)+1−τ(|x−y|〈x〉−1) into the previous expression
of f1 and call f2 (resp. f3) the integral containing τ(|x− y|〈x〉−1) (resp. 1− τ(|x−
y|〈x〉−1)). On the support of χ1(x)χ2(y)τ(|x− y|〈x〉−1), |x− y| ≤ (1− 2ε)〈x〉. We
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can choose the support of χ1 such that, on the support of χ1(x)χ2(y)τ(|x−y|〈x〉−1),
|x− y| ≤ (1 − ε)|x|. In particular, on this support, 0 does not belong the segment
[x; y] and, for all t ∈ [0; 1],

(A.2) u(t;x, y) := |tx+ (1 − t)y| ≥ |x| − (1 − t)|y − x| ≥ ε|x| .
For x 6= y, (Lx,y,Dξ

− 1)ei〈x−y,ξ〉±ik(|x|−|y|) = 0 for Lx,y,Dξ
= |x− y|−2(x− y) ·Dξ.

Thus, by integration by parts, for all p ∈ N,

f3(x) = (2π)−d
∫

ei〈x−y,ξ〉±ik(|x|−|y|)χ1(x)χ2(y)(1− τ(|x − y|〈x〉−1))

·
(
L∗x,y,Dξ

)p(
a((x+ y)/2; ξ)

)
f(y) dydξ

= (bw3 f)(x) ,(A.3)

with b3 ∈ S(−∞, g) (cf., (8.1.8) in [H3]).

Lemma A.2. Take x, y ∈ Rd such that 0 does not belong the segment [x; y]. Then,

(A.4) |x| − |y| = 〈v(1/2;x, y) + r(x, y), x − y〉
where v(t;x, y) = (tx + (1− t)y)/|tx+ (1− t)y| for t ∈ [0; 1], and where

(A.5) r(x, y) :=

∫
(
(1− t)1I[1/2;1](t)− t1I[0;1/2](t)

)
∂tv(t;x, y) dt

satisfies |r(x, y)| ≤ 2.

Proof. It suffices to use the Taylor expansion with integral rest for the function
u(·;x, y) defined in (A.2) between 0 and 1/2 and between 1/2 and 1. �

By Lemma A.2, we can rewrite f2(x) as

f2(x) = (2π)−d
∫

ei〈x−y,ξ±k(v(1/2;x,y)+r(x,y))〉χ1(x)χ2(y)τ(|x − y|〈x〉−1)

· a((x+ y)/2; ξ)f(y) dydξ

= (2π)−d
∫

ei〈x−y,η〉χ1(x)χ2(y)τ(|x − y|〈x〉−1)

· a((x + y)/2; η ∓ k(v(1/2;x, y) + r(x, y)))f(y) dydη ,

after the change of variable η = ξ ± k(v(1/2;x, y) + r(x, y)). Now we use a Taylor
expansion of a with integral rest in the ξ variable:

a
(
(x+ y)/2; η ∓ k(v(1/2;x, y) + r(x, y))

)
= a((x+ y)/2; η ∓ kv(1/2;x, y))

+

∫ 1

0

dt 〈∇ξa((x+ y)/2; η ∓ k(v(1/2;x, y) + tr(x, y))), kr(x, y)〉 .

According to this decomposition, we split f2(x) in f4(x) + f5(x). Thanks to the
bound (A.2) for t = 1/2, we can find χ3 ∈ C∞(Rd) such that χ3 = 0 near 0 and

χ1(x)χ2(y)τ(|x − y|〈x〉−1)(1− χ3((x+ y)/2)) = 0 .

Setting a±(x, η) = χ3(x)a(x, η ∓ kx̂), we obtain that

f2(x) = (2π)−d
∫

ei〈x−y,η〉χ1(x)χ2(y)τ(|x − y|〈x〉−1)

· a±((x + y)/2; η)f(y) dydξ + f5(x)

= χ1(x)(a
w
±
χ2f)(x) + f5(x) = (aw±f)(x) + (bw2 f)(x) + f5(x) ,(A.6)
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with b2 ∈ S(m〈x〉−∞, g). Since ||η + kx̂| − |η|| ≤ k, for all x ∈ Rd \ {0} and all
η ∈ Rd, a direct computation shows that a± ∈ S(m, g).
Now we study f5. Given a vector v ∈ Rd, let A(v) = I − 〈v, ·〉v (where I denotes
the identity on Rd). If 0 does not belong to the segment [x; y] in Rd, ∂tv(t;x, y) =
(u(t;x, y))−1A(v(t;x, y)) · (x − y), where v(t;x, y) (resp. u(t;x, y)) is defined in
Lemma A.2 (resp. (A.2)). Defining κ(s) := (1 − s)1I[1/2;1](s)− s1I[0;1/2](s),

f5(x) = (2π)−d
∫

ei〈x−y,η〉χ1(x)χ2(y)τ(|x − y|〈x〉−1)
∫ 1

0

dt

·
〈
∇ξa((x + y)/2; η ∓ k(v(1/2;x, y) + tr(x, y))) ,

· k
∫ 1

0

ds κ(s)(u(s;x, y))−1A(v(s;x, y)) · (x− y)
〉
· f(y) dydξ ,

by (A.5). Denoting by A(v)T the transposed of the linear map A(v) and setting
ηt = η ∓ k(v(1/2;x, y) + tr(x, y)),
〈
∇ξa((x + y)/2; ηt) , A(v(s;x, y)) · (x− y)

〉

=
〈
A(v(s;x, y))T∇ξa((x+ y)/2; ηt) , (x− y)

〉
.

Integrating by parts in the η variable,

f5(x) = (2π)−d
∫

ei〈x−y,η〉χ1(x)χ2(y)τ(|x − y|〈x〉−1)
∫ 1

0

dt

∫ 1

0

ds

·
(
i〈A(v(s;x, y))∇ξ ,∇ξ〉a

)
((x+ y)/2; ηt)

· kκ(s)(u(s;x, y))−1 f(y) dydξ .

Writing f(y) = (2π)−d
∫
ei〈y,ξ〉(Ff)(ξ)dξ, Ff being the Fourier transform of f ,

(A.7) f5(x) = (2π)−d
∫

ei〈x,ξ〉c0(x, ξ)(Ff)(ξ)dξ = (Op c0f)(x)

where c0 is defined by the oscillatory integral (in the η variable)

c0(x, ξ) =

∫

ei〈x−y,η−ξ〉ρ(x, y; η) dydη with(A.8)

ρ(x, y; η) = χ1(x)χ2(y)τ(|x − y|〈x〉−1)
∫ 1

0

dt

∫ 1

0

ds (u(s;x, y))−1

· ikκ(s)
(
〈A(v(s;x, y))∇ξ ,∇ξ〉a

)
((x + y)/2; ηt) .(A.9)

Now we inset in (A.8) τ(|η− ξ|〈ξ〉−1)+ 1− τ(|η− ξ|〈ξ〉−1) and split c0 into c1 + c2.
In particular,

c2(x, ξ) =

∫

ei〈x−y,η−ξ〉
(
1− τ(|η − ξ|〈ξ〉−1

)
ρ(x, y; η) dydη

=

∫

ei〈x−y,η−ξ〉
(
1− τ(|η − ξ|〈ξ〉−1

)(
L∗ξ,η,Dy

)p
(ρ(x, y; η)) dydη

for all p ∈ N. By direct computations, we see that c2 ∈ S(−∞, g) and c1 ∈ S(mh, g).
Since for any symbol r, there exists a symbol s in the same class such that Op r =
sw, the equations (A.1), (A.3), (A.6), and (A.7), yield the desired result. �
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Appendix B. Functional calculus for pseudodifferential operators.

Here we present a result on the functional calculus for pseudodifferential operators
associated to the metric g in (2.12). This result is probably not new but we did
not find a proof in the literature. It follows quite directly from arguments in [Bo1]
(see also [L]). However we sketch the proof for completeness. We use notions and
results from Subsection 2.2.

Recall that, for ρ ∈ R, we denote by Sρ the set of smooth functions ϕ on R such
that supt∈R〈t〉k−ρ|∂kt ϕ(t)| < ∞. If we take a real symbol a ∈ S(m, g), then the
operator aw is self-adjoint on the domain D(aw) = {u ∈ L2(Rd

x); a
wu ∈ L2(Rd

x)}.
In particular, the operator ϕ(aw) is well defined by the functional calculus if ϕ is a
borelean function on R. We assume that m ≥ 1. A real symbol a ∈ S(m, g) is said
elliptic if (i− a)−1 belongs to S(m−1, g).
Theorem B.1. Let m ≥ 1 and a ∈ S(m, g) be real and elliptic. Take ϕ ∈ Sρ.
Then ϕ(a) ∈ S(mρ, g) and there is b ∈ S(hmρ, g) such that

(B.1) ϕ
(
aw(x,D)

)
=

(
ϕ(a)

)w
(x,D) + bw(x,D).

Proof. Let ρ′ ∈ R, ϕ ∈ Sρ′

, and k ∈ N large enough such that 2k > ρ′. Then
ψ(t) := ϕ(t)(1 + t2)−k belongs to Sρ′−2k with ρ′ − 2k < 0. If the result is valid for

ρ < 0, then there exists b ∈ S(hmρ′−2k, g) such that

ϕ(aw) = ψ(aw)(1 + (aw)2)k = ((ψ(a))w + bw)(1 + (aw)2)k

=
(
ψ(a)(1 + a2)k

)w
+ cw + (b#(1 + a2)k)w = (ϕ(a))w + dw

with c, d ∈ S(hmρ′

, g), by the composition properties. So it suffices to prove the
result for ρ < 0. Since we can write any function ϕ ∈ Sρ, with ρ < 0, as ϕ1ϕ2 with
ϕ1 ∈ Sδ (−1 ≤ δ < 0) and ϕ1 ∈ S [ρ]+1 (where [ρ] denotes the integer part of ρ)
and use the previous composition properties, we see by induction that it suffices to
establish the result for −1 ≤ ρ < 0.
Let z ∈ C \ R. Using that (z − a)−1 = (i − a)−1(1 + (z − i)(z − a)−1), we observe
that |(z − a)−1| ≤ m−1〈z〉|Im(z)|−1. Thus, for all ℓ ∈ N, there exists Cℓ > 0 and
Nℓ ∈ N such that, for all z ∈ C\R, ‖(z−a)−1‖ℓ,S(m−1,g) ≤ Cℓ〈z〉Nℓ+1|Im(z)|−Nℓ−1.

Define qz := (z− a)−1#(z − a)− 1 ∈ S(h, g). By an explicit formula given in [Bo2]
(first formula on page III-4), qz only depends on the derivatives of (z − a), which
are independent of z. Thus one can find, for all ℓ, C′ℓ > 0 and N ′ℓ ∈ N such that

(B.2) ∀z ∈ C \ R , ‖qz‖ℓ,S(h,g) ≤ C′ℓ〈z〉N
′
ℓ+1|Im(z)|−N ′

ℓ−1 .

According to [Bo1], one can prove from the boundedness of commutators of (z −
aw)−1 with appropriate pseudodifferential operators that this resolvent (z − aw)−1

is equal to rwz , where the symbol rz belongs to S(m−1, g). Furthermore, the system
‖·‖ℓ,S(m,g), ℓ ∈ N, of semi-norms is equivalent to another one based on the previous
commutators. Using this, there exist, for all ℓ, C′′ℓ > 0 and N ′′ℓ ∈ N such that

(B.3) ∀z ∈ C \ R , ‖rz‖ℓ,S(m−1,g) ≤ C′′ℓ 〈z〉N
′′
ℓ +1|Im(z)|−N ′′

ℓ −1 .

Using (B.2) and (B.3), we can find, for all ℓ, C′′′ℓ > 0 and N ′′′ℓ ∈ N such that

(B.4) ∀z ∈ C \ R , ‖qz#rz‖ℓ,S(hm−1,g) ≤ C′′′ℓ 〈z〉N ′′′
ℓ +1|Im(z)|−N ′′

ℓ −1 .



28 GOLÉNIA, SYLVAIN AND JECKO, THIERRY

Now we take ϕ ∈ Sρ with −1 ≤ ρ < 0 and consider some almost analytic extension
ϕC (like in Proposition 2.4). Thanks to (B.4), (2.3), (2.4), and ρ < 0,

b :=
i

2π

∫

C

∂z̄ϕ
C(z)qz#rz dz ∧ dz

converges in S(hm−1g). According to the definition of qz , ((z − a)−1)w(z − aw) =
Id+qwz , thus ((z−a)−1)w = (z−aw)−1+(qz#rz)

w. Using Helffer-Sjöstrand formula
(2.6), (ϕ(a))w = ϕ(aw) + bw with b ∈ S(hm−1g) ⊂ S(hmρg), since −1 ≤ ρ. �

Appendix C. An interpolation’s argument.

By pseudodifferential calculus, A2
1〈Dx〉−2〈x〉−2 extends to a bounded operator on

L2(Rd
x). What about 〈A1〉r〈Dx〉−r〈x〉−r with r > 0? The same argument is not

clear since A1 is not elliptic. Indeed its symbols (x, ξ) 7→ x · ξ can vanish when
ξ 6= 0. Using interpolation, we show

Lemma C.1. For real r ≥ 0, 〈A1〉r〈Dx〉−r〈x〉−r extends to a bounded operator on
L2(Rd

x).

We refer to [MS][Lemma 7.1] for an alternative proof and historical remarks.

Proof of Lemma C.1. We prove that, for r ≥ 0,

(C.1) ∃Cr > 0; ∀f ∈ L2(Rd
x), ‖〈A1〉rf‖ ≤ Cr‖〈x〉r〈Dx〉rf‖ .

For r ∈ N, (A1+i)
r〈Dx〉−r〈x〉−r extends to a bounded operator by the pseudodiffer-

ential calculus with the metric g in (2.12). Since 〈A1〉r(A1+ i)
−r is bounded, (C.1)

is satisfied when r ∈ N. For t, t′ ≥ 0, let Ht′

t := {f ∈ L2(Rd
x); ‖〈x〉t〈Dx〉t

′

f‖ < ∞}.
Now, using [Be], we infer that the space Hr

r is also the complex interpolated
space [H0

0,H
m
m]r/m, where m ≥ r. To be precise, use [Be][(1.7)] and notice that

H(m, g) = Hr
r, where g is given as in (2.12) andm(x, ξ) = 〈x〉r〈ξ〉r, by [Be][Theorem

3.7]. We deduce that (C.1) is true for all r ≥ 0 by the Riesz-Thorin Theorem. �

Appendix D. A simpler argument in dimension d = 1.

Here we present a more elementary proof of Lemma 5.5 in dimension d = 1. It
relies on the following

Lemma D.1. For z 6∈ R, as bounded operators on L2(Rx),

(D.1) (z −D2
x)
−1e±ikx = e±ikx

(
z − (Dx ± k)2

)−1
.

Proof. As differential operators, Dxe
±ikx = e±ikx(Dx ± k). Thus, on H2(Rx),

(D2
x − z)e±ikx = e±ikx((Dx ± k)2 − z). Multiplying on the left and on the right by

the convenient resolvent, we get the result. �

We first follow the general proof until formula (5.9). By (D.1),

B1 ≃ −
∑

σ=±

iqk

4π

∫

C

∂zϕ
C(z)(z −D2

x)
−1(z − (Dx + σk)2)−1 dz ∧ dz eiσkx .

Choosing the support of ϕ small enough, we can find θ ∈ C∞c (R) such that ξ 7→ θ(ξ2)
vanishes near −k/2 and k/2, ϕ(ξ2)θ(ξ2) = 0 = ϕ((ξ + k)2)θ(ξ2), for all ξ ∈ R, and
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such that the function ξ 7→ ϕ((ξ − k)2)θ(ξ2) is nonzero (using that I ⊂]0; +∞[).
Set B = θ(D2

x). Since ξ
2 − (ξ + k)2 and ξ2 − (ξ − k)2 do not vanish on the support

of θ(ξ2),

BB1 ≃ −
∑

σ=±

iqk

4π
θ(D2

x)(D
2
x − (Dx + kσ)2)−1

∫

C

∂zϕ
C(z)(z −D2

x)
−1

(D2
x − (Dx + kσ)2)(z − (Dx + σk)2)−1 dz ∧ dz eiσkx .

By the resolvent formula and (2.6),

BB1 ≃ −
∑

σ=±

qk

2
θ(D2

x)(D
2
x − (Dx + kσ)2)−1

(
ϕ(D2

x)− ϕ((Dx + kσ)2)
)
eiσkx .

Using the support properties of θ, we obtain

BB1 ≃ 2−1qkθ(D2
x)(D

2
x − (Dx − k)2)−1ϕ((Dx − k)2) e−ikx .

Denoting by B′ the multiplication operator by eikx, BB1B
′ is, modulo some com-

pact operator, a self-adjoint Fourier multiplier. The spectrum of the latter is given
by the essential range of the function ξ 7→ 2−1qkθ(ξ2)(ξ2 − (ξ − k)2)−1ϕ((ξ − k)2).
Since this function is non constant and continuous, the spectrum contains an in-
terval and the corresponding operator cannot be compact. Thus BB1B

′ is not
compact. This finishes the proof of Lemma 5.5 in dimension d = 1. �
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331-345.
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