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Failure model for heterogeneous strutures using struturedmeshes and aounting for probability aspetsM. Hautefeuille, S. Melnyk, J.B. Colliat and A. IbrahimbegoviEole Normale Sup�erieure de Cahan,LMT-Cahan, G�enie Civil et Environement61, avenue de pr�esident Wilson, 94235 Cahan, Franee-mail: ai�lmt.ens-ahan.fr, fax. +33147402240AbstratPurpose - In this work we disuss the inelasti behavior of heterogeneous strutures withinthe framework of �nite element modelling, by taking into the related probabilisti aspets ofheterogeneities.Design/methodology/approah - We show how to onstrut the strutured FE meshrepresentation for the failure modelling for suh strutures, by using a building-blok of aonstant stress element whih an ontain two di�erent phases and phase interfae. Wepresent all the modi�ations whih are needed to enfore for suh an element in order toaount for inelasti behavior in eah phase and the orresponding inelasti failure modes atthe phase interfae.Findings - We demonstrate by numerial examples that the proposed strutured FE meshapproah is muh more eÆient from the non-strutured mesh representation. This feature isof speial interest for probabilisti analysis, where a large amount of omputation is neededin order to provide the orresponding statistis. One suh ase of probabilisti analysis isonsidered in this work where the geometry of the phase interfae is obtained as the resultof the Gibbs random proess.Originality/value - Con�rms that one an make the most appropriate interpretation ofthe heterogeneous struture properties by taking into aount the �ne details of the internalstruture, along with the related probabilisti aspets with the proper soure of randomness,suh as the one addressed herein in terms of porosity.Keywords: heterogeneous strutures, failure modes, �nite element, strutured mesh, prob-ability aspetsPaper type: researh paper1 IntrodutionThe domain of numerial analysis for ultimate load behavior of Civil Engineering struture leadsto many important issues, hief among them aounting for heterogeneities of real strutures.For example, the strutures built of ement-based materials, suh as onrete or mortar, anbe modelled at di�erent sales, depending on the objetives and the physial mehanisms tobe aounted for. Namely, for engineering appliations and omputations at the struture sale(maro-sale), the material might be onsidered as homogeneous, and its properties obtainedby using the key onept of RVE (see [2℄, [13℄) to obtain phenomenologial models of inelastibehavior (e.g. see [28℄, [1℄, [7℄) The main advantage of those models is their robustness andsmall omputational ost, hene this approah is widely spread. On the other hand, suh phe-nomenologial models are based on a set of "material" parameters whih ought to be identi�ed,mainly from experiments performed with presribed load paths. This methodology leads to a1



set of parameters whih is linked to the hosen load-path, whih will not be adapted to anotherpath, thus leading to a non-preditive maro-model.In order to overome this major drawbak many authors tried to furnish miro-mehanialbases to the marosopi model set of parameters (see [17℄, [15℄) and provide a more preditivemodel. One way to ahieve this goal is to employ homogenization methods leading to aurateresults for linear problems. In ase of non-linearities suh methods are not providing good es-timates for the e�etive (marosopi) properties (see [6℄). Moreover, suh approah does nottake into aount the inherent unertainties attahed to heterogeneous materials and strutures.Considering a small sale, this variability might be viewed from the geometrial point of viewthrough the stohasti desription of the meso-struture. In this work we propose to omputethe marosopi parameters for a porous media as well as their statistis by taking into aountthe variability of the meso-struture. The key point is that the material parameters at thislevel are assumed to be deterministi, so that the variability is only related to the size and thepositions of the voids. In order to solve this stohasti problem and ompute the statistialmoments for the response quantities, we employ the Monte-Carlo method within a distributedsoftware environment. This stohasti integration method is based on many evaluations of themeso-strutures responses thus leading to a time-onsuming proess. Moreover, as the error andiretly be evaluated in terms of the number of realizations, it is neessary to hoose a relativelysmall disrete problem, even in the ase of omplex meso-strutures. To ahieve this we proposea model based on a regular mesh whih is not onstrained by the physial interfaes. This modelrelies on lassial CST elements, whose kinematis desription is enrihed by the use of strainand displaements disontinuities in order to represent two phases.The outline of this paper is as follows; in Setion 2, we present the plastiity model employedat the meso-sale level. Being based on regular meshes, this model an lead to fast omputingof non-linear response even for omplex meso-struture geometries. In Setion 3 we desribe thestohasti problem, the geometrial desription proess for de�ning the meso-struture and thestohasti integration method. Finally, in Setion 4 we show and disuss the results obtainedthrough numerial simulations.2 Plastiity model for failure of heterogeneous materialsMeshing is one of the major issues in modelling heterogeneous two-phase materials and fre-quently leads to undesirably high number of degrees-of-freedom and distorted meshes. For thatreason, the meshing proess might require a omplex and time-onsuming algorithm and, moreimportantly, produe the set of disrete equations whih is poorly onditioned. In this setion,we present another approah by using strutured (regular) meshes whih are not onstrainedby the physial interfaes between di�erent phases. The key ingredient for providing suh mod-els are �eld disontinuities introdued inside the elements in whih the physial interfaes arepresent. The latter an be developed as the kinematis enhanements whih belong within theframework of the Inompatible Modes Method (see [26℄, [11℄), and requires a dediated solutionalgorithm whih is illustrated next.2.1 Plastiity model with strutured meshesIn two dimensional ontext, we onsider a heterogeneous material for whih the inlusions posi-tions and shapes are known, thus leading to �xed positions of the disontinuities in eah element.Figure 1 shows a 3-node triangular �nite element representing two phases. In order to take into2



aount two di�erent materials we introdue two types of disontinuities (see [10℄, [20℄), namelya disontinuity of the strain �eld and a disontinuity of the displaement �eld, both of themlying at the same position (presribed by the physial interfae between two phases). The straindisontinuity permits the proper strain representation of two di�erent sets of elasti propertiesorresponding to eah phase. The displaement disontinuity leads to the possibility to modela debonding failure mehanism at the interfae. For the latter, two failure mehanisms are on-sidered: one orresponding to the opening of the rak in the normal diretion and the seondone to the sliding in the tangent diretion (see [22℄). Both of these disontinuities are introduedby using the Inompatible Modes Method (see [26℄, [11℄ ) leading to the same number of globaldegrees-of-freedom.These kinematis enhanements are added on top of the standard CST element (Figure 1).This element is divided into two parts by introduing an interfae whose position is de�ned by twoparameters : �1; �2 2 [0; 1℄. These parameters �i are obtained from the intersetion of the hosenstrutured mesh with the inlusions plaed within the struture. The orresponding values of�i at eah element boundary are shared between two neighboring elements. The domain 
e ofthe standard 3-node CST element is thus divided into two sub-domains 
e1 and 
e2. Di�erentelasti-plasti or elasti-damage behavior laws might be hosen for eah of these two parts, withdi�erent elasti properties (see [9℄).

Figure 1: Two phase 3 node triangular element; with stress vetor ontinuity enfored aross theinterfae.Contrary to the displaement �eld disontinuity, whih is ativated aording to the hosenfailure riterion, the strain �eld disontinuity is always present. Introduing those disontinuitiesrequires to enhane the kinematis of the element by using two inompatible modes. Thus, thedisplaements �eld an be written as follows:uh(x; t) = 3Xa=1Na(x)da(t) +M�I (x)�I(t) +M�I (x)�I(t) +MII(x)�II(t) (1)This expression ontains four terms: the �rst one provides onstant strain inside the element(CST). The seond term represents a jump in the displaements �eld in the normal diretionand the third a jump of displaements �eld in the tangential diretion. Finally, the last partprovides the strain �eld disontinuity.The shape funtions MI(x) for the �rst inompatible mode (Figure 2a.) orresponding tothe displaements �eld disontinuity for both normal and tangent diretions (see [8℄) an bewritten as: MI(x) = H�S (x)� Xa2
e1Na(x) (2)where Na represents the normal shape funtions of a CST element and H�S the Heavisidefuntion plaed at the interfae position. 3



The shape funtionMII(x) orresponding to the seond inompatible mode whih providesthe jump in the strain �eld (See Figure 2b.) an be written as:MII(x) = 8>>>>>><>>>>>>: 1(x6�x1)(y4�y1)�(x4�x1)(y6�y1)�(y � y1)�(x4 � x1) + (x6 � x1)z4��(x� x1)�(y6 � y1)z4 + (y4 � y1)��; x; y 2 
e11(x6�x2)(y3�y2)�(x3�x2)(y6�y2)�(y � y2)(x3 � x2)� (y3 � y2)(x� x2)�; x; y 2 
e2(3)The shape funtion MII(x) expression is obtained by using the equations of the two planesde�ned by nodes 2, 3 and 6 for one sub-domain and 1, 4 and 6 for the seond one (see Figure1). These geometri onditions are suÆient to de�ne MII(x) for the real displaement �eld.The same shape funtion also satis�es the path test ondition (e.g. see [11℄) whih enfores theelement apability to represent onstant stress �eld.

Figure 2: Inompatible modes orresponding to displaements a) and strain b) disontinuities ofCST elementWith these results in hand, the strain �eld an be written as follows:"h(x; t) = 3Xa=1Ba(x)da(t) +GII(x)�II(t)+ (nT 
 n)G�Ir (x)�I(t) + 12hnT 
m+mT 
 niG�Ir(x)�I(t)= Bd+GII�II + (nT 
 n)G�Ir�I + 12hnT 
m+mT 
 niG�Ir�I (4)where B(x) are the well known strain-displaement matrix for CST element, ontaining thederivatives of the element shape funtions (e.g. see [28℄),B(x) = 264 �N1�x 0 �N2�x 0 �N3�x 00 �N1�y 0 �N2�y 0 �N3�y�N1�y �N1�x �N2�y �N2�x �N3�y �N3�x 375 (5)and GIr(x) ontains the derivatives of the �rst inompatible modeGIr (x) = 264 �N2�x + �N3�x 00 �N2�y + �N3�y�N2�y + �N3�y �N2�x + �N3�x 375 (6)4



This matrix an be deomposed into two parts, namely a smooth part and an irregular partGIr = GIr +GIrÆ�S= � Xa2
e+Ba| {z }GIr +nÆ�S| {z }GIr (7)In (7) above, Æ�S is the Dira delta funtion providing the jump of displaement �eld. It isimportant to note that suh a shape funtion ought to be modi�ed into GIv for representationof the virtual strain �eld GIv = GIv +GIvÆ�S (8)This kind of modi�ation, needed to enfore the satisfation of the Path Test ([28℄), an beobtained by following proedure �rst proposed for a modi�ed version of the Inompatible ModesMethod (see [11℄) leading to:GIv(x) = GIr(x)� 1A Z
eGIr(x)d
= � Xa2
e+Ba + 1A Z
e Xa2
e+Bad
� l�SA n| {z }GIv + nÆ�S| {z }GIv Æ�S (9)Finally, in (4), GII is the matrix ontaining the derivatives of the seond shape funtionMII(x):�MII(x)�x = ( � 1(x6�x1)(y4�y1)�(x4�x1)(y6�y1) [(y6 � y1)z4 + (y4 � y1)℄ ; x; y 2 
e1� 1(x6�x2)(y3�y2)�(x3�x2)(y6�y2) [y3 � y2℄ ; x; y 2 
e2 (10)�MII(x)�y = ( 1(x6�x1)(y4�y1)�(x4�x1)(y6�y1) [(x4 � x1) + (x6 � x1)z4℄ ; x; y 2 
e11(x6�x2)(y3�y2)�(x3�x2)(y6�y2) [x3 � x2℄ ; x; y 2 
e2 (11)2.2 Operator split solution for interfae failureThe total system onsists of four equilibrium equations, with (12a) as the global equilibriumequation and (12b) to (12d) are orresponding to the loal ones. Equations (12b) to (12) haveto be solved only in ase of ativation of the displaement disontinuity in the normal or thetangential diretion.8>><>>: Anele=1�f int � f ext = 0�h�;eI = 0h�;eI = 0heII = 0 =) 8>>><>>>: R
e BT�d
� R
eNT bd
 = 0R
eG�;TIv �d
 = 0R
eG�;TIv �d
 = 0R
eGTII�d
 = 0 (12)By the onsistent linearization (e.g. see [7℄) of this system of equations we obtain in the matrixform 266664 Ke F�;eIr F�;eIr FeIIF�;eTIr H�;eI FeH F�;eSF�;eTIr FeTH H�;eI F�;eSFe;TII F�;eTS F�;eTS HeII
377775(k)n+10BB� �d��I��I��II 1CCA(k+1)n+1 = 0BB� �r000 1CCA(k)n+1 (13)5



The expanded form for eah blok an be written as follows:Ke = R
e BT : Cep : Bd
F�;eIr = R
e BT : Cep : (nT 
 n)G�Ird
F�;eII = R
e BT : Cep : 12 �nT 
m+mT 
 n�G�Ird
FeII = R
e BT : Cep : GIId
F�;eTIr = R
eG�;TIv : Cep : Bd
H�;eI = R
eG�;TIv : Cep : (nT 
 n)G�Ird
+ R�S G�;TIv �t�S��I d�FeH = R
eG�;TIv : Cep : 12 �nT 
m+mT 
 n�G�Ird
F�;eS = R
eG�;TIv : Cep : GIId
F�;eTIr = R
eG�;TIv : Cep : Bd
FeTH = R
eG�;TIv : Cep : (nT 
 n)G�Ird
H�;eI = R
eG�;TIv : Cep : 12 �nT 
m+mT 
 n�G�Ird
+ R�S G�;TIv �t�S��I d�F�;eS = R
eG�;TIv : Cep : GIId
Fe;TII = R
eGTII : Cep : Bd
F�;eTS = R
eGTII : Cep : (nT 
 n)G�Ird
F�;eTS = R
eGTII : Cep : 12 �nT 
m+mT 
 n�G�Ird
HeII = R
eGTII : Cep : GIId

(14)

In order to solve this system, we arry out stati ondensations (e.g see [27℄). The last threeequations are solved at loal level (numerial integration points), thus the total number of globalunknowns remains the same as with the standard CST element. These stati ondensations leadsto the e�etive sti�ness matrix (see [23℄), whih an be written as follows:bKe;(k)n+1 = Ke;(k)n+1 � h F�;eIr F�;eIr FeII i(k)n+1 264 H�;eI FeH F�;eSFeTH H�;eI F�;eSF�;eTS F�;eTS HeII 375(k)�1n+1 264 F�;eTIrF�;eTIrFe;TII 375(k)n+1 (15)Finally, the global system of equations (12) is solved to obtain the updated value of the dis-plaement �eld d(k+1)n+1 = d(k)n+1 +�d(k+1)n+1bK(k)n+1 ��d(k+1)n+1 = �r(k)n+1 (16)2.3 Model problem of loalized failureIn this setion we onsider the onstitutive behavior at the interfae in more details. As alreadymentioned, the positions of the interfaes are presribed in advane aording to the positions ofthe inlusions and we suppose that raks an our only at the interfaes. In order to investigatethese interfaes behavior, we shall onsider the seond equation of the system in (12).Z
eGTIv�d
 + Z�S GTIv t�Sd� = 0 (17)Z
eGTIv�d
 +GTIv t�S l�S = 0 (18)6



From (18) above we an simply obtain the tration-vetor at the interfae as a funtion of thelength of the interfae and of the strain �eldt�S = � 1l�S Z
eGTIv�d
= � 1l�S ngpXl=1 GTIv : Cep : "Bd+GII�II + (nT 
 n)G�Ir�I+12hnT 
m+mT 
 niG�Ir�I#jlwl (19)where ngp is the total number of integration points in eah element and jl and wl are respetivelythe isoparametri transformation jaobian and the numerial integration weight.Considering only a nonlinear part of strain at the given interfae, we an further obtain aninrement of tration-vetors aording to:�t�S = � 1l�S npgXl=1 GTIv : Cep : "(nT 
 n)G�Ir��I + 12hnT 
m+mT 
 niG�Ir��I#jlwl= � 1l�S npgXl=1 GTIv : Cep : (nT 
 n)G�Ir � jlwl| {z }K�oef ���I� 1l�S npgXl=1 GTIv : Cep : 12hnT 
m+mT 
 ni � jlwl| {z }K�oef ���I= K�oef ���I +K�oef ���I (20)In order to represent the debonding between the two phases, we hoose a softening law ofexponential form for the rak both in normal and in tangent diretions. The orrespondingfailure riteria have been hosen as follows:�D;nn+1 = tn+1 � n� (�f � qDn+1) � 0 (21)where qDn+1 = (�1 � �s) h1� e�b�n+1i (22)The integration algorithm is based on a trial state whih looks like:�D;n;trn+1 = tn � n� (�f � qDn ) (23)Aording to this trial state, the inrement of the softening variable depends on the plastimultipliers �n+1 = �n +��n+1 = �n + n+1 (24)In order to obtain these given parameters n+1, we solve the following loal equation by usingNewton's method�D;nn+1 = t�S;n+1 � n� (�f � qDn+1)= t�s � n� (�f � qDn )| {z }�D;n;trn+1 +qDn+1 � qDn +�t�n+1 � n= �D;n;trn+1 + (�1 � �s) h1� e�bn+1i e�b�n +�t�S;n+1 � n (25)7



The tration-vetors are then updated along with the internal variable whih govern thesoftening: t�S;n+1 = ttr�S;n+1 +�t�S;n+1 ; qDn+1 = qD;trn+1 +�qDn+1 (26)Finally, the inompatible mode parameters �I and �I are omputed in the manner similar toplasti strain at the interfae:�I;n+1 = �trI;n+1 +��I;n+1; �I;n+1 = �trI;n+1 +��I;n+1 (27)With the loal inompatible modes parameters �I;n+1 and �I;n+1 we an update the strain �eldin eah sub-domain of the element. By using operator-split solution proedure (15) we solve theglobal system of equations in (16).3 Probability aspets of inelasti loalized failure for heteroge-nous materialsThe main objetive of this setion is to illustrate the possibilities provided by the use of stru-tured mesh representation and the eÆient omputation apabilities of the proposed model fordealing with random heterogeneities. To that end, we onsider herein a porous material (typialof many ement-based material) at a meso-sale level. At this sale we assume that suh materialis haraterized by a two-phase mirostruture with a solid phase and a uid phase. The formerwill be referred as the "matrix" and the latter is supposed to represent the voids or inlusions.Depending on the number of inlusions, their sizes and positions, the non-linear marosopiresponse of suh a material will vary. In other words, the marosopi harateristis, suh asYoung's modulus or the yield stress, will be inuened by the meso-sale geometry. Our goalhere is to arry out numerially the variations of the marosopi harateristis upon the in-lusion sizes and positions. The key point for this study is that the variability introdued intothe model is restrited to the speimen geometry only, whereas the mehanial harateristisof the two phases are assumed to be deterministi.To be more preise, the matrix phase is supposed to be aurately modelled by an elasti-perfetly plasti model based upon the Druker-Prager riterion (see [5℄). The voids are repre-sented by a simple linear isotropi elastiity model with very small Young's modulus value. Inthe following setions we �rst begin to desribe the Gibbs point proess, leading to the realiza-tions of the meso-strutures. We also show an example of one typial mesh obtained and theorresponding marosopi response to a tension test. Then we turn to the desription of thestohasti integration method whih has been hosen to numerially solve this problem and theorresponding Software Engineering aspets. Finally we show and disuss the results obtainedfor this stohasti problem.3.1 Meso-sale geometry desriptionHere we desribe both the proess and the hypothesis leading to the meshing proedure withina retangular domain (3:6 � 1:8 m2). The meso-struture geometry of suh domain is heresupposed to be aurately modelled by a Gibbs point proess. Suh point proess is built on atwo steps sheme. The �rst one is the determination of the inlusions number aording to aPoisson law. The seond step onsists in the determination of the inlusion enters oordinatesas well as the radius for eah inlusion. While suh a Gibbs proess already naturally leads toa set of non-interseting inlusions, we applied an even more restritive riterion, by hoosingthe minimal distane between the inlusions (here equal to 2mm). Moreover, in order to beonsistent with the mesh size and the model features, the inlusions radii are bounded between8



0:01mm and 0:3mm. Figure 3 shows a partiular realization of the meso-struture and theorresponding strutured mesh. We an notie that eah inlusion is orretly modelled by a setof disontinuities without any major distortion.

Figure 3: Meso-struture geometry a) and orresponding mesh b)Sine the material parameters are hosen to be deterministi, the statistis of the marosopiresponse depends on the meso-struture geometry only, de�ned by the inlusions radius andenters positions. Thus the marosopi problem is stohasti and requires stohasti integrationmethod whih is presented in the next setion.3.2 Stohasti integrationSine the positions and the dimensions of the inlusions in the matrix are desribed by disreterandom �elds de�ned by Gibbs point proesses, we obtain a random marosopi behavior forthis mehanial model. A 2D random point proess an be de�ned as a �nite set of randomvariables, whih are indexed by the spatial oordinates vetors in R2. As a result, the geom-etry of our struture is de�ned as a random �eld, whih implies that every solution omputedby the mehanial model is also a random �eld. For example, the struture displaement ata �xed point is also a random variable. In this study, we are interested in haraterizing themarosopi mehanial properties of our struture. To ahieve this goal, we use a global ap-proah whih onsists in identifying the material properties governing the global behavior ofthe struture. More preisely, we aim to determine the e�etive global material properties bythe orresponding identi�ation of the global response omputed by the Finite Element model.Therefore, sine the global responses (displaement and reations) are random variables, theglobal material properties we aim to identify, suh as the Young modulus or the yield stress, arealso random variables.Probabilisti haraterization of the marosopi mehanial properties an be viewed as de-sribing the probabilisti law followed by eah of these properties. Two approahes an be drawnto �nd a probabilisti law desribing a random phenomena. The �rst one, so-alled frequentistapproah [14℄, is based on statistial tests, like the �2 test for the Gaussian probability law.Results of these tests are error margins that evaluate how the outomes of the given randomphenomena �t with respet to a given probability law. The seond, so-alled Bayesian approah[12℄, is trying to use all the available information along with the maximum entropy theory (see[21℄, [25℄) in order to provide the most general probability law for a given state of information;thus, to fully desribe this probability law, the statistial moments of di�erent orders have to beomputed. In this work, the seond approah is hosen. The marosopi material propertieswe tend to haraterize are all de�ned on the positive real line. Moreover we assume that theyan be given a mean value and a �nite standard deviation. On the basi of suh information,9



the maximum entropy theory leads to the most general probability law for this ase in terms ofthe log-normal distribution, whih is fully desribed by its omputed mean value and standarddeviation.Consequently, in order to haraterize the marosopi mehanial properties using theBayesian approah, the �rst two statistial moments of eah of these properties have to beomputed. The statistial moment of any random variable is an integral of a funtional of thisrandom variable over a probability spae. Hene, an eÆient numerial tool to ompute suhintegral in multi-dimensional spae is required. Rather than high order quadrature rules likeSmolyak algorithm [24℄, we use here a simple diret integration algorithm is Monte Carlo simula-tion [3℄. The basi idea of Monte Carlo simulation is to approximate the integrals of a funtionalof a random variable by a weighted sum of realizations of this random funtional. Let � be arandom variable de�ned on some probability spae (
; B; P ), where 
 is the spae of events, Bis a �-algebra built on 
 and P a probability measure. Any de�ned moment of � an be writtenas R
 f(�(!))dP(!). The simple Monte Carlo algorithm onsist in approximating this integralas a �nite weighted sum of realizations f(�(!i)), eah omputed at a randomly independenthosen point !i in 
, multiplied by the orresponding weights 1N (with N the given number ofrealizations) Z
 f(�(!))dP(!) � 1N NXi=1 f(�(!i)) (28)For this kind of numerial integration, the onvergene rate an be a priori omputed thanksto the entral limit theorem [16℄. We an �nd the error estimate whih is proportional to thestandard deviation of f(�) over pN , N being the number of evaluations of f(�). As eah real-ization of the Gibbs proess is stohastially independent from the others, this method an bediretly applied here and further more parallelized using an appropriate software environment toeliminate the main drawbak of Monte Carlo algorithm, the slow-rate onvergene. In this ase,where no orrelation exists in the geometrial spae, no other tools suh as Karhunen-Lo�eveexpansion is required (see [16℄, [4℄).The software arhiteture used here is based on the software omponent tehnology andthe middleware CTL [19℄, whih provides the adequate network environment to enable odeommuniation under a presribed protools and more generally ode oupling. The basi ideaof software omponent tehnology is to divide a software framework into several tasks and thento implement software omponents, eah of them being able to arry out this partiular task.Existing software an be turned into a omponent by de�ning an interfae through whih theommuniation will be hannelled. Implementing a omponent from for a pre-existing programonsists in oding a set of methods that other software an all through this interfae. In thease of Monte Carlo simulations, two di�erent tasks an be drawn. One is to generate a Gibbsproess and to transfer this result de�ning the inlusions geometry in a strutured mesh. Theother is to run a omputation with this given geometry within the mehanial model de�ned inthe �rst setion. A CTL software omponent has been previously obtained [18℄ from the FEMode FEAP [28℄ where also the mehanial model has been implemented. The seond omponentin harge of the geometry generation (the so-alled lient in Fig. 4) will ask for several runs ofthe FEAP omponent at the same time eah using a di�erent geometry.Further details on the use of this parallel framework and results are presented in the followingsubsetion.
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Figure 4: Parallel software arhiteture for Monte Carlo simulations4 Results of the probabilisti haraterization of the two phasesmaterial4.1 Illustrative examplesIn order to show the main features of this model, we shall �rst present two simple examples.The �rst deals with a perfetly-plasti Druker-Prager matrix (see [5℄) in whih are plaed ir-ular voids (Figure 5). We show by this example the apability of our model to represent strain�eld disontinuity by hoosing a small value of Young's modulus for the voids sub-domain. InFigure 6a we show the stress-strain diagram omputed for elasti-perfetly-plasti behavior ofthe matrix material.
Figure 5: Tension test on a square speimen with a irular inlusionIn the seond example we use the same speimen geometry with a irular inlusion (seeFigure 5), but assuming than the inlusion will have the same Young's modulus as the matrixand that the rak an our only at the interfae between two phases.The post-peak behavior at the interfae is represented by exponential softening law, leadingto omputed stress-strain response shown in Figure 6b.4.2 Comparison between strutured and unstrutured mesh approahIn this part we onsider the same mirostruture as in the previous setion. We want to show thedi�erene between two meshes. The �rst ase (Fig. 7a) presents adaptive exat mesh obtainedby using the software GMSH, where eah element ontains only one phase. In this ase several11



Example I Example IIE1, MPa 30000 30000E2, MPa 30 30000� 0.2 0.2�y, MPa 20 -�f , MPa - 1.5�u, MPa - 4.0u, m 0.04 0.001Table 1: Material parameters for two examples
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Figure 6: Strain-stress diagram for a) elasti-perfetly-plasti matrix and b)exponential softeninglaw at the interfaeelements are strongly distorted, sine we do not optimize this mesh with respet to the elementsizes, the sti�ness matrix is poorly onditioned. The seond ase (Fig. 7b) is our regular meshwhih we use in the alulation. In this ase, the elements an represent two phases to modelthe inlusions.

                              

Figure 7: Adaptive mesh a) and regular mesh b) with inlusionsMoreover, Fig. (8) shows the axial displaement ontour plot (with an ampli�ation fatorof 100) and the orresponding marosopi axial reations displaement urve.We obtain almost the same response for both ases, but with very di�erent time of alulationfor irregular mesh as 11774.68 s and for regular mesh as 646.41 s. This simple example pointsout one of the major advantage of the proposed model in term of omputation time dereasing.This point is a key point in order to takle marosopi models of heterogeneous materialstaking aount for the meso-struture geometry (for example through numerial homogenizationmethods). 12
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Figure 9: Reations sum vs. displaement urve b)4.3 Numerial results and disussionBy ombining both the deterministi problem presented above and the stohasti numerialintegration method detailed in the previous setion, we performed Z = 9999 integration points,eah of them orresponding to a single meso-struture realization. These integration points havebeen distributed on 9 proessors leading to a 7-day omputing time and we shall present herethe di�erent results.The �rst point to be mentioned deals with the meso-struture geometry, (whih are the "in-put" parameters aording to the stohasti integration method point of view). Namely, eahmeso-struture realization is built by using a modi�ed Gibbs point proess with inlusions ra-dius bounded between 0:01mm and 0:3mm. Fig. 10 shows the voids volume fration (ratio ofthe voids volume versus the total volume) histogram orresponding to the Z realizations. Theassoiated mean value is 6:26% and the standard deviation 3:59%.The global stohasti integration proess is leading to a set of Z axial reation fore-displaement diagrams. In Fig. 10 we show 100 realizations sample for this marosopi result.It is worth to reall again that the variability shown by this sample is only due to the meso-struture geometry variability (the material parameters being deterministi and so onstantalong the realizations). Moreover we an note that some meso-strutures inside this samplehave no inlusions. This behavior is diretly linked to the Gibbs point proess properties, inpartiular to the disrete Poisson law leading to the inlusions number.In Fig. 11 we show by using the set of Z marosopi axial reations-vs-displaement urvesthe estimated mean marosopi stress-strain urve as well as the 99:9% on�dene interval.With this on�dene interval being quite narrow, we an onlude that the number of integrationpoints used in the stohasti integration method is suÆient to make aurate onlusions and13
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Figure 10: a) Histogram of the volume fration b) 100 realizations sample results
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standard deviationFigure 11: Mean stress w.r.t the strain a) withe error bars on the mean b) with standarddeviation intervalto provide good estimates of statistial moments. The marosopi stress � and strain " arede�ned as equivalent homogeneous quantities," = uLx � = PiRiLy (29)where Lx and Ly are the size of the domain and Ri the axial reations. This marosopi meanurve leads to the determination of an estimate for the marosopi mean Young's modulusas well as to an estimate of the maximum stress mean �f . In order to provide a mean yieldstress estimate, Fig. 12 shows the evolution of the Young's modulus mean along the maro-sopi strain. We an note that the modulus is smoothly dereasing up to a strain limit beforea muh more rapid derease beyond this point. We assume this limit to be an estimate for themarosopi yield strain or for the marosopi yield stress as well.Table 2 summarizes all the statistial marosopi estimates obtained from this numerialexample.5 ConlusionWhen dealing with the Finite Elements modelling of heterogeneous strutures, meshing is oneof the major issues leading to distorted and bad onditioned tangent operators as well as time-14
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Figure 12: Slope of the urve mean stress vs. strain w.r.t the strainMean Estimator 99:9% on�dene interval std-dev interval�u 66:3651 MPa [66:3575MPa; 66:3727MPa℄ [58:2215MPa; 74:5087MPa℄�y 23:4998 MPa [23:4946MPa; 24:5050MPa℄ [21:5254MPa; 25:4742MPa℄E 9:9371 GPa [9:7887GPa; 10:0855GPa℄ [9:2742GPa; 10:6000GPa℄Table 2: Statistis of the outome properties of Monte Carlo simulationsonsuming algorithms. In this work we �rst proposed a numerial approah based on regularand strutured meshes whih are not onstrained by the physial interfaes. Based on lassialCST elements we showed how to enhane the elements kinematis using the Inompatible ModesMethod providing two kind of disontinuities. The �rst one onsists in a strain disontinuityinside the element in order to model the di�erent elasti properties of the two phases. Theseond disontinuity orresponds to a displaement one and allows to model the interfae failure(e.g. debonding) aording to two di�erent mehanisms (normal and tangential). By using a2D numerial omparison on a porous media with a perfetly plasti matrix, we showed thatthe omputation time is strongly lower within the ontext of suh a regular mesh.With suh a modelling tool in hand we also presented how to take into aount for thevariability of the geometrial desription at the meso-sale level. These geometries are modelledby using modi�ed Gibbs points proesses with irular inlusions. Although the material prop-erties of the two phases are assumed to be deterministi, this variability leads to a stohastiproblem to be solved. In this work we employed the lassial Monte-Carlo method in orderto produe the statistial moments of the desired quantities. Using the Components TemplateLibrary (CTL) the Finite Elements ode FEAP we produed 9999 realizations. The statistis ofthe outome properties exhibit quite narrow on�dene intervals. These numerial results anthen be viewed as marosopi properties for this porous media within the ontext of a lassialphenomenologial model.AknowledgementsThis work was supported by the Frenh Ministry of Researh. The ollaboration with TUBraunhweig researh group of Prof. Hermann G. Matthies, espeially Dr. Rainer Niekamp andM. Martin Kroshe is also gratefully aknowledged. AI also aknowledges the support of theAlexander von Humboldt Foundation.
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