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Failure model for heterogeneous stru
tures using stru
turedmeshes and a

ounting for probability aspe
tsM. Hautefeuille, S. Melnyk, J.B. Colliat and A. Ibrahimbegovi
E
ole Normale Sup�erieure de Ca
han,LMT-Ca
han, G�enie Civil et Environement61, avenue de pr�esident Wilson, 94235 Ca
han, Fran
ee-mail: ai�lmt.ens-
a
han.fr, fax. +33147402240Abstra
tPurpose - In this work we dis
uss the inelasti
 behavior of heterogeneous stru
tures withinthe framework of �nite element modelling, by taking into the related probabilisti
 aspe
ts ofheterogeneities.Design/methodology/approa
h - We show how to 
onstru
t the stru
tured FE meshrepresentation for the failure modelling for su
h stru
tures, by using a building-blo
k of a
onstant stress element whi
h 
an 
ontain two di�erent phases and phase interfa
e. Wepresent all the modi�
ations whi
h are needed to enfor
e for su
h an element in order toa

ount for inelasti
 behavior in ea
h phase and the 
orresponding inelasti
 failure modes atthe phase interfa
e.Findings - We demonstrate by numeri
al examples that the proposed stru
tured FE meshapproa
h is mu
h more eÆ
ient from the non-stru
tured mesh representation. This feature isof spe
ial interest for probabilisti
 analysis, where a large amount of 
omputation is neededin order to provide the 
orresponding statisti
s. One su
h 
ase of probabilisti
 analysis is
onsidered in this work where the geometry of the phase interfa
e is obtained as the resultof the Gibbs random pro
ess.Originality/value - Con�rms that one 
an make the most appropriate interpretation ofthe heterogeneous stru
ture properties by taking into a

ount the �ne details of the internalstru
ture, along with the related probabilisti
 aspe
ts with the proper sour
e of randomness,su
h as the one addressed herein in terms of porosity.Keywords: heterogeneous stru
tures, failure modes, �nite element, stru
tured mesh, prob-ability aspe
tsPaper type: resear
h paper1 Introdu
tionThe domain of numeri
al analysis for ultimate load behavior of Civil Engineering stru
ture leadsto many important issues, 
hief among them a

ounting for heterogeneities of real stru
tures.For example, the stru
tures built of 
ement-based materials, su
h as 
on
rete or mortar, 
anbe modelled at di�erent s
ales, depending on the obje
tives and the physi
al me
hanisms tobe a

ounted for. Namely, for engineering appli
ations and 
omputations at the stru
ture s
ale(ma
ro-s
ale), the material might be 
onsidered as homogeneous, and its properties obtainedby using the key 
on
ept of RVE (see [2℄, [13℄) to obtain phenomenologi
al models of inelasti
behavior (e.g. see [28℄, [1℄, [7℄) The main advantage of those models is their robustness andsmall 
omputational 
ost, hen
e this approa
h is widely spread. On the other hand, su
h phe-nomenologi
al models are based on a set of "material" parameters whi
h ought to be identi�ed,mainly from experiments performed with pres
ribed load paths. This methodology leads to a1



set of parameters whi
h is linked to the 
hosen load-path, whi
h will not be adapted to anotherpath, thus leading to a non-predi
tive ma
ro-model.In order to over
ome this major drawba
k many authors tried to furnish mi
ro-me
hani
albases to the ma
ros
opi
 model set of parameters (see [17℄, [15℄) and provide a more predi
tivemodel. One way to a
hieve this goal is to employ homogenization methods leading to a

urateresults for linear problems. In 
ase of non-linearities su
h methods are not providing good es-timates for the e�e
tive (ma
ros
opi
) properties (see [6℄). Moreover, su
h approa
h does nottake into a

ount the inherent un
ertainties atta
hed to heterogeneous materials and stru
tures.Considering a small s
ale, this variability might be viewed from the geometri
al point of viewthrough the sto
hasti
 des
ription of the meso-stru
ture. In this work we propose to 
omputethe ma
ros
opi
 parameters for a porous media as well as their statisti
s by taking into a

ountthe variability of the meso-stru
ture. The key point is that the material parameters at thislevel are assumed to be deterministi
, so that the variability is only related to the size and thepositions of the voids. In order to solve this sto
hasti
 problem and 
ompute the statisti
almoments for the response quantities, we employ the Monte-Carlo method within a distributedsoftware environment. This sto
hasti
 integration method is based on many evaluations of themeso-stru
tures responses thus leading to a time-
onsuming pro
ess. Moreover, as the error 
andire
tly be evaluated in terms of the number of realizations, it is ne
essary to 
hoose a relativelysmall dis
rete problem, even in the 
ase of 
omplex meso-stru
tures. To a
hieve this we proposea model based on a regular mesh whi
h is not 
onstrained by the physi
al interfa
es. This modelrelies on 
lassi
al CST elements, whose kinemati
s des
ription is enri
hed by the use of strainand displa
ements dis
ontinuities in order to represent two phases.The outline of this paper is as follows; in Se
tion 2, we present the plasti
ity model employedat the meso-s
ale level. Being based on regular meshes, this model 
an lead to fast 
omputingof non-linear response even for 
omplex meso-stru
ture geometries. In Se
tion 3 we des
ribe thesto
hasti
 problem, the geometri
al des
ription pro
ess for de�ning the meso-stru
ture and thesto
hasti
 integration method. Finally, in Se
tion 4 we show and dis
uss the results obtainedthrough numeri
al simulations.2 Plasti
ity model for failure of heterogeneous materialsMeshing is one of the major issues in modelling heterogeneous two-phase materials and fre-quently leads to undesirably high number of degrees-of-freedom and distorted meshes. For thatreason, the meshing pro
ess might require a 
omplex and time-
onsuming algorithm and, moreimportantly, produ
e the set of dis
rete equations whi
h is poorly 
onditioned. In this se
tion,we present another approa
h by using stru
tured (regular) meshes whi
h are not 
onstrainedby the physi
al interfa
es between di�erent phases. The key ingredient for providing su
h mod-els are �eld dis
ontinuities introdu
ed inside the elements in whi
h the physi
al interfa
es arepresent. The latter 
an be developed as the kinemati
s enhan
ements whi
h belong within theframework of the In
ompatible Modes Method (see [26℄, [11℄), and requires a dedi
ated solutionalgorithm whi
h is illustrated next.2.1 Plasti
ity model with stru
tured meshesIn two dimensional 
ontext, we 
onsider a heterogeneous material for whi
h the in
lusions posi-tions and shapes are known, thus leading to �xed positions of the dis
ontinuities in ea
h element.Figure 1 shows a 3-node triangular �nite element representing two phases. In order to take into2



a

ount two di�erent materials we introdu
e two types of dis
ontinuities (see [10℄, [20℄), namelya dis
ontinuity of the strain �eld and a dis
ontinuity of the displa
ement �eld, both of themlying at the same position (pres
ribed by the physi
al interfa
e between two phases). The straindis
ontinuity permits the proper strain representation of two di�erent sets of elasti
 properties
orresponding to ea
h phase. The displa
ement dis
ontinuity leads to the possibility to modela debonding failure me
hanism at the interfa
e. For the latter, two failure me
hanisms are 
on-sidered: one 
orresponding to the opening of the 
ra
k in the normal dire
tion and the se
ondone to the sliding in the tangent dire
tion (see [22℄). Both of these dis
ontinuities are introdu
edby using the In
ompatible Modes Method (see [26℄, [11℄ ) leading to the same number of globaldegrees-of-freedom.These kinemati
s enhan
ements are added on top of the standard CST element (Figure 1).This element is divided into two parts by introdu
ing an interfa
e whose position is de�ned by twoparameters : �1; �2 2 [0; 1℄. These parameters �i are obtained from the interse
tion of the 
hosenstru
tured mesh with the in
lusions pla
ed within the stru
ture. The 
orresponding values of�i at ea
h element boundary are shared between two neighboring elements. The domain 
e ofthe standard 3-node CST element is thus divided into two sub-domains 
e1 and 
e2. Di�erentelasti
-plasti
 or elasti
-damage behavior laws might be 
hosen for ea
h of these two parts, withdi�erent elasti
 properties (see [9℄).

Figure 1: Two phase 3 node triangular element; with stress ve
tor 
ontinuity enfor
ed a
ross theinterfa
e.Contrary to the displa
ement �eld dis
ontinuity, whi
h is a
tivated a

ording to the 
hosenfailure 
riterion, the strain �eld dis
ontinuity is always present. Introdu
ing those dis
ontinuitiesrequires to enhan
e the kinemati
s of the element by using two in
ompatible modes. Thus, thedispla
ements �eld 
an be written as follows:uh(x; t) = 3Xa=1Na(x)da(t) +M�I (x)�I(t) +M�I (x)�I(t) +MII(x)�II(t) (1)This expression 
ontains four terms: the �rst one provides 
onstant strain inside the element(CST). The se
ond term represents a jump in the displa
ements �eld in the normal dire
tionand the third a jump of displa
ements �eld in the tangential dire
tion. Finally, the last partprovides the strain �eld dis
ontinuity.The shape fun
tions MI(x) for the �rst in
ompatible mode (Figure 2a.) 
orresponding tothe displa
ements �eld dis
ontinuity for both normal and tangent dire
tions (see [8℄) 
an bewritten as: MI(x) = H�S (x)� Xa2
e1Na(x) (2)where Na represents the normal shape fun
tions of a CST element and H�S the Heavisidefun
tion pla
ed at the interfa
e position. 3



The shape fun
tionMII(x) 
orresponding to the se
ond in
ompatible mode whi
h providesthe jump in the strain �eld (See Figure 2b.) 
an be written as:MII(x) = 8>>>>>><>>>>>>: 1(x6�x1)(y4�y1)�(x4�x1)(y6�y1)�(y � y1)�(x4 � x1) + (x6 � x1)z4��(x� x1)�(y6 � y1)z4 + (y4 � y1)��; x; y 2 
e11(x6�x2)(y3�y2)�(x3�x2)(y6�y2)�(y � y2)(x3 � x2)� (y3 � y2)(x� x2)�; x; y 2 
e2(3)The shape fun
tion MII(x) expression is obtained by using the equations of the two planesde�ned by nodes 2, 3 and 6 for one sub-domain and 1, 4 and 6 for the se
ond one (see Figure1). These geometri
 
onditions are suÆ
ient to de�ne MII(x) for the real displa
ement �eld.The same shape fun
tion also satis�es the pat
h test 
ondition (e.g. see [11℄) whi
h enfor
es theelement 
apability to represent 
onstant stress �eld.

Figure 2: In
ompatible modes 
orresponding to displa
ements a) and strain b) dis
ontinuities ofCST elementWith these results in hand, the strain �eld 
an be written as follows:"h(x; t) = 3Xa=1Ba(x)da(t) +GII(x)�II(t)+ (nT 
 n)G�Ir (x)�I(t) + 12hnT 
m+mT 
 niG�Ir(x)�I(t)= Bd+GII�II + (nT 
 n)G�Ir�I + 12hnT 
m+mT 
 niG�Ir�I (4)where B(x) are the well known strain-displa
ement matrix for CST element, 
ontaining thederivatives of the element shape fun
tions (e.g. see [28℄),B(x) = 264 �N1�x 0 �N2�x 0 �N3�x 00 �N1�y 0 �N2�y 0 �N3�y�N1�y �N1�x �N2�y �N2�x �N3�y �N3�x 375 (5)and GIr(x) 
ontains the derivatives of the �rst in
ompatible modeGIr (x) = 264 �N2�x + �N3�x 00 �N2�y + �N3�y�N2�y + �N3�y �N2�x + �N3�x 375 (6)4



This matrix 
an be de
omposed into two parts, namely a smooth part and an irregular partGIr = GIr +GIrÆ�S= � Xa2
e+Ba| {z }GIr +nÆ�S| {z }GIr (7)In (7) above, Æ�S is the Dira
 delta fun
tion providing the jump of displa
ement �eld. It isimportant to note that su
h a shape fun
tion ought to be modi�ed into GIv for representationof the virtual strain �eld GIv = GIv +GIvÆ�S (8)This kind of modi�
ation, needed to enfor
e the satisfa
tion of the Pat
h Test ([28℄), 
an beobtained by following pro
edure �rst proposed for a modi�ed version of the In
ompatible ModesMethod (see [11℄) leading to:GIv(x) = GIr(x)� 1A Z
eGIr(x)d
= � Xa2
e+Ba + 1A Z
e Xa2
e+Bad
� l�SA n| {z }GIv + nÆ�S| {z }GIv Æ�S (9)Finally, in (4), GII is the matrix 
ontaining the derivatives of the se
ond shape fun
tionMII(x):�MII(x)�x = ( � 1(x6�x1)(y4�y1)�(x4�x1)(y6�y1) [(y6 � y1)z4 + (y4 � y1)℄ ; x; y 2 
e1� 1(x6�x2)(y3�y2)�(x3�x2)(y6�y2) [y3 � y2℄ ; x; y 2 
e2 (10)�MII(x)�y = ( 1(x6�x1)(y4�y1)�(x4�x1)(y6�y1) [(x4 � x1) + (x6 � x1)z4℄ ; x; y 2 
e11(x6�x2)(y3�y2)�(x3�x2)(y6�y2) [x3 � x2℄ ; x; y 2 
e2 (11)2.2 Operator split solution for interfa
e failureThe total system 
onsists of four equilibrium equations, with (12a) as the global equilibriumequation and (12b) to (12d) are 
orresponding to the lo
al ones. Equations (12b) to (12
) haveto be solved only in 
ase of a
tivation of the displa
ement dis
ontinuity in the normal or thetangential dire
tion.8>><>>: Anele=1�f int � f ext = 0�h�;eI = 0h�;eI = 0heII = 0 =) 8>>><>>>: R
e BT�d
� R
eNT bd
 = 0R
eG�;TIv �d
 = 0R
eG�;TIv �d
 = 0R
eGTII�d
 = 0 (12)By the 
onsistent linearization (e.g. see [7℄) of this system of equations we obtain in the matrixform 266664 Ke F�;eIr F�;eIr FeIIF�;eTIr H�;eI FeH F�;eSF�;eTIr FeTH H�;eI F�;eSFe;TII F�;eTS F�;eTS HeII
377775(k)n+10BB� �d��I��I��II 1CCA(k+1)n+1 = 0BB� �r000 1CCA(k)n+1 (13)5



The expanded form for ea
h blo
k 
an be written as follows:Ke = R
e BT : Cep : Bd
F�;eIr = R
e BT : Cep : (nT 
 n)G�Ird
F�;eII = R
e BT : Cep : 12 �nT 
m+mT 
 n�G�Ird
FeII = R
e BT : Cep : GIId
F�;eTIr = R
eG�;TIv : Cep : Bd
H�;eI = R
eG�;TIv : Cep : (nT 
 n)G�Ird
+ R�S G�;TIv �t�S��I d�FeH = R
eG�;TIv : Cep : 12 �nT 
m+mT 
 n�G�Ird
F�;eS = R
eG�;TIv : Cep : GIId
F�;eTIr = R
eG�;TIv : Cep : Bd
FeTH = R
eG�;TIv : Cep : (nT 
 n)G�Ird
H�;eI = R
eG�;TIv : Cep : 12 �nT 
m+mT 
 n�G�Ird
+ R�S G�;TIv �t�S��I d�F�;eS = R
eG�;TIv : Cep : GIId
Fe;TII = R
eGTII : Cep : Bd
F�;eTS = R
eGTII : Cep : (nT 
 n)G�Ird
F�;eTS = R
eGTII : Cep : 12 �nT 
m+mT 
 n�G�Ird
HeII = R
eGTII : Cep : GIId

(14)

In order to solve this system, we 
arry out stati
 
ondensations (e.g see [27℄). The last threeequations are solved at lo
al level (numeri
al integration points), thus the total number of globalunknowns remains the same as with the standard CST element. These stati
 
ondensations leadsto the e�e
tive sti�ness matrix (see [23℄), whi
h 
an be written as follows:bKe;(k)n+1 = Ke;(k)n+1 � h F�;eIr F�;eIr FeII i(k)n+1 264 H�;eI FeH F�;eSFeTH H�;eI F�;eSF�;eTS F�;eTS HeII 375(k)�1n+1 264 F�;eTIrF�;eTIrFe;TII 375(k)n+1 (15)Finally, the global system of equations (12) is solved to obtain the updated value of the dis-pla
ement �eld d(k+1)n+1 = d(k)n+1 +�d(k+1)n+1bK(k)n+1 ��d(k+1)n+1 = �r(k)n+1 (16)2.3 Model problem of lo
alized failureIn this se
tion we 
onsider the 
onstitutive behavior at the interfa
e in more details. As alreadymentioned, the positions of the interfa
es are pres
ribed in advan
e a

ording to the positions ofthe in
lusions and we suppose that 
ra
ks 
an o

ur only at the interfa
es. In order to investigatethese interfa
es behavior, we shall 
onsider the se
ond equation of the system in (12).Z
eGTIv�d
 + Z�S GTIv t�Sd� = 0 (17)Z
eGTIv�d
 +GTIv t�S l�S = 0 (18)6



From (18) above we 
an simply obtain the tra
tion-ve
tor at the interfa
e as a fun
tion of thelength of the interfa
e and of the strain �eldt�S = � 1l�S Z
eGTIv�d
= � 1l�S ngpXl=1 GTIv : Cep : "Bd+GII�II + (nT 
 n)G�Ir�I+12hnT 
m+mT 
 niG�Ir�I#jlwl (19)where ngp is the total number of integration points in ea
h element and jl and wl are respe
tivelythe isoparametri
 transformation ja
obian and the numeri
al integration weight.Considering only a nonlinear part of strain at the given interfa
e, we 
an further obtain anin
rement of tra
tion-ve
tors a

ording to:�t�S = � 1l�S npgXl=1 GTIv : Cep : "(nT 
 n)G�Ir��I + 12hnT 
m+mT 
 niG�Ir��I#jlwl= � 1l�S npgXl=1 GTIv : Cep : (nT 
 n)G�Ir � jlwl| {z }K�
oef ���I� 1l�S npgXl=1 GTIv : Cep : 12hnT 
m+mT 
 ni � jlwl| {z }K�
oef ���I= K�
oef ���I +K�
oef ���I (20)In order to represent the debonding between the two phases, we 
hoose a softening law ofexponential form for the 
ra
k both in normal and in tangent dire
tions. The 
orrespondingfailure 
riteria have been 
hosen as follows:�D;nn+1 = tn+1 � n� (�f � qDn+1) � 0 (21)where qDn+1 = (�1 � �s) h1� e�b�n+1i (22)The integration algorithm is based on a trial state whi
h looks like:�D;n;trn+1 = tn � n� (�f � qDn ) (23)A

ording to this trial state, the in
rement of the softening variable depends on the plasti
multipliers �n+1 = �n +��n+1 = �n + 
n+1 (24)In order to obtain these given parameters 
n+1, we solve the following lo
al equation by usingNewton's method�D;nn+1 = t�S;n+1 � n� (�f � qDn+1)= t�s � n� (�f � qDn )| {z }�D;n;trn+1 +qDn+1 � qDn +�t�n+1 � n= �D;n;trn+1 + (�1 � �s) h1� e�b
n+1i e�b�n +�t�S;n+1 � n (25)7



The tra
tion-ve
tors are then updated along with the internal variable whi
h govern thesoftening: t�S;n+1 = ttr�S;n+1 +�t�S;n+1 ; qDn+1 = qD;trn+1 +�qDn+1 (26)Finally, the in
ompatible mode parameters �I and �I are 
omputed in the manner similar toplasti
 strain at the interfa
e:�I;n+1 = �trI;n+1 +��I;n+1; �I;n+1 = �trI;n+1 +��I;n+1 (27)With the lo
al in
ompatible modes parameters �I;n+1 and �I;n+1 we 
an update the strain �eldin ea
h sub-domain of the element. By using operator-split solution pro
edure (15) we solve theglobal system of equations in (16).3 Probability aspe
ts of inelasti
 lo
alized failure for heteroge-nous materialsThe main obje
tive of this se
tion is to illustrate the possibilities provided by the use of stru
-tured mesh representation and the eÆ
ient 
omputation 
apabilities of the proposed model fordealing with random heterogeneities. To that end, we 
onsider herein a porous material (typi
alof many 
ement-based material) at a meso-s
ale level. At this s
ale we assume that su
h materialis 
hara
terized by a two-phase mi
rostru
ture with a solid phase and a 
uid phase. The formerwill be referred as the "matrix" and the latter is supposed to represent the voids or in
lusions.Depending on the number of in
lusions, their sizes and positions, the non-linear ma
ros
opi
response of su
h a material will vary. In other words, the ma
ros
opi
 
hara
teristi
s, su
h asYoung's modulus or the yield stress, will be in
uen
ed by the meso-s
ale geometry. Our goalhere is to 
arry out numeri
ally the variations of the ma
ros
opi
 
hara
teristi
s upon the in-
lusion sizes and positions. The key point for this study is that the variability introdu
ed intothe model is restri
ted to the spe
imen geometry only, whereas the me
hani
al 
hara
teristi
sof the two phases are assumed to be deterministi
.To be more pre
ise, the matrix phase is supposed to be a

urately modelled by an elasti
-perfe
tly plasti
 model based upon the Dru
ker-Prager 
riterion (see [5℄). The voids are repre-sented by a simple linear isotropi
 elasti
ity model with very small Young's modulus value. Inthe following se
tions we �rst begin to des
ribe the Gibbs point pro
ess, leading to the realiza-tions of the meso-stru
tures. We also show an example of one typi
al mesh obtained and the
orresponding ma
ros
opi
 response to a tension test. Then we turn to the des
ription of thesto
hasti
 integration method whi
h has been 
hosen to numeri
ally solve this problem and the
orresponding Software Engineering aspe
ts. Finally we show and dis
uss the results obtainedfor this sto
hasti
 problem.3.1 Meso-s
ale geometry des
riptionHere we des
ribe both the pro
ess and the hypothesis leading to the meshing pro
edure withina re
tangular domain (3:6 � 1:8 
m2). The meso-stru
ture geometry of su
h domain is heresupposed to be a

urately modelled by a Gibbs point pro
ess. Su
h point pro
ess is built on atwo steps s
heme. The �rst one is the determination of the in
lusions number a

ording to aPoisson law. The se
ond step 
onsists in the determination of the in
lusion 
enters 
oordinatesas well as the radius for ea
h in
lusion. While su
h a Gibbs pro
ess already naturally leads toa set of non-interse
ting in
lusions, we applied an even more restri
tive 
riterion, by 
hoosingthe minimal distan
e between the in
lusions (here equal to 2mm). Moreover, in order to be
onsistent with the mesh size and the model features, the in
lusions radii are bounded between8



0:01mm and 0:3mm. Figure 3 shows a parti
ular realization of the meso-stru
ture and the
orresponding stru
tured mesh. We 
an noti
e that ea
h in
lusion is 
orre
tly modelled by a setof dis
ontinuities without any major distortion.

Figure 3: Meso-stru
ture geometry a) and 
orresponding mesh b)Sin
e the material parameters are 
hosen to be deterministi
, the statisti
s of the ma
ros
opi
response depends on the meso-stru
ture geometry only, de�ned by the in
lusions radius and
enters positions. Thus the ma
ros
opi
 problem is sto
hasti
 and requires sto
hasti
 integrationmethod whi
h is presented in the next se
tion.3.2 Sto
hasti
 integrationSin
e the positions and the dimensions of the in
lusions in the matrix are des
ribed by dis
reterandom �elds de�ned by Gibbs point pro
esses, we obtain a random ma
ros
opi
 behavior forthis me
hani
al model. A 2D random point pro
ess 
an be de�ned as a �nite set of randomvariables, whi
h are indexed by the spatial 
oordinates ve
tors in R2. As a result, the geom-etry of our stru
ture is de�ned as a random �eld, whi
h implies that every solution 
omputedby the me
hani
al model is also a random �eld. For example, the stru
ture displa
ement ata �xed point is also a random variable. In this study, we are interested in 
hara
terizing thema
ros
opi
 me
hani
al properties of our stru
ture. To a
hieve this goal, we use a global ap-proa
h whi
h 
onsists in identifying the material properties governing the global behavior ofthe stru
ture. More pre
isely, we aim to determine the e�e
tive global material properties bythe 
orresponding identi�
ation of the global response 
omputed by the Finite Element model.Therefore, sin
e the global responses (displa
ement and rea
tions) are random variables, theglobal material properties we aim to identify, su
h as the Young modulus or the yield stress, arealso random variables.Probabilisti
 
hara
terization of the ma
ros
opi
 me
hani
al properties 
an be viewed as de-s
ribing the probabilisti
 law followed by ea
h of these properties. Two approa
hes 
an be drawnto �nd a probabilisti
 law des
ribing a random phenomena. The �rst one, so-
alled frequentistapproa
h [14℄, is based on statisti
al tests, like the �2 test for the Gaussian probability law.Results of these tests are error margins that evaluate how the out
omes of the given randomphenomena �t with respe
t to a given probability law. The se
ond, so-
alled Bayesian approa
h[12℄, is trying to use all the available information along with the maximum entropy theory (see[21℄, [25℄) in order to provide the most general probability law for a given state of information;thus, to fully des
ribe this probability law, the statisti
al moments of di�erent orders have to be
omputed. In this work, the se
ond approa
h is 
hosen. The ma
ros
opi
 material propertieswe tend to 
hara
terize are all de�ned on the positive real line. Moreover we assume that they
an be given a mean value and a �nite standard deviation. On the basi
 of su
h information,9



the maximum entropy theory leads to the most general probability law for this 
ase in terms ofthe log-normal distribution, whi
h is fully des
ribed by its 
omputed mean value and standarddeviation.Consequently, in order to 
hara
terize the ma
ros
opi
 me
hani
al properties using theBayesian approa
h, the �rst two statisti
al moments of ea
h of these properties have to be
omputed. The statisti
al moment of any random variable is an integral of a fun
tional of thisrandom variable over a probability spa
e. Hen
e, an eÆ
ient numeri
al tool to 
ompute su
hintegral in multi-dimensional spa
e is required. Rather than high order quadrature rules likeSmolyak algorithm [24℄, we use here a simple dire
t integration algorithm is Monte Carlo simula-tion [3℄. The basi
 idea of Monte Carlo simulation is to approximate the integrals of a fun
tionalof a random variable by a weighted sum of realizations of this random fun
tional. Let � be arandom variable de�ned on some probability spa
e (
; B; P ), where 
 is the spa
e of events, Bis a �-algebra built on 
 and P a probability measure. Any de�ned moment of � 
an be writtenas R
 f(�(!))dP(!). The simple Monte Carlo algorithm 
onsist in approximating this integralas a �nite weighted sum of realizations f(�(!i)), ea
h 
omputed at a randomly independent
hosen point !i in 
, multiplied by the 
orresponding weights 1N (with N the given number ofrealizations) Z
 f(�(!))dP(!) � 1N NXi=1 f(�(!i)) (28)For this kind of numeri
al integration, the 
onvergen
e rate 
an be a priori 
omputed thanksto the 
entral limit theorem [16℄. We 
an �nd the error estimate whi
h is proportional to thestandard deviation of f(�) over pN , N being the number of evaluations of f(�). As ea
h real-ization of the Gibbs pro
ess is sto
hasti
ally independent from the others, this method 
an bedire
tly applied here and further more parallelized using an appropriate software environment toeliminate the main drawba
k of Monte Carlo algorithm, the slow-rate 
onvergen
e. In this 
ase,where no 
orrelation exists in the geometri
al spa
e, no other tools su
h as Karhunen-Lo�eveexpansion is required (see [16℄, [4℄).The software ar
hite
ture used here is based on the software 
omponent te
hnology andthe middleware CTL [19℄, whi
h provides the adequate network environment to enable 
ode
ommuni
ation under a pres
ribed proto
ols and more generally 
ode 
oupling. The basi
 ideaof software 
omponent te
hnology is to divide a software framework into several tasks and thento implement software 
omponents, ea
h of them being able to 
arry out this parti
ular task.Existing software 
an be turned into a 
omponent by de�ning an interfa
e through whi
h the
ommuni
ation will be 
hannelled. Implementing a 
omponent from for a pre-existing program
onsists in 
oding a set of methods that other software 
an 
all through this interfa
e. In the
ase of Monte Carlo simulations, two di�erent tasks 
an be drawn. One is to generate a Gibbspro
ess and to transfer this result de�ning the in
lusions geometry in a stru
tured mesh. Theother is to run a 
omputation with this given geometry within the me
hani
al model de�ned inthe �rst se
tion. A CTL software 
omponent has been previously obtained [18℄ from the FEM
ode FEAP [28℄ where also the me
hani
al model has been implemented. The se
ond 
omponentin 
harge of the geometry generation (the so-
alled 
lient in Fig. 4) will ask for several runs ofthe FEAP 
omponent at the same time ea
h using a di�erent geometry.Further details on the use of this parallel framework and results are presented in the followingsubse
tion.
10
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Figure 4: Parallel software ar
hite
ture for Monte Carlo simulations4 Results of the probabilisti
 
hara
terization of the two phasesmaterial4.1 Illustrative examplesIn order to show the main features of this model, we shall �rst present two simple examples.The �rst deals with a perfe
tly-plasti
 Dru
ker-Prager matrix (see [5℄) in whi
h are pla
ed 
ir-
ular voids (Figure 5). We show by this example the 
apability of our model to represent strain�eld dis
ontinuity by 
hoosing a small value of Young's modulus for the voids sub-domain. InFigure 6a we show the stress-strain diagram 
omputed for elasti
-perfe
tly-plasti
 behavior ofthe matrix material.
Figure 5: Tension test on a square spe
imen with a 
ir
ular in
lusionIn the se
ond example we use the same spe
imen geometry with a 
ir
ular in
lusion (seeFigure 5), but assuming than the in
lusion will have the same Young's modulus as the matrixand that the 
ra
k 
an o

ur only at the interfa
e between two phases.The post-peak behavior at the interfa
e is represented by exponential softening law, leadingto 
omputed stress-strain response shown in Figure 6b.4.2 Comparison between stru
tured and unstru
tured mesh approa
hIn this part we 
onsider the same mi
rostru
ture as in the previous se
tion. We want to show thedi�eren
e between two meshes. The �rst 
ase (Fig. 7a) presents adaptive exa
t mesh obtainedby using the software GMSH, where ea
h element 
ontains only one phase. In this 
ase several11



Example I Example IIE1, MPa 30000 30000E2, MPa 30 30000� 0.2 0.2�y, MPa 20 -�f , MPa - 1.5�u, MPa - 4.0u, 
m 0.04 0.001Table 1: Material parameters for two examples
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Figure 6: Strain-stress diagram for a) elasti
-perfe
tly-plasti
 matrix and b)exponential softeninglaw at the interfa
eelements are strongly distorted, sin
e we do not optimize this mesh with respe
t to the elementsizes, the sti�ness matrix is poorly 
onditioned. The se
ond 
ase (Fig. 7b) is our regular meshwhi
h we use in the 
al
ulation. In this 
ase, the elements 
an represent two phases to modelthe in
lusions.

                              

Figure 7: Adaptive mesh a) and regular mesh b) with in
lusionsMoreover, Fig. (8) shows the axial displa
ement 
ontour plot (with an ampli�
ation fa
torof 100) and the 
orresponding ma
ros
opi
 axial rea
tions displa
ement 
urve.We obtain almost the same response for both 
ases, but with very di�erent time of 
al
ulationfor irregular mesh as 11774.68 s and for regular mesh as 646.41 s. This simple example pointsout one of the major advantage of the proposed model in term of 
omputation time de
reasing.This point is a key point in order to ta
kle ma
ros
opi
 models of heterogeneous materialstaking a

ount for the meso-stru
ture geometry (for example through numeri
al homogenizationmethods). 12
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Figure 9: Rea
tions sum vs. displa
ement 
urve b)4.3 Numeri
al results and dis
ussionBy 
ombining both the deterministi
 problem presented above and the sto
hasti
 numeri
alintegration method detailed in the previous se
tion, we performed Z = 9999 integration points,ea
h of them 
orresponding to a single meso-stru
ture realization. These integration points havebeen distributed on 9 pro
essors leading to a 7-day 
omputing time and we shall present herethe di�erent results.The �rst point to be mentioned deals with the meso-stru
ture geometry, (whi
h are the "in-put" parameters a

ording to the sto
hasti
 integration method point of view). Namely, ea
hmeso-stru
ture realization is built by using a modi�ed Gibbs point pro
ess with in
lusions ra-dius bounded between 0:01mm and 0:3mm. Fig. 10 shows the voids volume fra
tion (ratio ofthe voids volume versus the total volume) histogram 
orresponding to the Z realizations. Theasso
iated mean value is 6:26% and the standard deviation 3:59%.The global sto
hasti
 integration pro
ess is leading to a set of Z axial rea
tion for
e-displa
ement diagrams. In Fig. 10 we show 100 realizations sample for this ma
ros
opi
 result.It is worth to re
all again that the variability shown by this sample is only due to the meso-stru
ture geometry variability (the material parameters being deterministi
 and so 
onstantalong the realizations). Moreover we 
an note that some meso-stru
tures inside this samplehave no in
lusions. This behavior is dire
tly linked to the Gibbs point pro
ess properties, inparti
ular to the dis
rete Poisson law leading to the in
lusions number.In Fig. 11 we show by using the set of Z ma
ros
opi
 axial rea
tions-vs-displa
ement 
urvesthe estimated mean ma
ros
opi
 stress-strain 
urve as well as the 99:9% 
on�den
e interval.With this 
on�den
e interval being quite narrow, we 
an 
on
lude that the number of integrationpoints used in the sto
hasti
 integration method is suÆ
ient to make a

urate 
on
lusions and13
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standard deviationFigure 11: Mean stress w.r.t the strain a) withe error bars on the mean b) with standarddeviation intervalto provide good estimates of statisti
al moments. The ma
ros
opi
 stress � and strain " arede�ned as equivalent homogeneous quantities," = uLx � = PiRiLy (29)where Lx and Ly are the size of the domain and Ri the axial rea
tions. This ma
ros
opi
 mean
urve leads to the determination of an estimate for the ma
ros
opi
 mean Young's modulusas well as to an estimate of the maximum stress mean �f . In order to provide a mean yieldstress estimate, Fig. 12 shows the evolution of the Young's modulus mean along the ma
ro-s
opi
 strain. We 
an note that the modulus is smoothly de
reasing up to a strain limit beforea mu
h more rapid de
rease beyond this point. We assume this limit to be an estimate for thema
ros
opi
 yield strain or for the ma
ros
opi
 yield stress as well.Table 2 summarizes all the statisti
al ma
ros
opi
 estimates obtained from this numeri
alexample.5 Con
lusionWhen dealing with the Finite Elements modelling of heterogeneous stru
tures, meshing is oneof the major issues leading to distorted and bad 
onditioned tangent operators as well as time-14
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Figure 12: Slope of the 
urve mean stress vs. strain w.r.t the strainMean Estimator 99:9% 
on�den
e interval std-dev interval�u 66:3651 MPa [66:3575MPa; 66:3727MPa℄ [58:2215MPa; 74:5087MPa℄�y 23:4998 MPa [23:4946MPa; 24:5050MPa℄ [21:5254MPa; 25:4742MPa℄E 9:9371 GPa [9:7887GPa; 10:0855GPa℄ [9:2742GPa; 10:6000GPa℄Table 2: Statisti
s of the out
ome properties of Monte Carlo simulations
onsuming algorithms. In this work we �rst proposed a numeri
al approa
h based on regularand stru
tured meshes whi
h are not 
onstrained by the physi
al interfa
es. Based on 
lassi
alCST elements we showed how to enhan
e the elements kinemati
s using the In
ompatible ModesMethod providing two kind of dis
ontinuities. The �rst one 
onsists in a strain dis
ontinuityinside the element in order to model the di�erent elasti
 properties of the two phases. These
ond dis
ontinuity 
orresponds to a displa
ement one and allows to model the interfa
e failure(e.g. debonding) a

ording to two di�erent me
hanisms (normal and tangential). By using a2D numeri
al 
omparison on a porous media with a perfe
tly plasti
 matrix, we showed thatthe 
omputation time is strongly lower within the 
ontext of su
h a regular mesh.With su
h a modelling tool in hand we also presented how to take into a

ount for thevariability of the geometri
al des
ription at the meso-s
ale level. These geometries are modelledby using modi�ed Gibbs points pro
esses with 
ir
ular in
lusions. Although the material prop-erties of the two phases are assumed to be deterministi
, this variability leads to a sto
hasti
problem to be solved. In this work we employed the 
lassi
al Monte-Carlo method in orderto produ
e the statisti
al moments of the desired quantities. Using the Components TemplateLibrary (CTL) the Finite Elements 
ode FEAP we produ
ed 9999 realizations. The statisti
s ofthe out
ome properties exhibit quite narrow 
on�den
e intervals. These numeri
al results 
anthen be viewed as ma
ros
opi
 properties for this porous media within the 
ontext of a 
lassi
alphenomenologi
al model.A
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