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Abstract

Purpose - In this work we discuss the inelastic behavior of heterogeneous structures within
the framework of finite element modelling, by taking into the related probabilistic aspects of
heterogeneities.

Design/methodology/approach - We show how to construct the structured FE mesh
representation for the failure modelling for such structures, by using a building-block of a
constant stress element which can contain two different phases and phase interface. We
present all the modifications which are needed to enforce for such an element in order to
account for inelastic behavior in each phase and the corresponding inelastic failure modes at
the phase interface.

Findings - We demonstrate by numerical examples that the proposed structured FE mesh
approach is much more efficient from the non-structured mesh representation. This feature is
of special interest for probabilistic analysis, where a large amount of computation is needed
in order to provide the corresponding statistics. One such case of probabilistic analysis is
considered in this work where the geometry of the phase interface is obtained as the result
of the Gibbs random process.

Originality /value - Confirms that one can make the most appropriate interpretation of
the heterogeneous structure properties by taking into account the fine details of the internal
structure, along with the related probabilistic aspects with the proper source of randomness,
such as the one addressed herein in terms of porosity.

Keywords: heterogeneous structures, failure modes, finite element, structured mesh, prob-
ability aspects

Paper type: research paper

1 Introduction

The domain of numerical analysis for ultimate load behavior of Civil Engineering structure leads
to many important issues, chief among them accounting for heterogeneities of real structures.
For example, the structures built of cement-based materials, such as concrete or mortar, can
be modelled at different scales, depending on the objectives and the physical mechanisms to
be accounted for. Namely, for engineering applications and computations at the structure scale
(macro-scale), the material might be considered as homogeneous, and its properties obtained
by using the key concept of RVE (see [2], [13]) to obtain phenomenological models of inelastic
behavior (e.g. see [28], [1], [7]) The main advantage of those models is their robustness and
small computational cost, hence this approach is widely spread. On the other hand, such phe-
nomenological models are based on a set of "material” parameters which ought to be identified,
mainly from experiments performed with prescribed load paths. This methodology leads to a



set of parameters which is linked to the chosen load-path, which will not be adapted to another
path, thus leading to a non-predictive macro-model.

In order to overcome this major drawback many authors tried to furnish micro-mechanical
bases to the macroscopic model set of parameters (see [17], [15]) and provide a more predictive
model. One way to achieve this goal is to employ homogenization methods leading to accurate
results for linear problems. In case of non-linearities such methods are not providing good es-
timates for the effective (macroscopic) properties (see [6]). Moreover, such approach does not
take into account the inherent uncertainties attached to heterogeneous materials and structures.

Considering a small scale, this variability might be viewed from the geometrical point of view
through the stochastic description of the meso-structure. In this work we propose to compute
the macroscopic parameters for a porous media as well as their statistics by taking into account
the variability of the meso-structure. The key point is that the material parameters at this
level are assumed to be deterministic, so that the variability is only related to the size and the
positions of the voids. In order to solve this stochastic problem and compute the statistical
moments for the response quantities, we employ the Monte-Carlo method within a distributed
software environment. This stochastic integration method is based on many evaluations of the
meso-structures responses thus leading to a time-consuming process. Moreover, as the error can
directly be evaluated in terms of the number of realizations, it is necessary to choose a relatively
small discrete problem, even in the case of complex meso-structures. To achieve this we propose
a model based on a regular mesh which is not constrained by the physical interfaces. This model
relies on classical CST elements, whose kinematics description is enriched by the use of strain
and displacements discontinuities in order to represent two phases.

The outline of this paper is as follows; in Section 2, we present the plasticity model employed
at the meso-scale level. Being based on regular meshes, this model can lead to fast computing
of non-linear response even for complex meso-structure geometries. In Section 3 we describe the
stochastic problem, the geometrical description process for defining the meso-structure and the
stochastic integration method. Finally, in Section 4 we show and discuss the results obtained
through numerical simulations.

2 Plasticity model for failure of heterogeneous materials

Meshing is one of the major issues in modelling heterogeneous two-phase materials and fre-
quently leads to undesirably high number of degrees-of-freedom and distorted meshes. For that
reason, the meshing process might require a complex and time-consuming algorithm and, more
importantly, produce the set of discrete equations which is poorly conditioned. In this section,
we present another approach by using structured (regular) meshes which are not constrained
by the physical interfaces between different phases. The key ingredient for providing such mod-
els are field discontinuities introduced inside the elements in which the physical interfaces are
present. The latter can be developed as the kinematics enhancements which belong within the
framework of the Incompatible Modes Method (see [26], [11]), and requires a dedicated solution
algorithm which is illustrated next.

2.1 Plasticity model with structured meshes

In two dimensional context, we consider a heterogeneous material for which the inclusions posi-
tions and shapes are known, thus leading to fixed positions of the discontinuities in each element.
Figure 1 shows a 3-node triangular finite element representing two phases. In order to take into



account two different materials we introduce two types of discontinuities (see [10], [20]), namely
a discontinuity of the strain field and a discontinuity of the displacement field, both of them
lying at the same position (prescribed by the physical interface between two phases). The strain
discontinuity permits the proper strain representation of two different sets of elastic properties
corresponding to each phase. The displacement discontinuity leads to the possibility to model
a debonding failure mechanism at the interface. For the latter, two failure mechanisms are con-
sidered: one corresponding to the opening of the crack in the normal direction and the second
one to the sliding in the tangent direction (see [22]). Both of these discontinuities are introduced
by using the Incompatible Modes Method (see [26], [11] ) leading to the same number of global
degrees-of-freedom.

These kinematics enhancements are added on top of the standard CST element (Figure 1).
This element is divided into two parts by introducing an interface whose position is defined by two
parameters : 61,60, € [0,1]. These parameters 6; are obtained from the intersection of the chosen
structured mesh with the inclusions placed within the structure. The corresponding values of
0; at each element boundary are shared between two neighboring elements. The domain ¢ of
the standard 3-node CST element is thus divided into two sub-domains ©f and 5. Different
elastic-plastic or elastic-damage behavior laws might be chosen for each of these two parts, with
different elastic properties (see [9]).

Figure 1: Two phase 8 node triangular element; with stress vector continuity enforced across the
interface.

Contrary to the displacement field discontinuity, which is activated according to the chosen
failure criterion, the strain field discontinuity is always present. Introducing those discontinuities
requires to enhance the kinematics of the element by using two incompatible modes. Thus, the
displacements field can be written as follows:

3
u'(z, 1) = Na(z)da(t) + MF (z)ox (t) + M (2)1(t) + M (z)ox (¢) (1)

a=1

This expression contains four terms: the first one provides constant strain inside the element
(CST). The second term represents a jump in the displacements field in the normal direction
and the third a jump of displacements field in the tangential direction. Finally, the last part
provides the strain field discontinuity.

The shape functions My(z) for the first incompatible mode (Figure 2a.) corresponding to
the displacements field discontinuity for both normal and tangent directions (see [8]) can be
written as:

Mi(z) = Hry(z) - 3 Nalz) (2)
a€qf

where N, represents the normal shape functions of a CST element and Hrg the Heaviside
function placed at the interface position.



The shape function Myy(z) corresponding to the second incompatible mode which provides
the jump in the strain field (See Figure 2b.) can be written as:

1

(6 —21)(ya—y1)—(z4—21)(ys —y1) (v =w) [(:M — 1)+ (w6 = $1)24]

Mii(z) = ¢ —(z —21)[(ys — y1)za + (ya — 1)) |, T,y € Qf

(we—wz)(ys—yg)i(ms—wz)(ya—yg) (y —y2) (23 — 22) — (y3 — y2)(z — 32) |, =,y € Q3
\

(3)

The shape function Myy(z) expression is obtained by using the equations of the two planes

defined by nodes 2, 3 and 6 for one sub-domain and 1, 4 and 6 for the second one (see Figure

1). These geometric conditions are sufficient to define Myg(z) for the real displacement field.

The same shape function also satisfies the patch test condition (e.g. see [11]) which enforces the
element capability to represent constant stress field.

M (x,y) M:(x,y)

Figure 2: Incompatible modes corresponding to displacements a) and strain b) discontinuities of
CST element

With these results in hand, the strain field can be written as follows:

3
e"(z,1) = Y Balz)da(t) + Grr(z)om(t)

a=1

1
+ (07 @n)GE (@ar(t) + 5 [n” @m+m’ ©n|G (@)Ai(t)
1
= Bd + Grra + (IlT X l’l)G(Ilr ar + 5 |:IIT ®m + mT ® ni| Gﬁﬁl (4)

where B(z) are the well known strain-displacement matrix for CST element, containing the
derivatives of the element shape functions (e.g. see [28]),

ON ON.
i 8]0V o Bg o Bg

IS(gj = 0 _E_L 0 —5—2 0 —5—3 (5)
oN, oN, N, oN, oN, oN,
o

oy or oy on oy

and Gr, (z) contains the derivatives of the first incompatible mode

N N
e, 0
ON. ON.

Gy, (z) = 0 o T o (6)
ON, | ONg 0N, | ONg
oy oy ox ox
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This matrix can be decomposed into two parts, namely a smooth part and an irregular part
Gi, = Gy, + Gy, dr,

= - Z Ba+n5ps (7)
~—~—

acQet =
Gi,

Gr

r

In (7) above, drg is the Dirac delta function providing the jump of displacement field. It is
important to note that such a shape function ought to be modified into G, for representation
of the virtual strain field .

G1, = G1, + G1,dry (8)

This kind of modification, needed to enforce the satisfaction of the Patch Test ([28]), can be
obtained by following procedure first proposed for a modified version of the Incompatible Modes
Method (see [11]) leading to:

1

Gr(2) = Grl@)- | G0
1 Ir
= - Ba+—/ Y Bud— Tnt nirg (9)
acQet A Jar acQet A =
h Y ~ G, drg
Gi

v

Finally, in (4), Gy is the matrix containing the derivatives of the second shape function
M (z):

e (10)
(z6—22)(ys—y2)— (23 —22)(y6 —y2) lys — vl .y €8

{ ~ TGy (W~ )zt syl zy € 9f
1

(11)

OMip(z) _ (1;6711)(y47y1)1(z4711)(y67y1) [($4 - Il) + (mﬁ - II)Z4] y T,Y € Q?
dy o i Ig—,’lﬁg], ﬂﬁ,yEQS

2.2 Operator split solution for interface failure

The total system consists of four equilibrium equations, with (12a) as the global equilibrium
equation and (12b) to (12d) are corresponding to the local ones. Equations (12b) to (12¢) have
to be solved only in case of activation of the displacement discontinuity in the normal or the
tangential direction.

ﬁg? [f:]nt — fet = 0] fne 22%61(;5 Joe NTbd2 =0

1= g Gy 0d2=0

e — v 12
hf’ =0 Jae G’%TadQ =0 (12)
hy; =0 Jope Glod2 =0

By the consistent linearization (e.g. see [7]) of this system of equations we obtain in the matrix
form

, 8. (k)
K F¢ F° P Ag \ED B
Fp° Hy° Fy  FY Ao | o )
F¢ Fy  H)Y FLC Apr | o
T Aagg 0

T
e Fe RS Hy



The expanded form for each block can be written as follows:

K¢ = [, BT : C? : BdQ

F1“ = [ B": C?: (n" @ n)G{ d

Ffl’e = [qe BT . Cer . % (nT em+m? ® n) GdeQ
F{ = [ BT : C?: Gppd(

Fi = [, GoT C: BAO

—_—Q
H" = Jae G?U’T :C?: (n”T ® n)G‘f‘r d) + st Gy, oy
F¢ = er Gf‘U’T - Cep . % (nT @m+m! ® n) G’idQ
Fy° = [ G0 CP . GrdQ)

T bt s

dar

) (14)
Ff; = [ GLT 1 CP . BdQ)
F% = er G{J’U,T . Qep - (nT R l’l)G(IlrdQ .
B _ BT . cvep . 8 G, ~
B = [ G700 om e ) GLan ¢y, G
F{ = [0 GLT: C7 1 Grud®

F5i' = [, G : C” : BdQ

F&° = [,. G4 C?: (" @n)G{ dO

F)¢ = [.GL:C?: 1 (" @m+m” @n) G d
H{ = [, G : € GudQ

In order to solve this system, we carry out static condensations (e.g see [27]). The last three
equations are solved at local level (numerical integration points), thus the total number of global
unknowns remains the same as with the standard CST element. These static condensations leads
to the effective stiffness matrix (see [23]), which can be written as follows:

1 5
Fp ~Hy Fg F{* (15)
P w R

k

ire(k) _ yee(k) , B,
Kn+1 _Kn—l—l_ F(Ilre FITe Ffl il

n+1 n+1

Finally, the global system of equations (12) is solved to obtain the updated value of the dis-
placement field dgk_:_ll) = dgk_l)_l + Adgk_:_ll)

> (k k+1 k
K¥ . adt) = )

n+1 n+1 (16)

2.3 Model problem of localized failure

In this section we consider the constitutive behavior at the interface in more details. As already
mentioned, the positions of the interfaces are prescribed in advance according to the positions of
the inclusions and we suppose that cracks can occur only at the interfaces. In order to investigate
these interfaces behavior, we shall consider the second equation of the system in (12).

. =T
Gi,0d2+ [ Gy trgdl =0 (17)
Qe T's
—T =T
GIUUdQ+GIUtFSlFS =0 (18)
Qe



From (18) above we can simply obtain the traction-vector at the interface as a function of the
length of the interface and of the strain field

1 _
trg = —— Gi odf2
Qe
ngp
= ZGI C: |Bd + Gniamn + (n” @ n)Gf o1
zFS — '
1 .
+3 [nT @m+m! ® n} G’iﬁl] Jrwy (19)

where ngp is the total number of integration points in each element and j; and w; are respectively
the isoparametric transformation jacobian and the numerical integration weight.

Considering only a nonlinear part of strain at the given interface, we can further obtain an
increment of traction-vectors according to:

npg
1 .
Atry = I Z G, : C”: | (n” ® n)G§ Aag + 3 n” @m+m’ g n} G{ Apr | jiwy
S
1 X7
= —— Y Gp, :C?: (0’ @n)G{ - jiw, -Aag
s 15
goef
L 1
——ZGI :C?:~In" @m+m’ ®@n| - jiw Ay
's o 2
kP ;
= K& Ao+ KD, Apy (20)

In order to represent the debonding between the two phases, we choose a softening law of
exponential form for the crack both in normal and in tangent directions. The corresponding
failure criteria have been chosen as follows:

D
¢n+n1 =lpy1-n— (Uf - Qn+1) <0 (21)
where
4P = (000 — 05) [1 = €70 (22)
The integration algorithm is based on a trial state which looks like:
D
it =tn-n = (0 = q7) (23)

According to this trial state, the increment of the softening variable depends on the plastic
multipliers

£n+1 = gn + AgnJrl = gn + Yn+1 (24)

In order to obtain these given parameters v,41, we solve the following local equation by using
Newton’s method

St = Mspes = (05 = ais)
= st n—(op — qq?)J"“L?H - an + Atr,,, 1
e
= ¢rlz)-i—n1’tr + (000 — 0%) [1 - e_b%ﬂ} ™+ AtFS,n+1 n (25)
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The traction-vectors are then updated along with the internal variable which govern the
softening;:

_ ttT‘ D,tr

. D _ D
LN Csnt1 + Ath,n+1a Gn41 = Qi1 + AQn+1 (26)

Finally, the incompatible mode parameters oy and [y are computed in the manner similar to
plastic strain at the interface:

¢ ¢
i1 = QL 41 + A1 nyi; Brn+1 = Bint1 + ABrns (27)

With the local incompatible modes parameters ag 1 and Bi,41 we can update the strain field
in each sub-domain of the element. By using operator-split solution procedure (15) we solve the
global system of equations in (16).

3 Probability aspects of inelastic localized failure for heteroge-
nous materials

The main objective of this section is to illustrate the possibilities provided by the use of struc-
tured mesh representation and the efficient computation capabilities of the proposed model for
dealing with random heterogeneities. To that end, we consider herein a porous material (typical
of many cement-based material) at a meso-scale level. At this scale we assume that such material
is characterized by a two-phase microstructure with a solid phase and a fluid phase. The former
will be referred as the "matrix” and the latter is supposed to represent the voids or inclusions.
Depending on the number of inclusions, their sizes and positions, the non-linear macroscopic
response of such a material will vary. In other words, the macroscopic characteristics, such as
Young’s modulus or the yield stress, will be influenced by the meso-scale geometry. Our goal
here is to carry out numerically the variations of the macroscopic characteristics upon the in-
clusion sizes and positions. The key point for this study is that the variability introduced into
the model is restricted to the specimen geometry only, whereas the mechanical characteristics
of the two phases are assumed to be deterministic.

To be more precise, the matrix phase is supposed to be accurately modelled by an elastic-
perfectly plastic model based upon the Drucker-Prager criterion (see [5]). The voids are repre-
sented by a simple linear isotropic elasticity model with very small Young’s modulus value. In
the following sections we first begin to describe the Gibbs point process, leading to the realiza-
tions of the meso-structures. We also show an example of one typical mesh obtained and the
corresponding macroscopic response to a tension test. Then we turn to the description of the
stochastic integration method which has been chosen to numerically solve this problem and the
corresponding Software Engineering aspects. Finally we show and discuss the results obtained
for this stochastic problem.

3.1 Meso-scale geometry description

Here we describe both the process and the hypothesis leading to the meshing procedure within
a rectangular domain (3.6 x 1.8em?). The meso-structure geometry of such domain is here
supposed to be accurately modelled by a Gibbs point process. Such point process is built on a
two steps scheme. The first one is the determination of the inclusions number according to a
Poisson law. The second step consists in the determination of the inclusion centers coordinates
as well as the radius for each inclusion. While such a Gibbs process already naturally leads to
a set of non-intersecting inclusions, we applied an even more restrictive criterion, by choosing
the minimal distance between the inclusions (here equal to 2mm). Moreover, in order to be
consistent with the mesh size and the model features, the inclusions radii are bounded between



0.01mm and 0.3mm. Figure 3 shows a particular realization of the meso-structure and the
corresponding structured mesh. We can notice that each inclusion is correctly modelled by a set
of discontinuities without any major distortion.

O -
@ s

O 0O E

Figure 3: Meso-structure geometry a) and corresponding mesh b)

Since the material parameters are chosen to be deterministic, the statistics of the macroscopic
response depends on the meso-structure geometry only, defined by the inclusions radius and
centers positions. Thus the macroscopic problem is stochastic and requires stochastic integration
method which is presented in the next section.

3.2 Stochastic integration

Since the positions and the dimensions of the inclusions in the matrix are described by discrete
random fields defined by Gibbs point processes, we obtain a random macroscopic behavior for
this mechanical model. A 2D random point process can be defined as a finite set of random
variables, which are indexed by the spatial coordinates vectors in R%. As a result, the geom-
etry of our structure is defined as a random field, which implies that every solution computed
by the mechanical model is also a random field. For example, the structure displacement at
a fixed point is also a random variable. In this study, we are interested in characterizing the
macroscopic mechanical properties of our structure. To achieve this goal, we use a global ap-
proach which consists in identifying the material properties governing the global behavior of
the structure. More precisely, we aim to determine the effective global material properties by
the corresponding identification of the global response computed by the Finite Element model.
Therefore, since the global responses (displacement and reactions) are random variables, the
global material properties we aim to identify, such as the Young modulus or the yield stress, are
also random variables.

Probabilistic characterization of the macroscopic mechanical properties can be viewed as de-
scribing the probabilistic law followed by each of these properties. Two approaches can be drawn
to find a probabilistic law describing a random phenomena. The first one, so-called frequentist
approach [14], is based on statistical tests, like the x? test for the Gaussian probability law.
Results of these tests are error margins that evaluate how the outcomes of the given random
phenomena fit with respect to a given probability law. The second, so-called Bayesian approach
[12], is trying to use all the available information along with the maximum entropy theory (see
[21], [25]) in order to provide the most general probability law for a given state of information;
thus, to fully describe this probability law, the statistical moments of different orders have to be
computed. In this work, the second approach is chosen. The macroscopic material properties
we tend to characterize are all defined on the positive real line. Moreover we assume that they
can be given a mean value and a finite standard deviation. On the basic of such information,



the maximum entropy theory leads to the most general probability law for this case in terms of
the log-normal distribution, which is fully described by its computed mean value and standard
deviation.

Consequently, in order to characterize the macroscopic mechanical properties using the
Bayesian approach, the first two statistical moments of each of these properties have to be
computed. The statistical moment of any random variable is an integral of a functional of this
random variable over a probability space. Hence, an efficient numerical tool to compute such
integral in multi-dimensional space is required. Rather than high order quadrature rules like
Smolyak algorithm [24], we use here a simple direct integration algorithm is Monte Carlo simula-
tion [3]. The basic idea of Monte Carlo simulation is to approximate the integrals of a functional
of a random variable by a weighted sum of realizations of this random functional. Let £ be a
random variable defined on some probability space (2, B, P), where  is the space of events, B
is a o-algebra built on 2 and P a probability measure. Any defined moment of ¢ can be written
as [, f(¢(w))dP(w). The simple Monte Carlo algorithm consist in approximating this integral
as a finite weighted sum of realizations f({(w;)), each computed at a randomly independent
chosen point w; in €2, multiplied by the corresponding weights % (with N the given number of
realizations)

1 N
[ renare) = 5 3 siee) (28)

For this kind of numerical integration, the convergence rate can be a priori computed thanks
to the central limit theorem [16]. We can find the error estimate which is proportional to the
standard deviation of f(¢) over v/N, N being the number of evaluations of f(¢). As each real-
ization of the Gibbs process is stochastically independent from the others, this method can be
directly applied here and further more parallelized using an appropriate software environment to
eliminate the main drawback of Monte Carlo algorithm, the slow-rate convergence. In this case,
where no correlation exists in the geometrical space, no other tools such as Karhunen-Loeve
expansion is required (see [16], [4]).

The software architecture used here is based on the software component technology and
the middleware CTL [19], which provides the adequate network environment to enable code
communication under a prescribed protocols and more generally code coupling. The basic idea
of software component technology is to divide a software framework into several tasks and then
to implement software components, each of them being able to carry out this particular task.
Existing software can be turned into a component by defining an interface through which the
communication will be channelled. Implementing a component from for a pre-existing program
consists in coding a set of methods that other software can call through this interface. In the
case of Monte Carlo simulations, two different tasks can be drawn. One is to generate a Gibbs
process and to transfer this result defining the inclusions geometry in a structured mesh. The
other is to run a computation with this given geometry within the mechanical model defined in
the first section. A CTL software component has been previously obtained [18] from the FEM
code FEAP [28] where also the mechanical model has been implemented. The second component
in charge of the geometry generation (the so-called client in Fig. 4) will ask for several runs of
the FEAP component at the same time each using a different geometry.

Further details on the use of this parallel framework and results are presented in the following
subsection.
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Figure 4: Parallel software architecture for Monte Carlo simulations

4 Results of the probabilistic characterization of the two phases
material

4.1 Tllustrative examples

In order to show the main features of this model, we shall first present two simple examples.
The first deals with a perfectly-plastic Drucker-Prager matrix (see [5]) in which are placed cir-
cular voids (Figure 5). We show by this example the capability of our model to represent strain
field discontinuity by choosing a small value of Young’s modulus for the voids sub-domain. In
Figure 6a we show the stress-strain diagram computed for elastic-perfectly-plastic behavior of
the matrix material.

~7 / A 7

Figure 5: Tension test on a square specimen with a circular inclusion

In the second example we use the same specimen geometry with a circular inclusion (see
Figure 5), but assuming than the inclusion will have the same Young’s modulus as the matrix
and that the crack can occur only at the interface between two phases.

The post-peak behavior at the interface is represented by exponential softening law, leading
to computed stress-strain response shown in Figure 6b.

4.2 Comparison between structured and unstructured mesh approach

In this part we consider the same microstructure as in the previous section. We want to show the
difference between two meshes. The first case (Fig. 7a) presents adaptive exact mesh obtained
by using the software GMSH, where each element contains only one phase. In this case several

11



Example I | Example 1T
Ey, MPa 30000 30000
Ey, MPa 30 30000
v 0.2 0.2
oy, MPa 20 -
oy, MPa - 1.5
oy, MPa - 4.0
u, cm 0.04 0.001

Table 1: Material parameters for two examples

40 T T T T T 20

20 - 10— 4

Stress, MPa
Stress, MPa

0 L 1 L 1 1 0 L L L L L L L L L L

L L
0 0,002 0,004 0,006 0,008 0,01 0 5e-05 0,0001 0,00015 0,0002 0,00025
Strain, % Strain, %

Figure 6: Strain-stress diagram for a) elastic-perfectly-plastic matriz and b)exponential softening
law at the interface

elements are strongly distorted, since we do not optimize this mesh with respect to the element
sizes, the stiffness matrix is poorly conditioned. The second case (Fig. 7b) is our regular mesh
which we use in the calculation. In this case, the elements can represent two phases to model
the inclusions.

L1}

L1 1]
L]
1]

1]

Figure 7: Adaptive mesh a) and reqular mesh b) with inclusions

Moreover, Fig. (8) shows the axial displacement contour plot (with an amplification factor
of 100) and the corresponding macroscopic axial reactions displacement curve.

We obtain almost the same response for both cases, but with very different time of calculation
for irregular mesh as 11774.68 s and for regular mesh as 646.41 s. This simple example points
out one of the major advantage of the proposed model in term of computation time decreasing.
This point is a key point in order to tackle macroscopic models of heterogeneous materials
taking account for the meso-structure geometry (for example through numerical homogenization
methods).
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4.3 Numerical results and discussion

By combining both the deterministic problem presented above and the stochastic numerical
integration method detailed in the previous section, we performed Z = 9999 integration points,
each of them corresponding to a single meso-structure realization. These integration points have
been distributed on 9 processors leading to a 7-day computing time and we shall present here
the different results.

The first point to be mentioned deals with the meso-structure geometry, (which are the ”in-
put” parameters according to the stochastic integration method point of view). Namely, each
meso-structure realization is built by using a modified Gibbs point process with inclusions ra-
dius bounded between 0.01 mm and 0.3 mm. Fig. 10 shows the voids volume fraction (ratio of
the voids volume versus the total volume) histogram corresponding to the Z realizations. The
associated mean value is 6.26 % and the standard deviation 3.59 %.

The global stochastic integration process is leading to a set of Z axial reaction force-
displacement diagrams. In Fig. 10 we show 100 realizations sample for this macroscopic result.
It is worth to recall again that the variability shown by this sample is only due to the meso-
structure geometry variability (the material parameters being deterministic and so constant
along the realizations). Moreover we can note that some meso-structures inside this sample
have no inclusions. This behavior is directly linked to the Gibbs point process properties, in
particular to the discrete Poisson law leading to the inclusions number.

In Fig. 11 we show by using the set of Z macroscopic axial reactions-vs-displacement curves
the estimated mean macroscopic stress-strain curve as well as the 99.9% confidence interval.
With this confidence interval being quite narrow, we can conclude that the number of integration
points used in the stochastic integration method is sufficient to make accurate conclusions and
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Figure 11:  Mean stress w.r.t the strain a) withe error bars on the mean b) with standard
deviation interval

to provide good estimates of statistical moments. The macroscopic stress o and strain € are
defined as equivalent homogeneous quantities,

u o= > Ri
L. L,

where L, and L, are the size of the domain and R; the axial reactions. This macroscopic mean
curve leads to the determination of an estimate for the macroscopic mean Young’s modulus
as well as to an estimate of the maximum stress mean o;. In order to provide a mean yield
stress estimate, Fig. 12 shows the evolution of the Young’s modulus mean along the macro-
scopic strain. We can note that the modulus is smoothly decreasing up to a strain limit before
a much more rapid decrease beyond this point. We assume this limit to be an estimate for the
macroscopic yield strain or for the macroscopic yield stress as well.

€= (29)

Table 2 summarizes all the statistical macroscopic estimates obtained from this numerical
example.

5 Conclusion

When dealing with the Finite Elements modelling of heterogeneous structures, meshing is one
of the major issues leading to distorted and bad conditioned tangent operators as well as time-
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Figure 12: Slope of the curve mean stress vs. strain w.r.t the strain

Mean Estimator 99.9% confidence interval std-dev interval

Ou 66.3651 MPa [66.3575 MPa, 66.3727 MPa] | [58.2215 MPa, 74.5087 MPa]
oy 23.4998 MPa [23.4946 MPa, 24.5050 MPa] | [21.5254 MPa, 25.4742 MPa]
E 9.9371 GPa [9.7887 GPa, 10.0855 GPa) [9.2742 GPa, 10.6000 GPa)]

Table 2: Statistics of the outcome properties of Monte Carlo simulations

consuming algorithms. In this work we first proposed a numerical approach based on regular
and structured meshes which are not constrained by the physical interfaces. Based on classical
CST elements we showed how to enhance the elements kinematics using the Incompatible Modes
Method providing two kind of discontinuities. The first one consists in a strain discontinuity
inside the element in order to model the different elastic properties of the two phases. The
second discontinuity corresponds to a displacement one and allows to model the interface failure
(e.g. debonding) according to two different mechanisms (normal and tangential). By using a
2D numerical comparison on a porous media with a perfectly plastic matrix, we showed that
the computation time is strongly lower within the context of such a regular mesh.

With such a modelling tool in hand we also presented how to take into account for the
variability of the geometrical description at the meso-scale level. These geometries are modelled
by using modified Gibbs points processes with circular inclusions. Although the material prop-
erties of the two phases are assumed to be deterministic, this variability leads to a stochastic
problem to be solved. In this work we employed the classical Monte-Carlo method in order
to produce the statistical moments of the desired quantities. Using the Components Template
Library (CTL) the Finite Elements code FEAP we produced 9999 realizations. The statistics of
the outcome properties exhibit quite narrow confidence intervals. These numerical results can
then be viewed as macroscopic properties for this porous media within the context of a classical
phenomenological model.
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