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Abstract. A nonlinear system of two delay differential equations is proposed to model hematopoi-
etic stem cell dynamics. Each equation describes the evolution of a sub-population, either prolifer-
ating or nonproliferating. The nonlinearity accounting for introduction of nonproliferating cells in
the proliferating phase is assumed to depend upon the total number of cells. Existence and stability
of steady states are investigated. A Lyapunov functional is built to obtain the global asymptotic
stability of the trivial steady state. The study of eigenvalues of a second degree exponential polyno-
mial characteristic equation allows to conclude to the existence of stability switches for the unique
positive steady state. A numerical analysis of the role of each parameter on the appearance of
stability switches completes this analysis.

Key words: nonlinear delay differential system, second degree exponential polynomial, Lyapunov
function, stability switch, hematopoietic stem cell dynamics
AMS subject classification: 34K99, 34K60, 34D20, 11D61, 92C37

1. Introduction
In a previous publication (Crauste [11]), we considered a nonlinear model of hematopoietic stem
cell dynamics, inspired by the model of Mackey [16]. It consists in a system of two delay differ-
ential equations describing the evolution of a proliferating and a nonproliferating cell population.
A nonlinear term relates the dynamics of both populations.
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Mackey’s model [16] has been proposed at the end of the seventies, based on previous works by
Lajtha [15] and Burns and Tannock [9], to describe the dynamics of hematopoietic stem cells and
related diseases. Since then it has been improved and analyzed by many authors, including Mackey
and co-authors [17, 18, 20, 21] and Adimy et al. [1, 2, 3, 4]. All these works considered that the
nonlinear term, which describes the rate of introduction of nonproliferating cells in the proliferating
compartment, depends only on the nonproliferating cell number. This leads to an uncoupled system
of delay differential equations, in which the nonproliferating cell population dynamics prevail. It
has been justified (for instance by Mackey [16]) as follows: the activation of nonproliferating cells
depends on the number of free receptors at their surface. Even though this seems biologically
correct and is widely accepted, it does not take the number of proliferating cells into account in
the activation of nonproliferating cells. One question may arise: Is the number of activated cells
independent of the number of actually proliferating cells ? Since a majority of hematopoietic stem
cells (95%) is known to be nonproliferating (see [1, 16]), one may suppose that a control operates
on the proportion of proliferating cells, and the total number of hematopoietic stem cells probably
plays a role in the introduction of nonproliferating cells in the proliferating compartment. The
nature of this role cannot be detailed yet. One may imagine very complex relations, but in this
work we simply investigate the particular case when the total cell population (that is the number of
proliferating and nonproliferating cells) triggers the introduction in the proliferating phase.

Such a model has already been investigated in [11], in a particular case when the mortality
rates of proliferating and nonproliferating cells were assumed to be equal. This situation is very
restrictive, and not biologically reasonable. Nevertheless, the mathematical analysis of the model
proved to be clear and easier to present. In this paper, we consider the general case, with no
assumption on the mortality rates, except that they are nonnegative quantities. The delay system we
obtain is not decoupled and, in particular, the analysis of the local asymptotic stability is performed
through the study of eigenvalues of a second degree exponential polynomial characteristic equation
with delay-dependent coefficients.

Before giving a brief summary of the work presented in this paper, let us recall the basis of
hematopoietic stem cell dynamics. Hematopoiesis, the blood production process, is based on a
cell population divided in two compartments, a proliferating and a nonproliferating phase, able to
produce, by successive divisions, all types of blood cells (white cells, red blood cells and platelets).
Nonproliferating cells are in a quiescent stage, where they can stay their entire life. They are able
to differentiate in more mature cells, and they are introduced in the proliferating phase with a
nonlinear rate (as described above). Proliferating cells can die by apoptosis, a programmed cell
death, and divide after a given time. They produce two daughter cells that immediately enter the
nonproliferating phase. A destabilization of this system can cause hematological diseases, such as
leukemias or anemias [14]. Some of these blood diseases are characterized by temporal oscillations
of blood cell counts [12], and then a mathematical analysis of hematopoietic stem cell dynamics
can be a useful tool to determine the causes of the destabilization. For instance, Pujo-Menjouet
and Mackey [21] and Pujo-Menjouet et al. [20] gave an insight into Mackey’s model [16] by
highlighting the role of each parameter of the model on the appearance of periodic solutions, and
applied the model to the study of chronic myelogenous leukemia [12]. Bernard et al. [8] used a
similar approach to investigate the causes of cyclical neutropenia, an other periodic hematological
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disease.
The model we focus on in this paper consists in two nonlinear delay differential equations,

where the delay accounts for cell cycle duration and the nonlinear term depends on the sum of
the two variables (see (2.3)–(2.4)). We investigate the existence of steady states, and their stability.
The global asymptotic stability of the trivial steady state, describing cell’s dying out, is obtained by
constructing a Lyapunov functional in Section 4. Then, we concentrate ourselves in Section 5 on
the local stability of the unique positive steady state. The linearization of the initial system leads
to a second degree exponential polynomial with delay-dependent coefficients. Such equations
are known to create stability switches [2, 7, 11]. We analyze the existence of stability switches
for the positive steady state. This study is completed by a numerical investigation of the role of
each parameter on the stability of the system in Section 6, which completes the analysis. We
conclude with a discussion, showing in particular that the model we propose exhibits similarities
with Mackey’s model [16] and gives interesting prospects regarding the behavior of hematopoietic
cell populations.

2. A delay system of blood cell production
We consider the classical Mackey’s model [16],

dN

dt
(t) = − (δ + β) N(t) + 2e−γτβN(t− τ), (2.1)

dP

dt
(t) = −γP (t) + βN(t)− e−γτβN(t− τ), (2.2)

describing the evolution of a hematopoietic stem cell population, located in the bone marrow. The
population consists in two distinct sub-populations, nonproliferating and proliferating cells, whose
densities are respectively denoted by N(t) and P (t).

Nonproliferating cells differentiate with a constant rate δ ≥ 0, and are introduced in the pro-
liferating phase with a nonnegative rate β. Proliferating cells die by apoptosis (programmed cell
death) with a rate γ ≥ 0, and divide after a time τ . The last term in (2.1) accounts for proliferating
cells that have performed a complete cell cycle, divided, and then enter a new nonproliferating
stage. These cells are in fact nonproliferating cells introduced in the proliferating phase a time τ
earlier. This creates delayed terms in system (2.1)–(2.2).

Similarly to what we did in [11], we assume the rate of introduction β depends on the total pop-
ulation of hematopoietic stem cells, denoted by S. Indeed, S = P + N . This assumption stresses
the fact that the nature of the trigger signal for introduction in the proliferating phase is the result
of an action on the entire cell population. For example, it can be caused by molecules entering
the bone marrow and fixing on hematopoietic stem cells, activating or inhibiting their proliferating
capacity. This occurs in particular for the production of red blood cells. Their regulation is mainly
mediated by a hormone (a growth factor, in fact) called erythropoietin, produced by the kidneys
under a stimulation by circulating blood cells (see Bélair et al. [6], Mahaffy et al. [19]).
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From now on, we assume then
β = β(S(t)).

The function β is supposed to be continuous and positive on [0, +∞), and strictly decreasing with

lim
S→∞

β(S) = 0,

to take into account larger introduction of cells when there is a lack of hematopoietic stem cells
(see Crauste [11], Mackey [16], Pujo-Menjouet and Mackey [21], and the references therein).

Adding equations (2.1) and (2.2), we deduce a system of delay differential equations, satisfied
by N(t) and S(t), given by

dN

dt
(t) = −δN(t)− β(S(t))N(t) + 2e−γτβ(S(t− τ))N(t− τ), (2.3)

dS

dt
(t) = −γS(t) + (γ − δ)N(t) + e−γτβ(S(t− τ))N(t− τ). (2.4)

For a given initial condition (ϕ, ψ), defined on the interval [−τ, 0], system (2.3)–(2.4) has a
unique continuous solution (Nϕ(t), Sψ(t)), well-defined for t ≥ 0 (see Hale and Verduyn Lunel
[13]). Moreover, solutions are positive, as stated in the following lemma.

Lemma 1. For all nonnegative initial conditions, the solution N(t) of (2.3) is nonnegative. More-
over, assuming

S(0) ≥ N(0) +

∫ 0

−τ

eγθβ(S(θ))N(θ)dθ, (2.5)

the solution (N(t), S(t)) satisfies, for all t ≥ 0, S(t) ≥ N(t) ≥ 0.

Proof. First concentrate on the positivity of N(t). Suppose there exists T > 0 such that N(T ) = 0
and N(t) ≥ 0 for t < T , and there exists 0 < ε < τ such that N(t) < 0 for t ∈ (T, T + ε). Then,
from (2.3) and since β is a positive function,

dN

dt
(t) > 0 for all t ∈ (T, T + ε).

This leads to a contradiction, and consequently N(t) ≥ 0 for all t > 0.
Now, assume (2.5) holds true. We focus on the difference S(t) − N(t), that equals P (t) and

satisfies equation (2.2). Hence, one easily obtains, for t ≥ 0,

eγt [S(t)−N(t)]−
∫ t

t−τ

eγθβ(S(θ))N(θ)dθ = S(0)−N(0)−
∫ 0

−τ

eγθβ(S(θ))N(θ)dθ.

From (2.5), one deduces

S(t) ≥ N(t) + e−γt

∫ t

t−τ

eγθβ(S(θ))N(θ)dθ, for all t ≥ 0.
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Since N is nonnegative and β is positive, then
∫ t

t−τ

eγθβ(S(θ))N(θ)dθ > 0 for all t ≥ 0,

and we deduce that S(t) ≥ N(t) ≥ 0 for all t ≥ 0.

Condition (2.5) has a strong biological meaning. The integral term
∫ 0

−τ
eγθβ(S(θ))N(θ)dθ

represents the population of cells that have been introduced in the proliferating phase at time θ ∈
[−τ, 0] and that have survived at time t = 0. From a biological point of view, the population in the
proliferating phase at time t = 0 should be larger than this quantity, and this is what (2.5) indicates.

One can note that the positivity of S(t) can be handled similarly to the positivity of N(t) when
γ ≥ δ. However, when γ < δ, (2.5) is necessary to obtain the positivity of S(t).

Next, we investigate the existence of steady states of system (2.3)–(2.4). A steady state is a
solution (N, S) satisfying

dN

dt
=

dS

dt
= 0.

We deduce
[
δ − (2e−γτ − 1)β(S)

]
N = 0, (2.6)[

γ − δ + e−γτβ(S)
]
N = γS. (2.7)

The following proposition states the existence of two steady states.

Proposition 2. Assume
(2e−γτ − 1)β(0) > δ. (2.8)

Then system (2.3)–(2.4) has two steady states, (N, S) = (0, 0) and (N, S) = (N∗, S∗), where
S∗ > 0 is the unique solution of

(2e−γτ − 1)β(S∗) = δ,

and

N∗ =
(2e−γτ − 1)γ

(2e−γτ − 1)γ + (1− e−γτ )δ
S∗.

If (2.8) does not hold, then system (2.3)–(2.4) has only one steady state, (N, S) = (0, 0).

Proof. First, one notices that (N, S) = (0, 0) is always a solution of (2.6)–(2.7). Moreover, one
can easily check, from (2.6)–(2.7), that N = 0 if and only if S = 0.

Let search for solutions of (2.6)–(2.7) such that N > 0 and S > 0. From (2.6),

(2e−γτ − 1)β(S) = δ, (2.9)

and, from (2.7),

N =
γS

γ − δ + e−γτβ(S)
.
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Since β is decreasing and tends to zero at infinity, equation (2.9) has a solution, which is unique, if
and only if (2.8) holds true. Using (2.9) in the expression for N above, one obtains the expression
of N∗. This ends the proof.

Condition (2.8) is equivalent to

δ < β(0) and 0 ≤ τ < τmax :=
1

γ
ln

(
2β(0)

δ + β(0)

)
. (2.10)

Thus, the positive steady state exists provided that the maximum rate of introduction is larger than
the mortality rate δ, and the cell cycle duration τ is not too large. One can note, in particular, that
when the unique positive steady state exists S∗ ≥ N∗ and 2e−γτ − 1 > 0.

The next section is devoted to the linearization of system (2.3)–(2.4) about one of its steady
states to analyze its local asymptotic stability.

3. Linearization and characteristic equation
The linearization of system (2.3)–(2.4) will allow analyzing the asymptotic behavior of its solu-
tions. We assume β is continuously differentiable on [0, +∞).

Let (N, S) be a steady state of system (2.3)–(2.4), and define

α = α(N, S) := Nβ′(S) and β := β(S). (3.1)

System (2.3)–(2.4) linearized about (S, N) writes




dN

dt
(t)

dS

dt
(t)


 = A1

(
N(t)

S(t)

)
+A2

(
N(t− τ)

S(t− τ)

)
,

with

A1 :=

(
−(δ + β) −α

γ − δ −γ

)
, A2 := e−γτ

(
2β 2α

β α

)
.

The characteristic equation of the above system, associated with (N, S), is

det(λ−A1 − e−λτA2) = 0,

that reduces to the second order exponential polynomial

∆(λ, τ) := Q2(λ, τ) + Q1(λ, τ)e−λτ = 0, (3.2)

where
Q2(λ, τ) := λ2 + a1(τ)λ + a2(τ) and Q1(λ, τ) := a3(τ)λ + a4(τ), (3.3)
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with
a1(τ) = δ + γ + β, a2(τ) = γ(δ + β) + α(γ − δ),

a3(τ) = −(α + 2β)e−γτ , a4(τ) = [α(δ − 2γ)− 2γβ]e−γτ .
(3.4)

One may note that coefficients ai, i = 1, . . . , 4, depend explicitly but also implicitly on τ through
the values of the steady states N and S.

Let us recall that the steady state (N, S) is locally asymptotically stable when all roots of (3.2)
have negative real parts, and the stability can only be lost if eigenvalues cross the imaginary axis,
that is if pure imaginary roots appear.

We focus, in the next section, on the global stability of the trivial steady state. Then, in Section
5, we will concentrate ourselves on the behavior of the unique positive steady state.

4. Global asymptotic stability
This section is devoted to the asymptotic behavior analysis of the trivial steady state of system
(2.3)–(2.4), that is (N, S) = (0, 0). First, one can note that, from (3.1),

α(0, 0) = 0 and β(0) = β(0),

so the characteristic equation (3.2) reduces to

[λ + γ]
[
λ + δ + β(0)− 2β(0)e−γτe−λτ

]
= 0. (4.1)

Throughout this section, we assume (2.5) holds true, so solutions of (2.3)–(2.4) are nonnega-
tive.

Before stating a necessary and sufficient condition for the asymptotic stability of the trivial
steady state, we prove the next lemma.

Lemma 3. Let (N(t), S(t)) be a bounded solution of (2.3)–(2.4). Then limt→+∞ N(t) = 0 if and
only if limt→+∞ S(t) = 0.

Proof. We first prove that limt→+∞ N(t) = 0 implies limt→+∞ S(t) = 0. From (2.4), and using a
classical variation of constant formula, then, for t ≥ 0, S(t) is given by

S(t) = e−γtS(0) + (γ − δ)e−γt

∫ t

0

N(θ)eγθdθ + e−γt

∫ t−τ

−τ

eγθβ(S(θ))N(θ)dθ.

Let ε > 0 be fixed. Since N tends to zero when t tends to ∞, there exists T > 0 such that

N(t) < ε̃ :=
ε

2

γ

|γ − δ|+ e−γτβ(0)
, for t ≥ T. (4.2)

Then, setting

C(T ) := S(0) + (γ − δ)

∫ T

0

N(θ)eγθdθ +

∫ T

−τ

eγθβ(S(θ))N(θ)dθ,
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one obtains, for t ≥ T + τ , using (4.2) and the fact that β(0) is a bound of β,

|S(t)| ≤ e−γt|C(T )|+ |γ − δ|ε̃e−γt

∫ t

T

eγθdθ + β(0)ε̃e−γt

∫ t−τ

T

eγθdθ,

≤ e−γt|C(T )|+ ε̃

γ

[|γ − δ|(1− e−γ(t−T )) + β(0)e−γτ (1− e−γ(t−T−τ))
]
,

≤ e−γt|C(T )|+ ε

2
.

Let t > 0 be such that
e−γt|C(T )| < ε

2
, for t ≥ t.

Then, for t ≥ max{t, T + τ}, one obtains

|S(t)| < ε.

Hence limt→+∞ S(t) = 0.
Conversely, assume limt→+∞ S(t) = 0. Since, from Lemma 1, S(t) ≥ N(t) ≥ 0 for all t ≥ 0,

we deduce that limt→+∞ N(t) = 0. This ends the proof.

We are then able to state and prove the following theorem, dealing with the global asymptotic
stability of the trivial steady state.

Theorem 4. All solutions (N(t), S(t)) of (2.3)–(2.4) converge to the trivial steady state (0, 0) if
and only if

(2e−γτ − 1)β(0) ≤ δ. (4.3)

Proof. Let us set C := C0([−τ, 0],R+), the space of continuous and nonnegative functions on
[−τ, 0]. We then define, for (ϕ, ψ) ∈ C2,

V (ϕ, ψ) := ϕ(0) + 2e−γτ

∫ 0

−τ

β(ψ(θ))ϕ(θ)dθ. (4.4)

Using (2.3)–(2.4), one can easily check that, for (ϕ, ψ) ∈ C2,

V̇ (ϕ, ψ) = ϕ(0)
[
(2e−γτ − 1)β(ψ(0))− δ

]
, (4.5)

where V̇ is the derivative of V along the solutions of (2.3)–(2.4).
Following the notations in Hale and Verduyn Lunel [13], we deduce that V is a Lyapunov

functional on the set

G :=
{
(ϕ, ψ) ∈ C2 ; ϕ(0)

[
(2e−γτ − 1)β(ψ(0))− δ

] ≤ 0
}

.

From (4.3) and since β is a decreasing function, we obtain G = C2. Now, let

K :=
{

(ϕ, ψ) ∈ G ; V̇ (ϕ, ψ) = 0
}

.
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We first assume
(2e−γτ − 1)β(0) < δ.

From (4.5) we deduce that
K =

{
(ϕ, ψ) ∈ C2 ; ϕ(0) = 0

}
.

We now consider the set M , defined as the largest set in K which is invariant with respect to (2.3)–
(2.4). Let (Nϕ

t , Sψ
t ) be a solution of (2.3)–(2.4) associated with the initial condition (ϕ, ψ). We

recall that, for all t ≥ 0, the function Nϕ
t (respectively Sψ

t ), defined by Nϕ
t (θ) = Nϕ(t + θ) for

θ ∈ [−τ, 0], belongs to C. Then (Nϕ
t , Sψ

t ) ∈ M for all t ≥ 0 is equivalent to

Nϕ(t) = 0 for t ≥ 0.

Consequently,
M = {0} × C.

From Hale and Verduyn Lunel [13], all bounded solutions (Nϕ
t , Sψ

t ) of (2.3)–(2.4) converge to
M as t tends to +∞. Consequently, provided that all solutions of (2.3)–(2.4)) are bounded, they
converge to M as t tends to +∞, that is, for all ϕ ∈ C,

lim
t→+∞

Nϕ(t) = 0.

From Lemma 3, we deduce that limt→+∞ Sψ(t) = 0 so (Nϕ(t), Sψ(t)) converge to (0, 0).
Assume now

(2e−γτ − 1)β(0) = δ.

Then, following the notations above, we obtain

K = {(ϕ, ψ) ∈ C2 ; ϕ(0) = 0 or β(ψ(0)) = β(0)}
= {(ϕ, ψ) ∈ C2 ; ϕ(0) = 0 or ψ(0) = 0} .

Using the same reasoning than above, we obtain

M = ({0} × C) ∪ (C × {0}) .

Using similar arguments, we deduce that all solutions (Nϕ(t), Sψ(t)) of (2.3)–(2.4)) converge to
(0, 0), provided that they are bounded.

Now, let us show that nonnegative solutions of (2.3)–(2.4)) are bounded provided that (4.3)
holds true. Let (N(t), S(t)) be a solution of (2.3)–(2.4), and for t ≥ 0 set

W (t) = V (Nt, St),

where V is defined by (4.4). Then, for t ≥ 0,

W ′(t) = N(t)
[
(2e−γτ − 1)β(S(t))− δ

] ≤ 0.
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Consequently, W (t) is bounded above, and so is N(t). Using a reasoning similar to the one in the
proof of Lemma 3, we deduce that S(t) is bounded when N(t) is bounded.

Eventually, we have proved that all solutions of system (2.3)–(2.4) converge to the trivial steady
state provided that (4.3) holds true.

Let now assume (4.3) is not satisfied, that is (2.8) holds true. Eigenvalues of (4.1) are λ =
−γ < 0 and roots of

∆0(λ) := λ + δ + β(0)− 2β(0)e−γτe−λτ .

Consider ∆0 as a function of real λ. Then ∆0 is increasing and tends to ∞ as λ tends to ∞.
Moreover, ∆0(0) = δ − (2e−γτ − 1)β(0) < 0 from (2.8). Consequently, ∆0 has a unique positive
real root, which is an eigenvalue of (4.1). This implies the instability of the trivial steady state
when (4.3) is not satisfied, and it concludes the proof.

Condition (4.3) indicates that the entire cell population dies out when mortality rates are large
compared to the introduction rate. In this case, the cell population cannot persist, and asymptoti-
cally disappears.

In the next section, we study the asymptotic behavior of the unique positive steady state of
(2.3)–(2.4).

5. Stability switch for the positive steady state
We now investigate the stability of the unique positive steady state of system (2.3)–(2.4), (N∗, S∗)
defined by Proposition 2. We assume (2.8) holds true — or equivalently (2.10) — throughout this
section, to ensure the existence of the steady state. Moreover, we set

α∗ := α(N∗, S∗) = N∗β′(S∗) and β∗ := β(S∗).

To determine whether the positive steady state is locally asymptotically stable or unstable, we
have to study the roots of (3.2). If all roots have negative real parts, then the positive steady state
is asymptotically stable, whereas it is unstable if roots with positive real parts exist.

The mapping ∆, defined in (3.2), is a second degree exponential polynomial, with delay-
dependent coefficients. This particular form makes the study of characteristic roots rather difficult.
In particular, there is no hope to analytically determine some eigenvalues.

Such equations have been studied by Beretta and Kuang [7]. They developed a theory that
allows to determine stability switches (if they exist) or stability areas by simply computing the real
roots of a particular function, which reveals easier to analyze than the full characteristic equation.
This method has been used, for instance, by Adimy et al. [5] to study a characteristic equation
similar to (3.2). In the following, we use the approach of Beretta and Kuang [7] to solve our
problem. At first, we focus on the stability in the absence of delay, that is when τ = 0.

Proposition 5. When τ = 0, the positive steady state of system (2.3)–(2.4) is locally asymptotically
stable.
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Proof. When τ = 0, the positive steady state satisfies β∗ = δ and (3.2) becomes

λ2 + [a1(0) + a3(0)]λ + [a2(0) + a4(0)] = 0.

From Routh-Hurwitz criterion, all characteristic roots have negative real parts if and only if a1(0)+
a3(0) > 0 and a2(0) + a4(0) > 0.

From (3.4), we obtain

a1(0) + a3(0) = δ + γ + β∗ − α∗ − 2β∗ = γ − α∗ > 0,

since α∗ < 0, and

a2(0) + a4(0) = γ(δ + β∗) + α∗(γ − δ) + α∗(δ − 2γ)− 2γβ∗ = −γα∗ > 0.

This concludes the proof.

Since the positive steady state is asymptotically stable when τ = 0, we search for values of
τ ∈ (0, τmax) modifying the stability of the steady state. If instability occurs for a particular
τc, a root of (3.2) must intersect the imaginary axis. We then investigate the existence of purely
imaginary roots of (3.2), and in order to apply the theory of Beretta and Kuang [7], we first check
some properties of the polynomial functions Q2 and Q1.

Let τ ∈ [0, τmax) be given. First, one can see that

Q2(0, τ) + Q1(0, τ) = a2(τ) + a4(τ) =
[
(e−γτ − 1)δ + (1− 2e−γτ )γ

]
α∗ > 0. (5.1)

Secondly,

Q2(iω, τ) + Q1(iω, τ) = −ω2 + a2(τ) + a4(τ) + iω [a1(τ) + a3(τ)] 6= 0,

since, for instance,
a1(τ) + a3(τ) = γ − e−γτα∗ > 0.

Thirdly, from the definition of Q2 and Q1 in (3.3), it is straightforward that

lim sup

{∣∣∣∣
Q1(λ, τ)

Q2(λ, τ)

∣∣∣∣ ; |λ| → ∞, Re(λ) ≥ 0

}
< 1;

Finally, let us define the polynomial function

F (ω, τ) := |Q2(iω, τ)|2 − |Q1(iω, τ)|2 .

Then
F (ω, τ) = ω4 + b1(τ)ω2 + b2(τ),

where
b1(τ) := a2

1(τ)− 2a2(τ)− a2
3(τ) and b2(τ) := a2

2(τ)− a2
4(τ).
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It is clear that F has a finite number of roots. Moreover, F (ω, τ) = f(ω2, τ), where f(z, τ) :=
z2 + b1(τ)z + b2(τ).

Now, let search for purely imaginary roots iω of (3.2). Then, separating real and imaginary
parts in (3.2) leads to

{
a4(τ) cos (ωτ) + a3(τ)ω sin (ωτ) = ω2 − a2(τ),

a3(τ)ω cos(ωτ)− a4(τ) sin(ωτ) = −a1(τ)ω.
(5.2)

One can easily check that ω 6= 0, since a2(τ) + a4(τ) > 0 from (5.1). Moreover, if (ω, τ) satisfies
(5.2), then so does (−ω, τ). Therefore, we only look for positive ω satisfying (5.2).

Adding the squares of both sides of equations in (5.2), one observes that ω must satisfy
F (ω, τ) = 0. Assume

b2(τ) < 0 or
b2
1(τ)

4
≥ b2(τ) ≥ 0 > b1(τ). (5.3)

Then f(·, τ) has at least one positive root, therefore there exists at least one ω = ω(τ) > 0 such
that F (ω(τ), τ) = 0.

Let’s check that (5.3) can be satisfied for some τ ∈ (0, τmax). Indeed, we focus on the first
condition in (5.3). Notice that

b2(τ) = a2
2(τ)− a2

4(τ) = [a2(τ)− a4(τ)][a2(τ) + a4(τ)],

and, from (5.1), a2(τ) + a4(τ) > 0 for τ ∈ [0, τmax). Consequently, b2(τ) < 0 if and only if
a2(τ) − a4(τ) < 0. For all τ ∈ [0, τmax),

a2(τ)− a4(τ) = γ[δ + (2e−γτ + 1)β∗] + [(2e−γτ + 1)γ − 2δ]α∗.

Using (2.9), α∗ = N∗β′(S∗) and the definition of N∗ given in Proposition 2, we deduce that
a2(τ)− a4(τ) < 0 if and only if

S∗(τ)β′(S∗(τ)) < − 4δe−γτ

(2e−γτ − 1)2
× e−γτ (2γ − δ)− (γ − δ)

e−γτ (2γ − δ) + γ − δ
:= ξ(τ).

Consequently, if S∗(0)β′(S∗(0)) < ξ(0), then a2(τ) − a4(τ) < 0 in a neighborhood of τ = 0.
The following proposition states this sufficient condition.

Proposition 6. Assume

β−1 (δ) β′
(
β−1 (δ)

)
< − 4δγ

3γ − 2δ
.

Then there exists 0 < τ < τmax such that a2(τ)− a4(τ) < 0 for τ ∈ [0, τ).
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Suppose now there exists 0 < τ < τmax such that (5.3) holds true for τ ∈ [0, τ). Thus for all
τ ∈ [0, τ) there exists ω = ω(τ) > 0 such that F (ω(τ), τ) = 0. Consequently, for all τ ∈ [0, τ),
and from (5.2), there exists a unique θ(τ) ∈ [0, 2π], such that





cos(θ(τ)) =
[a4(τ)− a1(τ)a3(τ)]ω2(τ)− a2(τ)a4(τ)

a2
4(τ) + a2

3(τ)ω2(τ)
,

sin(θ(τ)) =
a3(τ)ω3(τ) + [a1(τ)a4(τ)− a2(τ)a3(τ)]ω

a2
4(τ) + a2

3(τ)ω2(τ)
.

Then one can check that iω(τ) is a root of (3.2) if and only if τω(τ) = θ(τ) + 2kπ, for k ∈ N, that
is if τ is a root of the function

Zk(τ) = τ − θ(τ) + 2kπ

ω(τ)
, τ ∈ [0, τ), k ∈ N.

One can easily verify that

Zk(0) < 0 for all k ∈ N, and Zk(τ) > Zk+1(τ), for k ∈ N. (5.4)

Hence, if Zk has no positive root, then no Zj function, with j > k, has positive roots. The following
theorem deals with the asymptotic stability of the positive steady state.

Theorem 7. Assume (2.8) holds true. If no τ ∈ [0, τmax) satisfies (5.3), then the positive steady
state (N∗, S∗) of system (2.3)–(2.4) is locally asymptotically stable for τ ∈ [0, τmax). Assume there
exists 0 < τ < τmax such that (5.3) is fulfilled for τ ∈ [0, τ). The following assertions hold:

(i) If Z0(τ) has no root on the interval [0, τ), then the positive steady state of system (2.3)–(2.4)
is locally asymptotically stable for τ ∈ [0, τ).

(ii) If Z0(τ) has at least one positive root on the interval [0, τ), say τc, then the positive steady
state of system (2.3)–(2.4) is locally asymptotically stable for τ ∈ [0, τc), and loses its stabil-
ity when τ = τc. A finite number of stability switches may occur as τ increases and passes
through roots of the Zk functions. Moreover, if

sign
{
2ω2(τc) + b1(τc)

}
sign

{
dZ0

dτ
(τc)

}
> 0,

then a Hopf bifurcation occurs at (N∗, S∗) when τ = τc.

Proof. First recall that, from Proposition 5, the positive steady state of system (2.3)–(2.4) is locally
asymptotically stable when τ = 0. If condition (5.3) is never satisfied on the interval [0, τmax), then
(3.2) has no purely imaginary root. Consequently, the stability of (N∗, S∗) cannot be modified.
The first conclusion of the theorem then follows.
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Assume now (5.3) holds true for τ ∈ [0, τ). If Z0 has no root in [0, τ), then, thanks to the
remark preceding the theorem (see (5.4)), equation (3.2) has no purely imaginary root for τ in
[0, τ) and the conclusion is straightforward.

If Z0 has at least one positive root τc then, from the definition of Zk functions, (3.2) has purely
imaginary roots ±iω when τ = τc, with ω = ω(τc). The stability of (N∗, S∗) switches from stable
to unstable as τ passes through τc. Other stability switches occur when τ passes through roots of
the Zk functions (see Beretta and Kuang [7]).

Finally, the Hopf bifurcation Theorem says that a Hopf bifurcation occurs at (N∗, S∗) when
τ = τc if

d Re(λ(τ))

dτ

∣∣∣∣
τ=τc

> 0,

where λ(τ) is a branch of eigenvalues of (3.2) such that λ(τc) = iω(τc). From [7], we know that

sign

(
d Re(λ(τ))

dτ

∣∣∣∣
τ=τc

)
= sign

(
∂f

∂z

(
ω2(τc), τc

))
sign

(
dZ0(τc)

dτ

)
.

Since
∂f

∂z
(z, τ) = 2z + b1(τ),

the last result of the theorem is proven. This ends the proof.

The above theorem stresses the possibility for a stability switch to occur. However, determining
analytically the roots of the Zk functions is very difficult — and certainly impossible at this time.
Consequently, in the next section, we numerically investigate these stability switches.

6. Numerical simulations
Throughout this section, we focus on numerical simulations showing stability switches, as men-
tioned in Theorem 7. Hence, we concentrate ourselves on the asymptotic behavior of the positive
steady state, the behavior of the trivial steady state being easily determined (see Theorem 4). We
first choose the introduction rate β as a Hill function [11, 16], that is a smooth decreasing and
positive function, defined by

β(S) = β0
θn

θn + Sn
, β0, θ ≥ 0, n > 1.

The parameter β0 represents the maximal rate of introduction in the proliferating phase, θ is the
value for which β attains half of its maximum value, and n is the sensitivity of the rate of introduc-
tion.

The positive steady state exists if and only if (2.10) is satisfied, that is

δ < β0 and 0 ≤ τ < τmax :=
1

γ
ln

(
2β0

δ + β0

)
.
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From Theorem 7, the stability of the positive steady state depends upon the roots of the Zk func-
tions. Consequently, our numerical investigations will consist in determining, for a given set of
parameters (δ, γ, β0, θ, n), the roots of the functions Z0 and if necessary Zk for k ≥ 1. When the
Zk functions have positive roots then the positive steady state undergoes a stability switch.

First, from now on and up to the end of this section, we normalize the value of θ to θ = 1. This
has no consequence on the quantitative behavior of the system (2.3)–(2.4). Then, the number of
parameters determining the stability of the positive steady state equals four: δ, γ, β0 and n. Two
parameters, δ and γ, are mortality rates, whereas β0 and n characterize the introduction rate.

For each pair of parameters, we numerically compute the Zk functions, and determine whether
they have positive roots or not. One may notice that in some cases, the range of the parameters
is limited, mainly because (2.10) must hold for the positive steady state to exist. Two diagrams,
which appeared to be the most interesting for the stability switch analysis, are displayed in Figure
1. They show, in the (n, γ)- and (δ, γ)-planes, the areas where stability switches can occur.
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Figure 1: Left: In the (n, γ)-plane, areas of asymptotic stability and stability switch of the positive
steady state. Other parameters are β0 = 1.77 d−1 and δ = 0.05 d−1. Right: In the (δ, γ)-plane,
areas of asymptotic stability and stability switch of the positive steady state. Other parameters are
β0 = 1.77 d−1 and n = 20.

The first diagram shows that as n increases and reaches large values stability switches are more
likely to occur, independently of the value of the apoptosis rate γ. For small values of n (indeed,
n < 9), the positive steady state is asymptotically stable for τ ∈ [0, τmax). Pujo-Menjouet et al.
[20, 21] noticed, for the model (2.1)–(2.2) with the introduction rate β depending only upon the
nonproliferating cell population N(t), that oscillations could be observed for n ≥ 10, which is
similar to what we obtain here. For large values of n, the function β is similar to a step function
(see, for instance, Pujo-Menjouet and Mackey [21]) and then system (2.3)–(2.4) can possibly be
studied in a different way. Moreover, it appears that for any value of γ it is possible to find a value
of n for which a stability switch can occur, and then the positive steady state can be destabilized.

The second diagram shows very different conclusions. Stability switch can occur for smaller
values of γ, and for small values of δ. For instance, δ cannot be larger than β0 for the positive
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steady state to be well defined, and β0 = 1.77 d−1 in this case, which is much larger than the
maximum value of δ for which a stability switch can occur. The largest area is obtained for δ about
0.3− 0.4 d−1, and γ ranges then in [0, 0.43 d−1].

Diagrams in Figure 1 stress out the complexity of the positive steady state behavior, a stability
switch being hard to determine. They also show that for realistic values of the mortality rates (that
is γ < 0.5 d−1 and δ < 0.5 d−1, see Mackey [16]), stability switches are likely to occur. Fixing
some of the parameters, we now focus on the values of the delay τ corresponding to stability
switches.

Let δ = 0.05 d−1, β0 = 1.77 d−1 and n = 20. Then according to Figure 1, for γ ≤ 0.26 d−1

stability switches occur. Critical values of τ for which stability changes are represented in Figure
2. It is noticeable that stability switches are, in the current case, associated only with roots of
Z0(τ), the Zk functions, with k ≥ 1, being always strictly negative with this choice of parameters.
Hence, when stability switches occur, one always observes a destabilization of the positive steady
state followed by a re-stabilization.
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Figure 2: Left: Critical values of τ for which a stability switch occurs (solid line). The apoptosis
rate γ ranges in [0, 0.26 d−1], and for a given value of γ the delay τ cannot be larger than τmax

(dashed line). For each value of γ two critical values of τ correspond to stability switch. Right:
The positive steady state values, S∗(τ) (top) and N∗(τ) (bottom). The apoptosis rate is equal to
0.2 d−1, so as indicated by the picture on the left-hand side, the steady state is stable (solid lines)
for τ < 2.17 days and τ > 2.95 days, and unstable otherwise (dashed lines). When τ reaches
τmax ≈ 3.33 days, the positive steady state approaches the trivial steady state.

From Figure 2, one notices that for each value of γ the positive steady state undergoes a bifur-
cation as τ increases, then the steady state stabilizes anew just before it disappears (and the trivial
steady state becomes the only steady state). The shape of the unstable zone in Figure 2 is not
trivial, and appears very difficult to determine analytically. The numerical investigation performed
in this section seems, at this time, the only way to obtain information on the dependence of the
positive steady state stability on the parameters.

Steady state values, as functions of τ , are presented in Figure 2, for the above mentioned values
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of the parameters and γ = 0.2 d−1. Stability occurs when τ < 2.17 days, then the steady state
becomes unstable (and one can check that a Hopf bifurcation occurs when τ = 2.17 days), then
stability switches and the steady state is stable again. Unstable solutions of (2.3)–(2.4) are obtained
in this case, using the MATLAB solver dde23 [22], and displayed in Figure 3. They correspond to
solutions obtained for δ = 0.05 d−1, γ = 0.2 d−1, β0 = 1.77 d−1, n = 20 (that is the situation in
Figure 2, right), and τ = 2.5 days. Unstable solutions periodically oscillate, with a period about
11 days. One may note that amplitudes of the oscillations are larger for the nonproliferating cell
population than for the total population. Moreover, initial conditions are constant on the interval
[−τ, 0], with values such that (2.5) holds true. Consequently, S(t) ≥ N(t) for all t ≥ 0.
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Figure 3: Unstable solutions of system (2.3)–(2.4), S(t) (dashed line) and N(t) (solid line). Pa-
rameters are δ = 0.05 d−1, γ = 0.2 d−1, β0 = 1.77 d−1, n = 20 and τ = 2.5 days. Left: Periodic
oscillations, period about 11 days. Right: Limit cycle in the (N, S)-plane.

7. Discussion
This paper is the follow-up of a previous publication [11]. We considered a nonlinear model of
hematopoietic stem cell dynamics, first introduced by Mackey [16], in which the whole cell popu-
lation triggers introduction of nonproliferating cells in the proliferating phase. In [11], a particular
case was analyzed, when the mortality rates of the proliferating and the nonproliferating cells were
supposed to be the same. We no longer considered this assumption and performed a complete
analysis of the resulting system. In particular, we obtained necessary and sufficient conditions for
the global asymptotic stability of the trivial steady state. We also investigated the stability of the
unique positive steady state by applying a method developed by Beretta and Kuang [7] for charac-
teristic equations with delay-dependent coefficients. This allowed to state the existence of stability
switches for the positive steady state, the analytical proof of such stability switches remaining very
hard to complete. A numerical investigation proved efficient to determine stability switches and
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their consequences on the cell population dynamics.
The simulations performed in Section 6 showed, first, that the stability of the positive steady

state strongly depends on the parameters. Only two stability diagrams have been shown (Figure 1),
yet each parameter contributes to the complexity of the steady state behavior (not shown here). Of-
ten, as shown in Figure 1, the influence of a parameter on the stability is very difficult to establish
and cannot be easily predicted, or proven analytically. The similarity between the results obtained
above and those related to Mackey’s model [21] probably indicates that the nature of the trigger
signal for introduction in the proliferating phase is still not sure at this time. Second, the numerical
results showed that the positive steady state can easily become unstable, by varying one parameter.
The instability seems to be characterized by oscillating solutions. This is a well-known feature of
hematopoietic stem cell dynamics model, which has been noted several times (see, for instance,
Mackey [16], Pujo-Menjouet and Mackey [21], Adimy et al. [4], Crauste [11], and the references
therein). Oscillations in cell numbers can be characteristic of blood diseases [12, 14, 20]. Am-
plitudes and period of the oscillations can allow to distinguish between hematopoietic diseases.
These latter depend on the parameters of the system [20] and the time delay τ [4].

Time delays are known to modify the stability of systems that would not exhibit stability switch
in the absence of delay. In various studies of biological models, delays happened to be responsi-
ble for complex behaviors. Delays have been stressed to be at the root of instabilities in models of
hematopoietic stem cell dynamics since the first model on this topic by Mackey [16]. Some param-
eters (for instance, the apoptosis rate γ) have been identified as key parameters for the appearance
of a blood disease [8], however this could not be without considering the delay in these models.
The time delay τ describes an average cell cycle duration and consequently has a strong biological
meaning, which can be related to experimental measurements. Not only the delay has been shown
to induce instability, but also, as detailed in Section 6, to stabilize an unstable system (through a
stability switch). This important role of the delay can be investigated to determine experimental
protocols aiming at eliminating or controlling some diseases (see Colijn et al. [10]).
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