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Abstract

This study aims at investigating the influence of the Young modulus vari-

ability on the mechanical behaviour of a nuclear containment vessel in case

of a loss of cooling agent accident and under the assumption of an elas-

tic behaviour. To achieve this investigation, the Monte-Carlo Method is

carried out thanks to a middleware which encapsulates the different com-

ponents (random field generation, FE simulations) and enables calculations

parallelization. The main goal is to quantify the uncertainty propagation

by comparing the maximal values of outputs of interest (orthoradial stress

and Mazars equivalent strain) with the ones obtained from a deterministic

calculation. The Young modulus is supposed to be accurately represented by

a weakly homogeneous random field and realizations are provided through

its – troncated – Karhunen-Loève expansion. This study reveals a significant

increase of the maximal equivalent strain if the Young modulus variability

is considered (compared to a deterministic approach). The influence of the

correlation length is investigated too. Finally it is shown that there is no

correlation between the maximal values location of equivalent strain and the

ones where the Young modulus extreme values are observed.
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1. Introduction

Civil engineering constructions are naturally subjected to variability, from

many origins: their dimensions, their construction processes, their exposure

to several solicitations... Among these variables, which are influent on the

behaviour of the structure and, thus, on its lifespan, some of them introduce

a variability on the materials properties. Such uncertainties may evolve in

time and be heterogeneously distributed inside the whole structure. As an

example, Figure 1 shows the compressive strength distribution for the Millau

viaduct’s concrete (France). Although it is a high performance concrete and

despite the care taken for the construction process, the observed variability

is rather important, leading to a compressive strength range from 62 MPa

to almost 100 MPa. Because of its fabrication process, the variability of the

its main constituents (cement, aggregates), its heterogeneous microstructure,

the influence of its early-age history and the external environment (temper-

ature, humidity, etc.), concrete is particularly subjected to variability. This

is the main reason why the French National Research Agency set up the

APPLET project, aiming at quantifying the variability of the characteristics

of concrete, such as its mechanical properties or durability indicators (Poyet

and Torrenti, 2010). The work presented in this paper is part of this project,

and focuses on the Young modulus variability.

Dealing with nuclear containment vessels, it is worth noting that a large
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Figure 1: Compressive strength distribution of the Millau High Performance Concrete

(source: Eiffage Company)

part of the French vessels have the feature to have no metallic liner, on the

contrary of American structures for instance. Thus, concrete contributes

to prevent from leaks and this is the reason why no major cracking can be

tolerated. The design of the internal containment and of its pre-stress aims

at preventing from any tensile strains when the structure is loaded so as

to avoid cracking. Here we aim at investigating whether a spatial variation

of the Young modulus in the containment vessel could lead the material to

strain values for which cracking could occur.

Due to the always remaining uncertainties, it is usually not clear to what

degree the results of numerical simulations match with reality. Focusing on

any of those variabilities, the key issue is then to quantify the uncertainties

propagation from the data to a set of chosen quantities of interest. For

example an important question may be whether the scattering observed on
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any material parameter is enlarged when considering the ouputs. Within

a numerical analysis framework, the data may be any of a Finite Element

model parameter – like the elastic modulus here – and the quantities of

interest chosen among any nodes displacements or Gauss points stresses. One

fondamental issue may also be to compute the probability of a particular –

and most time rare – event to occur. Such fiability point of view is a major

concern, especially within the nuclear engineering field.

Having set up a probabilistic model by reformulating the deterministic –

and possibly already discrete – problem within a chosen probability space,

the question of stochastic integration leads to a large number of possible nu-

merical approaches. Those approaches are usually divided into two classes

(Spanos and Ghanem, 2002). On the one hand, the direct integration meth-

ods, which are mostly gathered into the so-called ”Monte-Carlo” simulations

(Metropolis and Ulam, 1949; Caflisch, 1998), are best viewed as numerical

integration techniques. They require to solve many realizations of the de-

terministic problem and usually require a high computational effort. As an

alternative, stochastic Galerkin methods aim at expanding the solution in

a series of tensor products of spatial times random functions (Spanos and

Ghanem, 2002; Keese, 2003). Once the coefficients of the series expansion

are obtained, statistics may either be computed analytically or by sampling

from the series expansion. They require to solve a possibly very large sys-

tem of linear equations, which size grows exponentially along the number of

stochastic dimensions and the stochastic interpolation degree. Although a lot

of improvements have been achieved during the past two decades, such ”curse

of dimensions” still restrict the stochastic Galerkin approach to both linear
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and quite small size deterministic problems. Also considering the slow but

independent from the number of dimesions convergence rate of the Monte-

Carlo methods, those are the main reasons why the presented work focuses

on these stochastic numerical integration tools in order to quantify the Young

modulus variability – viewed as a random field – propagation.

The outline of this paper is as follows: in the first part, we introduce the

deterministic problem and discuss it. We also point out the quantities of

interest. In the second part, we explain how the Karhunen-Loève expansion

enables to generate random fields with the accurate properties. In the third

part, we present the Monte-Carlo integration process and the numerical tool

used for the probabilistic investigation. The last part is the discussion about

the probabilistic simulations results and the influence of statistic parameters

such as the correlation length.

2. Mechanical deterministic problem

The structure considered in this study is a concrete nuclear containment

vessel for a pressurized water reactor (REP 1300 MW). The loading case

corresponds to a loss of cooling agent accident: it results in an increase

of the pressure inside the vessel. In this first part we adopt a simplified

deterministic model of such a structure and emphasize the chosen quantities

of interest.

2.1. Simplified structure modelling

The containment vessel is here modeled as simply as possible in order

to reduce the computational effort necessary to achieve a large number of

simulations and ensure a good accuracy for the Monte-Carlo method. The
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structure itself has been considerably simplified to a cylinder of 54 m of height

and 22.5 m of internal radius. The wall is 0.90 m thick. Finally the roof of

the vessel is only modelled through an equivalent load (weight and internal

pressure) on the top of the cylinder and, at the bottom of the cylinder,

we consider the bottom slab (any other kind of boundary conditions induced

unrealistic stress concentration in this area of the structure). The mechanical

loading is assumed to be a 0.4 MPa internal pressure. Moreover, we assume

that the mechanical behaviour of the material remains elastic during the

test. The initial state of stress is supposed to be equal to 0 (which is not the

case due to restrained shrinkage at early-age – see for instance Benboudjema

and Torrenti (2008)). Moreover, particular areas (like material and personal

hatch) are not taken into account.

In order to compute the mechanical behaviour of the structure, the Finite

Element code FEAP (Taylor and Zienkiewicz, 2005) is employed. The mesh

is made of 108 elements in the height of the cylinder, and of 4 elements in

the thickness of the wall and contains 200 orthoradial nodes. Figure 2 shows

this very simplified modelling for the nuclear containment vessel. The major

principal stress is plotted for a deterministic – constant Young modulus in the

structure (27 GPa) – simulation (the results are almost independent from the

Young modulus value). Under such loading case, the major principle stress

is very close to orthoradial stress.

2.2. Outputs of interest: deterministic values

In order to investigate whether the Young modulus variability could lead

to a significant increase in the maximal values of stresses and strains, we

aim at comparing the latter with their deterministic values. These values,
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Figure 2: Major principal stress values [Pa] in the deterministic case

especially the orthoradial tensile stress, led to the prestress dimensioning.

If the material reaches higher levels of tensile stress, cracking could occur,

which is here assumed to be not acceptable. Therefore, it has been decided to

focus on the maximal orthoradial stress and the maximal Mazars equivalent

strain, calculated using the positive parts of the strains tensor (1). This

equivalent strain is widely used for isotropic damage models and is a very

common indicator to quantify concrete cracking risk (Mazars, 1986).

εeq =
√

〈ε
I
〉2
+

+ 〈ε
II
〉2
+

+ 〈ε
III

〉2
+

(1)

The reference values for these outputs of interest are given by a deter-

ministic FE model with a modulus equal to 27 GPa. This value is also the

expectation chosen for the modulus random field within the probabilistic

setup (see §3). The maximal deterministic orthoradial stress in the vertical

wall of the vessel (not considering the slab) is then equal to 10.6 MPa and

7



the maximal deterministic Mazars equivalent strain is 782·10−6.

3. Monte-Carlo integration and software engineering aspects

In order to investigate the propagation of uncertainty from the input

parameter (the Young modulus) to the output of interest (stresses and strains

in the structure), a probabilistic approach is requested. Among the several

existing methods, a direct integration method is chosen.

3.1. Monte-Carlo Method

Dealing with the computations of statistics for some quantities of interest,

the Monte-Carlo fundamental principle is to estimate the integral – i.e the

expectation – of this functional on some measure space through its evaluation

for a finite number of realizations which are randomly chosen (Metropolis and

Ulam, 1949; Caflisch, 1998). This idea appears in (2), where Ψ denotes the

functional that needs to be evaluated and which depends on the solution

u(ω). In (2) P (ω) is the chosen probability measure, N is the number of

realization and the ωi stand for the containment realizations. It is worth

noting that despite its rather slow convergence, the Monte-Carlo method

may be as accurate as required providing the number of ”integration points”

N is large enough.

∫

Ω

Ψ(ωi) dP (ω) =
1

N

N
∑

i=1

Ψ(u(ωi)) + o

(

σ2
Ψ

N1/2

)

(2)

For every realization ωi, the Ψ functional consists in solving a determin-

istic problem through the FE model presented in Part I. Those steps – which

are the most time consuming – are all independent and thus can be made in
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parallel on a multi-processor computer or using a cluster. This point is the

major advantage of the Monte-Carlo method and is certainly the main reason

for its broad use. Finally, this direct integration process requires to gener-

ate N independent realizations of the considered random field. Dealing with

correlated random fields, it is necessary to employ the Karhunen-Loève ex-

pansion (Spanos and Ghanem, 2002), presented in §4. Before turning to this

point, we stress on the software engineering importance within the context

of Monte-Carlo methods.

3.2. Software engineering aspects: component oriented software development

The basic idea of component oriented software development is to separate

tasks and to encapsulate them into components. Any encapsulated software

is devoted to one task (for instance generating some Young modulus realiza-

tions or simulating the mechanical behaviour of the structure) and may be

reused in different contexts (Szyperski, 1998). To some extend, such technol-

ogy for software development can be viewed as an extension of object oriented

programming for which each feature of a software can be encapsulated into a

class. Classes, as well as components, can only be investigated through their

interfaces and allow multiple instantiations of ”objects”.

Component oriented software development requires a so-called middle-

ware which is a layer creating a communication framework between soft-

wares. Among the different avalailable middlewares, the Components Tem-

plate Library (CTL) developed by Matthies et al. (2006) is chosen. The

main advantage of the latter is its very good performance dealing with scien-

tific computing. Figure 3 shows a general picture describing the components

architecture adopted in this work. The central part represents the Monte-
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Figure 3: Schematic representation of the components architecture adapted to the Monte-

Carlo integration

Carlo component here acting as the ”client”: its main roles are to handle

the random variables generation and the statistical treatment of the outputs

of interest. This client is communicating with the other components, each

of them being a ”service”. Among those services, the Karhunen-Love com-

ponent synthesizes random field realizations according to a set of random

numbers – provided by the client. The second main services are the FE

simulators, which stand for the deterministic computations along the differ-

ent random field realisations. Although only one Karhunen-Love expansion

component is invoked, the FE components may be instantiated more than

once, leading to a natural parallelization of the whole Monte-Carlo integra-

tion process. Such multiple instantiation can be done on a multi-processor

computer or on a cluster through a network. Using the CTL, the latter may

be established using any communication protocol as MPI, Pipe or TCP/IP.

Finally it is worth noting that the different components shown in this ar-
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chitecture are written using different languages: C++ for the client and the

Karhunen expansion, Fortran 77 for the FE simulator (FEAP). Communi-

cations issues between those components (in particular typing issues) are all

handled by the CTL middleware, leading to a very efficient and easy way to

deploy architecture.

4. Young modulus modelling – random fields

As explained in §3, the key step to carry out the Monte-Carlo integration

is to generate an important number of realizations of the Young modulus

random field. Although these realizations must be independent, they are all

spatially correlated and the synthesis process is not trivial. A very efficient

way to achieve it is to employ the Karhunen-Loève expansion as explained

by Spanos and Ghanem (2002).

4.1. Modal decomposition

The key idea of the Karhunen-Loève expansion is to expand any second-

order random field f(~x, ω) into a serie (3). Each term of this serie is a product

of two terms, the first one depending on the spatial variable ~x and the second

one depending on the stochastic variable ω. Thus, the main feature of such

a decomposition is the separation of variable.

f(~x, ω) = f̄(~x) +
+∞
∑

i=0

√

λiφi(~x)ξi(ω) (3)

The first term of (3), f̄(~x), is the expectation of the random field. The

stochastic dependency appears through the random variables ξi, while the

spatial dependency is introduced through the covariance kernel eigenmodes
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(λi, φi), where the λi are the eigenvalues and the φi(~x) are the corresponding

eigenvectors, as it appears in (4), where covf (~x, ~y) is the covariance function

for the random field f .

∫

Ω

covf (~x, ~y)φi(~y)d~y = λiφi(~x) (4)

Moreover, it is worth noting that the random variables ξi form a set of

orthonormal variables with respect to the probability measure P (ω) and thus

form a basis of L2(Ω). Finally, dealing with Gaussian random fields, the ξi are

Gaussian random variables as well and, being uncorrelated – or orthogonal

– they are independent. Thus (3) provides a very efficient way to synthesise

correlated random fields realizations, independent from one another.

4.2. Generalised eigenvalues problem

Considering the generalised eigenvalues problem (4), we are interested

in determining the largest eigenvalues (Newman, 1996). A convenient way

to achieve this is to perform a FE discretisation of (4) (see Keese (2003)),

leading to the discrete generalised eigenvalues problem (5), where M is the

mass matrix with a unitary mass density and C is the covariance matrix.

MCM~φ = λM~φ (5)

This numerical problem is very alike to eigenvalues problems encountered

in structural dynamics. Therefore, a Finite Element code has been used to

determine the Karhunen-Loève eigenmodes by re-using the FEAP routines

with the appropriate matrixes. It is worth noting that, even though M is a

sparse matrix – due to the FE properties – the covariance matrix C is a full
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one. This point may lead to some difficulties linked to storage and memory

requirements.

Once a set of the largest eigenvalues, as well as the corresponding eigen-

vectors, has been determined, the truncated Karhunen-Loève expansion en-

ables the approximation (6) for any second-order random field. In this ap-

proximation m is the number of modes which are considered and it can be

shown that (6) is optimal along m (Karhunen, 1947; Loève, 1978). Assum-

ing the random field to be Gaussian, the random variables ξi are normally

distributed with zero expectation and variance equal to one. This series trun-

cation introduces an error in the field approximation, which decreases when

m increases.

γij = γ̄i +
m
∑

k=1

√

λkφkiξkj (6)

In Equation (6), γij is the expression of the approximated random field

for each node of the spatial mesh, denoted by the subscript i (spatial de-

pendency), and for each realization, denoted by the subscript j (stochastic

dependency). The subscript k refers to the eigenmodes number: the smaller

k is, the bigger the corresponding eigenvalue λk. The deterministic field γ̄ is

the expected value of the Gaussian random field in every node of the mesh.

It is worth noting that the Karhunen-Loève expansion is carried out us-

ing the covariance function only. Among the different ways of defining a

covariance model, a very simple one is chosen and described next.
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4.3. Covariance function and correlation length

Each term Cij of the covariance matrix C is the value of the covariance

function computed between the two nodes i and j of the spatial mesh, whose

position is given by ~xi and ~xj. The expression of the covariance function

appears in equation (7) and introduces both the variance V of the Gaussian

random field and the correlation length Lc. This last parameter is quite

interesting to investigate: the higher the correlation length is, the stronger

the statistical correlation between the value of the field in two points is as

well. For a very large value of Lc, the random field tends to the deterministic

case. As a matter of fact, this parameter has not been much investigated yet

in the literature (Vu and Stewart, 2005), so that we propose to investigate a

large range of values for this correlation length.

Cij = V exp

(

−
||~xi − ~xj||

2

L2
c

)

(7)

The covariance function in (7) has been chosen because it is differentiable

in 0. For the application concerned by this paper, it has been decided to

consider different correlation lengths with regards to the direction of the cor-

relation. Indeed, it may be assessed that the structure construction process

has a large influence on the correlation, and especially one can assume that

the correlation might be important within one batch of concrete and rather

low between several batches, even with the same concrete mix design. There-

fore the three spatial directions are distinguished. The vertical correlation

length Lz is related to the different steps in the building of the vessel. The

radial correlation length Lr and the orthoradial one Lθ are also introduced.

The former is expected to be rather important with regards to the geometry

14



of the considered structure. The orthoradial correlation length stands for the

correlation along the cylinder perimeter. Considering these three correlation

lengths leads to the definition of the covariance function given in (8).

Cij = V exp

(

−
(zi − zj)

2

L2
z

−
(ri − rj)

2

L2
r

−
R2(θi − θj)

2

L2
θ

)

(8)

Equation (8) is the covariance between nodes i and j, for which (ri, θi, zi)

are the cylindrical coordinates of node i (id. for node j). R is the mean

radius for the structure (22.95 m).

4.4. Lognormal random field and underlying Gaussian case

The Karhunen-Loève expansion is a very useful tool when aiming at gen-

erating Gaussian random fields. In such a case, the uncorrelated random

variables ξi are normally distributed and, so, are mutually independent. Nev-

ertheless, the Gaussian scenario is not valid for a non-negative parameter like

the Young modulus. Therefore we consider another very general and positive

distribution which is the lognormal distribution and the Kharhunen-Loève

expansion is used to generate an underlying Gaussian random field γ(~x, ω).

The required lognormal random field k(~x, ω) can then be written as in equa-

tion (9).

k(~x, ω) = exp (γ(~x, ω)) (9)

In order to compute the Karhunen-Loève expansion of γ(~x, ω), its co-

variance function is required. It can be showed that the first and second

statistical moments of the Gaussian field can be derived from those of the

lognormal field k(~x, ω) (see equations (10) and (11), demonstrated in Colliat
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et al. (2007)). In these equations, k̄ is the expected value of the lognormal

field, σk and Lk are its standard deviation and its correlation length. γ̄, σγ

and Lγ are the expected value, the standard deviation and the correlation

length of the Gaussian field, calculated so that the lognormal field deduced

from the Gaussian one has the proper characteristics. The expression of the

correlation length for the gaussian random field from the one for the log-

normal field is given in (12) and depends on the choice of the correlation

function (see proof of the expression in de Larrard (2010)).

γ̄ = ln

(

k̄
√

1 + σ2
k/k̄

2

)

(10)

σ2
γ = ln

(

1 +
σ2

k

k̄2

)

(11)

Lγ =

(

ln

(

1

σ2
γ

ln

(

1 +
σ2

k

k̄2
exp

(

−
1

L2
k

))))

−1/2

(12)

The theoretical background of the Karhunen-Loève expansion can be car-

ried out to calculate the eigenmodes of the covariance kernel. Once these

modes are in hands, the expansion can be exploited as many times as neces-

sary to compute the random fields realizations required for the Monte-Carlo

Method.

4.5. Calculation of eigenmodes

With regards to the geometry of the structure, it can be considered that

the correlation is very strong along the wall thickness. Therefore, we assume

the radial correlation length to be quite large in comparison to the thickness
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of the wall (5 m). The lack of knowledge concerning the correlation in a con-

crete structure led to consider several values for the orthoradial and vertical

correlation lengths, so as to investigate the influence of these parameters on

the variability of the outputs of interest. Three values are considered for each

correlation length: 15, 30 and 60 m for the orthoradial correlation length,

and 10, 20 and 40 m for the vertical one. These values seem to be reason-

able with regards to the geometry of the structure. The expected value for

the Young modulus field is 26.7 GPa and the standard deviation is 4 GPa,

corresponding to a coefficient of variation of 15% for the input parameters

of the problem. This order of magnitude for the coefficient of variation is

the upper bound value which can be found in the literature (de Vasconcel-

los et al., 2003; Vu and Stewart, 2005; Berveiller et al., 2007). It also is in

good accordance with the early experimental results of the APPLET project

(Poyet and Torrenti, 2010; de Larrard et al., 2009).

Figure 4 shows some examples of the eigenvectors computed for a 15 m

orthoradial correlation length and 10 m vertical correlation length. The

modes are represented on the outer nodes of the spatial mesh for half a

perimeter.

It is interesting to notice on Figure 4 that the eigenvector’s frequency

increases with the rank of the mode. Thus, considering a random field with

small correlation lengths, the high rank modes (high frequency modes) have

more importance than in the case of a random field with a high spatial corre-

lation. This is illustrated on Figure 5 where one can observe the eigenvalues

decrease as the modes rank increases. The three cases represented on Figure

5 stands for 15, 30 and 60m of orthoradial correlation length and are all

17



(a) Mode 1 (b) Mode 2 (c) Mode 8

(d) Mode 9 (e) Mode 16 (f) Mode 17

Figure 4: Karhunen-Loève expansion eigenvectors on a half-perimeter of the structure

with an orthoradial correlation length of 15 m
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calculated for a vertical correlation length equal to 10m. It appears that

when the correlation length is more important, the decrease rate is more im-

portant as well, which enhances the prevalence of low frequency modes for

high correlation random fields.
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Figure 5: Eigenvalues decrease rate according to the orthoradial correlation length

As it appears in equation (6), the Karhunen-Loève series is truncated

and only the m first modes are retained for the random field generation. The

determination of m can be done thanks to the eigenvalues decrease rate. As

illustrated on Figure 5, the high rank modes influence on the random field

generation can be neglected when the corresponding eigenvalues are small

compared to the first one. The criterion used for the random field generation

has been that the modes for which the eigenvalue is less than 1% of the first

mode eigenvalue can be neglected. This leads to a value of m ranging from

20 to 80 according to the considered correlation length.

Once the Kharhunen-Loève expansion eigenmodes are determined, it is
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possible to generate as many realizations of the random field as requested to

carry out the Monte-Carlo Method. For every Young modulus realization, a

corresponding mechanical calculation is performed and the outputs of inter-

est (maximal orthoradial stress and maximal Mazars equivalent strain) are

registered for an appropriate data treatment.

5. Results and analysis

In order to investigate the influence of the correlation length on the vari-

ability of the outputs of interest, five probabilistic cases are considered, so

that the results for three different vertical correlation lengths – with the same

orthoradial correlation length – can be compared, as well as three different or-

thoradial correlation lengths – with the same vertical correlation length. For

each case, 200 Monte-Carlo integration points are performed corresponding

to 200 Young modulus random field realizations.

5.1. Verification of the random field characteristics

The first step in the data treatment is to verify whether the random field,

generated thanks to the Karhunen-Loève expansion, has the required first

and second order characteristics. This verification is satisfactory and shows

that enough modes for the truncated expansion are kept. It is also necessary

to check the correlation length, which is done by calculating the covariance

of the field for each node of the mesh and observing the covariance decrease

along different spatial directions. This is illustrated on Figure 6: from one

point of the mesh, the covariance is calculated at every point with the same

radial and vertical coordinates (r, θ). This covariance is normed, which means

it is divided by the value of the covariance at distance of zero (which is
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verified to be equal to the required variance). Under these hypotheses, the

correlation length is the distance for which the normed covariance reaches the

value of exp(−1) = 1/e. It appears on Figure 6 that for the three different

orthoradial correlation lengths tested, the covariance reveals the expected

correlation length.
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Figure 6: Normed covariance decrease according to the correlation length

After it has been verified that the input random field had the required

characteristics, the variability of the outputs of interest can be observed.

5.2. Outputs of interest confidence intervals depending on correlation lengths

Table 1 presents the maximal orthoradial stress increase in the structure

due to the Young modulus variability. Each line of the table stands for

200 realizations with the given values of orthoradial and vertical correlation

lengths. For each case the radial correlation length remains equal to 5 m.

In this table one can find the mean value for the maximal orthoradial stress
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and the coefficient of variation (denoted C.V.) over the 200 realizations. The

upper bound of the 95% confidence interval appears in the table (denoted

Up. 95%).

Table 1: Maximal orthoradial stress (for 200 realizations)

Lθ Lz Mean value C.V. Up. 95 %

[m] [m] [MPa] [%] [MPa]

15 10 11.09 1.87 11.12

30 10 10.98 1.56 11.00

60 10 10.86 1.22 10.87

30 20 10.84 1.10 10.86

30 40 10.83 0.94 10.84

The mean value and the upper bound of the confidence interval are to be

compared with the maximum value of orthoradial stress in the deterministic

case: 10.6 MPa. The maximum mean value obtained in the probabilistic

calculations is 11.1 MPa, which corresponds to a 5% increase. This increase

is not very important but cannot be neglected when considering a risk of

cracking under tensile stress (as the material is designed to be close to its

elastic limit in case of accident). The coefficient of variation on the maximal

orthoradial stress (between 1 and 2%) should be compared with the input

coefficient of variability (on the Young modulus): 15%. It appears that the

variability is absorbed by the physics of the problem. Indeed, as the loading

of the structure is considered in terms of stress, the maximal stress level

might not be the most accurate indicator for the influence of the Young
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modulus variability. Let us mention that the theoretical formula for the

orthoradial stress in a 2-dimensional deterministic calculation does not even

take the Young modulus into account. Therefore, the observation of the

Mazars equivalent strain is necessary.

Table 2 presents, for the same realizations as before, the mean value, the

coefficient of variation and the upper bound of the 95% confidence interval for

the maximal Mazars equivalent strain over 200 realizations. This maximal

mean value is equal to 782.0 µm/m for a deterministic calculation and can

reach 929.5 µm/m for the probabilistic calculations, which means a 18.9%

increase. The Mazars equivalent strain is an indicator correlated to the crack-

ing risk. Indeed, the equivalent strain considers the extension strains of the

material, and the mechanical damage evolution model proposed by Mazars

(1986) considers that cracking occurs when the equivalent strain reaches a

given threshold, itself being a random variable (which can be considered as

related to the Young modulus). Therefore, such an increase seems very sig-

nificant. Moreover the coefficient of variation (ranging between 10 and 12%)

is much more important than what was observed on the maximal stress and

reveals that the equivalent strain is a relevant indicator for the influence of

the Young modulus variability.

It appears, both in Table 1 and in Table 2, that when the correlation

length increases (whatever the direction) the output of interest mean value

tends toward the deterministic value, which is coherent: the higher the corre-

lation length, the more important the decrease of the eigenvalues, so that the

random field generation tends toward the expected uniform value of Young

modulus.
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Table 2: Maximal equivalent Mazars strain (for 200 realizations)

Lθ Lz Mean value C.V. Up. 95 %

[m] [m] [10−6] [%] [10−6]

15 10 929.5 10.03 940.3

30 10 895.5 10.21 906.2

60 10 865.3 11.87 877.2

30 20 910.5 11.28 922.5

30 40 871.9 12.03 884.1

The next question to be answered was to determine whether there was

a link between the location where the extreme values of the Young modu-

lus (minimum and maximum) appeared in the structure, and the locations

where the maximal Mazars equivalent strain was observed. Thus, 100 new

calculations were run for a 15 m orthoradial correlation length and a 10 m

vertical one.

5.3. Location of Young modulus and outputs of interest extrema

Over the 100 calculations performed for this study, Table 3 shows the

mean height for the maximal and minimal Young modulus as well as for the

maximal equivalent strain, and the corresponding standard deviation. It is

satisfactory to verify that the Young modulus extreme values mean height

is around the middle of the containment vessel, with a high standard devia-

tion, which is in good accordance with the random field generation process.

Indeed, extreme values can appear anywhere in the structure, as it is corrob-
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orated by Figure 7. This figure represents the Young modulus minimum and

maximum distribution on the structure’s height. On the contrary, Figure

8 shows the distribution of maximal equivalent strain vertical position. It

appears that this distribution is not uniform, but the maximal values ap-

pear more often close to the top or the bottom of the structure. Indeed, the

equivalent strain field for a deterministic calculation has the same shape: the

values are lower in the middle of the structure and increases when getting

close to the bottom or top of the containment vessel. Another calculation is

performed considering only the central third of the structure, which leads to

the same results. This means that the Young modulus variability introduced

in the structure is sufficient to modify significantly the value of the maximal

equivalent strain but not the shape of the strain field in the structure.

Table 3: Vertical position of Young modulus extreme values and maximal equivalent strain

in the structure

Mean value [m] Standard deviation [m]

Maximum E 23.7 16.3

Minimum E 22.3 17.1

Maximum εeq 27.7 15.8

Table 4 indicates the distance between the point in the structure where

the maximal equivalent strain is observed and the points where the Young

modulus extreme values are observed. The distribution of these distances

is plotted on Figure 9. It appears that no correlation exists between the

position of the extreme values of the Young modulus in the structure and
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Figure 7: Distribution of vertical position of the Young modulus extreme values (100

calculations)

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

Position [m]

F
re

q
u

en
cy

Figure 8: Distribution of vertical position of the maximal equivalent deformation (100

calculations)
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the position of the maximal equivalent strain.

Table 4: Distance between the maximal equivalent strain and the Young modulus extreme

values

Mean value [m] Standard deviation [m]

Maximum 42.6 10.8

Minimum 29.6 15.1
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Figure 9: Distribution of distance between the maximal equivalent deformation and the

Young modulus extreme values (100 calculations)

6. Conclusion

For this study, a simplified modelling for the mechanical behaviour of a

nuclear containment vessel in case of a loss of cooling agent accident has been
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proposed, so as to carry out the Monte-Carlo Method thanks to a middleware

named CTL which enables such simulations. The Young modulus random

field realizations were generated with the Karhunen-Loève expansion. It has

been proven that considering the Young modulus variability had a significant

influence on the dimensioning strain values in comparison with deterministic

calculations.

This study enhanced the influence of the correlation length on the outputs

of interest variability. Therefore, the lack of information about the materials

characteristics variability and the ignorance of the accurate values for the

correlation length in a structure (with regards to the material formulation

and the building process) turns out to be problematic to estimate the lifes-

pan of certain structures such as nuclear containment vessels or nuclear waste

storage units. This is why the APPLET project (Poyet and Torrenti, 2010)

aims at quantifying the concrete variability for many mechanical characteris-

tics (compressive and tensile strength, Young modulus, etc.) and durability

indicators (porosity, electrical resistivity, resistance to leaching attack, etc.)

between several batches for a given concrete mix design as well as within one

same batch. Another goal is to propose a predictive tool for the long-term

behaviour of concrete structures, taking into account this variability.
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