Détection ultrasonore automatique de micro-emboles par des techniques de prédictions linéaires synchrones

J.-M. Girault, S. Ménigot, L. Dreibine et N. Meziati

Université François Rabelais de Tours Inserm U930 - CNRS ERL 3106 - Équipe 5 *Imagerie et Cerveau*

14 avril 2010

Girault Ménigot Dreibine Meziati (Tours)

Détection de micro-emboles

14 avril 2010

Méthodes 🕽

- Détection standard et Gold standard
- Détection synchronisée et prédiction linéaire

2 Résultats et discussion

- Simulations
- Signaux in vitro

Introduction

Problématique

Objectifs

- Prévenir des accidents vasculaires cérébraux
 → Détection automatique des micro-emboles précurseurs
- Détection existante par Doppler Transcrânien ultrasonore insuffisante pour quelques micro-emboles
 → Augmenter la robutesse de la détection

Problématique

Objectifs

- Prévenir des accidents vasculaires cérébraux
 → Détection automatique des micro-emboles précurseurs
- Détection existante par Doppler Transcrânien ultrasonore insuffisante pour quelques micro-emboles
 Augmenter la robutesse de la

→ Augmenter la robutesse de la détection

Pré-requis

- Hypothèse : signal Doppler est cyclo-stationnaire
- Signature embolique : signal imprévisible, transitoire et de haute intensité

Introduction

Pré-requis

- Hypothèse : signal Doppler est cyclo-stationnaire
- Signature embolique : signal imprévisible, transitoire et de haute intensité

Détection standard et Gold standard

Détection standard

Détection

$$\begin{array}{c}
H_1 \\
ID \leq \lambda \\
H_0
\end{array}$$

. .

où *ID* est l'énergie calculée par Transformée de Fourier à court termes

• Seuil λ constant

$$\lambda = \mu + \beta \sigma$$

où μ est la moyenne du signal Doppler et σ son écart-type

Détection standard et Gold standard

Détection standard

Détection

$$ID \underset{H_0}{\overset{H_1}{\leq}} \lambda$$

où *ID* est l'énergie calculée par Transformée de Fourier à court termes

• Seuil λ constant

$$\lambda = \mu + \beta \sigma$$

où μ est la moyenne du signal Doppler et σ son écart-type

Détection standard et Gold standard

Détection standard

Détection

$$ID \underset{H_0}{\overset{H_1}{\leq}} \lambda$$

où *ID* est l'énergie calculée par Transformée de Fourier à court termes

• Seuil λ constant

$$\lambda = \mu + \beta \sigma$$

où μ est la moyenne du signal Doppler et σ son écart-type

Gold standard

- Écoute des signaux Doppler
- Visualisation du spectrogramme des signaux

Détection synchronisée et prédiction linéaire

 Calcul de l'énergie du signal par transformée de Fourier à court terme

Détection synchronisée et prédiction linéaire

Modélisation AR à l'ordre 2 du signal

$$\hat{x}(n) = -a_1 x(n-1) - a_2 x(n-2)$$

Détection synchronisée et prédiction linéaire

$$\varepsilon(n) = x(n) - \hat{x}(n)$$

Girault Ménigot Dreibine Meziati (Tours)

14 avril 2010 7 / 13

э

Détection synchronisée et prédiction linéaire

Autocorrélation de l'erreur

$$\Gamma_{\varepsilon\varepsilon}(n) = \sum_{m=-\infty}^{+\infty} \varepsilon(m) \varepsilon^*(m-n)$$

Girault Ménigot Dreibine Meziati (Tours)

э

Détection synchronisée et prédiction linéaire

Synchronisation avec le cycle cardiaque

Détection synchronisée et prédiction linéaire

• Détection par le seuil $\lambda(t)$

$$\lambda(t) = \mu(t) + \beta \sigma(t)$$

Résultats et discussion

Exemple de détection synchronisée

Girault Ménigot Dreibine Meziati (Tours)

Détection de micro-emboles

Seuil

Seuil fixé pour avoir 100 % de détection \hookrightarrow possibilité d'avoir des fausse-alarmes

Seuil

Seuil fixé pour avoir 100 % de détection \hookrightarrow possibilité d'avoir des fausse-alarmes

	Gold	Standard	Synchronisation	
	standard	Seuil constant	a_1	erreur
Détection				
d'embole (%)	100	100	100	100

Seuil

Seuil fixé pour avoir 100 % de détection \hookrightarrow possibilité d'avoir des fausse-alarmes

Résultats

	Gold	Standard	Synch	ronisation
	standard	Seuil constant	a_1	erreur
Détection				
d'embole (%)	100	100	100	100
Taux de fausse				
alarme (%)	0	32.37	7.49	5.80

Seuil

Seuil fixé pour avoir 100 % de détection \hookrightarrow possibilité d'avoir des fausse-alarmes

Résultats

	Gold	Standard	Synchronisation	
	standard	Seuil constant	a_1	erreur
Détection				
d'embole (%)	100	100	100	100
Taux de fausse				
alarme (%)	0	32.37	7.49	5.80

Seuil

Seuil fixé pour avoir 0 % de fausse-alarmes \hookrightarrow possibilité de ne pas détecter tous les emboles

Seuil

Seuil fixé pour avoir 0 % de fausse-alarmes \hookrightarrow possibilité de ne pas détecter tous les emboles

	Gold	Standard	Synchronisation
	standard	Seuil constant	erreur
Taux de fausse			
alarme (%)	0	0	0

Seuil

Seuil fixé pour avoir 0 % de fausse-alarmes \hookrightarrow possibilité de ne pas détecter tous les emboles

	Gold	Standard	Synchronisation
	standard	Seuil constant	erreur
Taux de fausse			
alarme (%)	0	0	0
Détection			
d'embole (%)	100	67	100

Seuil

Seuil fixé pour avoir 0 % de fausse-alarmes \hookrightarrow possibilité de ne pas détecter tous les emboles

	Gold	Standard	Synchronisation
	standard	Seuil constant	erreur
Taux de fausse			
alarme (%)	0	0	0
Détection			
d'embole (%)	100	67	100

Conclusion

Girault Ménigot Dreibine Meziati (Tours) Détection de micro-emboles

э

Conclusion :

• Les plus gros emboles sont détectés

- Les plus petits emboles sont seulement détectés avec notre technique
- De nouveaux micro-emboles indétectables par le Gold standard sont désormais détectés

- Définition d'un nouveau Gold standard
- Implémentation temps-réels

Conclusion :

- Les plus gros emboles sont détectés
- Les plus petits emboles sont seulement détectés avec notre technique
- De nouveaux micro-emboles indétectables par le Gold standard sont désormais détectés

- Définition d'un nouveau Gold standard
- Implémentation temps-réels

Conclusion :

- Les plus gros emboles sont détectés
- Les plus petits emboles sont seulement détectés avec notre technique
- De nouveaux micro-emboles indétectables par le Gold standard sont désormais détectés

- Définition d'un nouveau Gold standard
- Implémentation temps-réels

Conclusion :

- Les plus gros emboles sont détectés
- Les plus petits emboles sont seulement détectés avec notre technique
- De nouveaux micro-emboles indétectables par le Gold standard sont désormais détectés

- Définition d'un nouveau Gold standard
- Implémentation temps-réels

Conclusion :

- Les plus gros emboles sont détectés
- Les plus petits emboles sont seulement détectés avec notre technique
- De nouveaux micro-emboles indétectables par le Gold standard sont désormais détectés

- Définition d'un nouveau Gold standard
- Implémentation temps-réels

Conclusion

Conclusion & Perspective

MERCI DE VOTRE ATTENTION

sebastien.menigot@etu.univ-tours.fr jean-marc.girault@univ-tours.fr

Girault Ménigot Dreibine Meziati (Tours) Détection de micro-emboles