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We derive minimax results in the functional deconvolution model under the L p -risk, 1 ≤ p < ∞. Lower bounds are given when the unknown response function is assumed to belong to a Besov ball and under appropriate smoothness assumptions on the blurring function, including both regular-smooth and super-smooth convolutions. Furthermore, we investigate the asymptotic minimax properties of an adaptive wavelet estimator over a wide range of Besov balls. The new findings extend recently obtained results under the L 2 -risk. As an illustration, we discuss particular examples for both continuous and discrete settings.

Introduction

In the past decades, the standard deconvolution model was studied by many researchers who tried to find optimal solutions to this problem. Amongst them, [START_REF] Donoho | Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition[END_REF], [START_REF] Abramovich | Wavelet decomposition approaches to statistical inverse problems[END_REF], Jonhstone, Kerkyacharian, [START_REF] Johnstone | Wavelet deconvolution in a periodic setting[END_REF] and Chenseau (2008) proposed various wavelet thresholding estimators of the unknown response function in this model that achieve optimal (in the minimax or the maxiset sense), or near-optimal within a logarithmic factor, convergence rates over a wide range of Besov balls and for a range of L p -loss functions defining the risk.

On the one hand, there are several cases when one needs to recover initial or boundary conditions on the basis of observations of a noisy solution of a partial differential equation. The estimation problem of the initial condition in the heat conductivity equation was initiated by [START_REF] Lattes | Methode de Quasi-Reversibilite et Applications[END_REF]. This problem and the problem of recovering the boundary condition for elliptic equations based on observations in an internal domain were considered in a minimax setting by [START_REF] Golubev | A statistical approach to some inverse problems for partial differential equations[END_REF], and sharp asymptotics for the L 2 -risk over a range of Sobolev balls were obtained. On the other hand, [START_REF] Casey | Systems of convolution equations, deconvolution, Shannon sampling, and the wavelet and Gabor transforms[END_REF] and De Canditiis & [START_REF] De Canditiis | Discussion on the meeting on "Statistical Approaches to Inverse Problems[END_REF][START_REF] De Canditiis | Simultaneous wavelet deconvolution in periodic setting[END_REF] considered the multichannel deconvolution model which arises in signal and image processing, e.g., in LIDAR (Light Detection and Ranging) remote sensing and reconstructions of blurred images (see, e.g., [START_REF] Park | Deconvolution of long-pulse lidar signals with matrix formulation[END_REF]). Using the maxiset approach, De Canditiis & [START_REF] De Canditiis | Simultaneous wavelet deconvolution in periodic setting[END_REF] derived upper bounds for the L p -risk, 1 < p < ∞, over a wide range of Besov balls, of an adaptive term-by-term thresholding wavelet estimator for a fixed target function f (•). However, the minimax properties of their estimator and the case when the number of channels increases with the number of points at which f (•) is observed were not considered by De Canditiis & [START_REF] De Canditiis | Simultaneous wavelet deconvolution in periodic setting[END_REF].

Recently, [START_REF] Pensky | Functional deconvolution in a periodic setting: uniform case[END_REF] showed that all the above described problems are special cases of the functional deconvolution model given by

y(u, t) = T f (x)g(u, t -x)dx + 1 √ n z(u, t), t ∈ T = [0, 1], u ∈ U = [a, b], (1) 
with -∞ < a ≤ b < ∞. Here, the kernel or blurring function g(•, •) is assumed to be known, and z(u, t) is assumed to be a two-dimensional Gaussian white noise, i.e., a generalized two-dimensional Gaussian field with covariance function

E(z(u 1 , t 1 )z(u 2 , t 2 )) = δ(u 1 -u 2 )δ(t 1 -t 2 ),
where δ(•) denotes the Dirac δ-function. The analogous discrete model, when y(u, t) is observed at n = N M points (u l , t i ), l = 1, 2, . . . , M and i = 1, 2, . . . , N , is given by

y(u l , t i ) = T f (x)g(u l , t i -x)dx + li , t i = i N ∈ T = [0, 1], u l ∈ U = [a, b], (2) 
where li are standard Gaussian random variables, independent for different l and i.

Pensky & Sapatinas (2009) obtained minimax lower bounds and proposed an adaptive (linear or block thresholding) wavelet estimator, for both the functional deconvolution model [START_REF] Abramovich | Wavelet decomposition approaches to statistical inverse problems[END_REF] and its discrete version [START_REF] Casey | Systems of convolution equations, deconvolution, Shannon sampling, and the wavelet and Gabor transforms[END_REF], that is asymptotically optimal (in the minimax sense), or near-optimal within a logarithmic factor, under the L 2 -risk over a wide range of Besov balls.

The aim of this paper is to provide the analogous statements of the above mentioned minimax results obtained by [START_REF] Pensky | Functional deconvolution in a periodic setting: uniform case[END_REF] under the L 2 -risk for the case of

L p -risk, 1 ≤ p < ∞.
More specifically, we first obtain lower bounds for the L p -risk, 1 ≤ p < ∞, when the unknown response function f (•) in functional deconvolution model [START_REF] Abramovich | Wavelet decomposition approaches to statistical inverse problems[END_REF] and its discrete version (2) are assumed to belong to a Besov ball and the blurring function g( 

φ * jk (x) = 2 j/2 φ * (2 j x -k), ψ * jk (x) = 2 j/2 ψ * (2 j x -k), j, k ∈ Z,
(x) = i∈Z 2 j/2 φ * (2 j (x + i) -k), ψ jk (x) = i∈Z 2 j/2 ψ * (2 j (x + i) -k).
Note that, for any j 0 ≥ 0 and any j ≥ j 0 , any f (•) ∈ L p (T ) can be written as

f (t) = 2 j 0 -1 k=0 α j 0 k φ j 0 k (t) + ∞ j=j 0 2 j -1 k=0 β jk ψ jk (t).
It is well known that the Meyer wavelet basis satisfies the following three properties (see, e.g., Johnstone, Kerkyacharian, Picard & Raimondo (2004)):

1. Property of concentration Let p ∈ [1, ∞) and h ∈ {φ, ψ}. For any integer j ∈ {τ, . . . , ∞} and any sequence u = (u j,k ) j,k , there exists a constant C > 0 such that

2 j -1 k=0 u j,k h j,k p p ≤ C2 j(p/2-1) 2 j -1 k=0 |u j,k | p . (3) 
(Here, and in what follows, g p refers to the L p -norm of a function g(•).)

2. Property of unconditionality. Let p ∈ (1, ∞). Let us set ψ τ -1,k = φ τ,k . For any sequence u = (u jk ) j,k , we have ∞ j=τ -1 2 j -1 k=0 u jk ψ jk p p ( ∞ j=τ -1 2 j -1 k=0 |u jk ψ jk | 2 ) 1/2 p p .
(Here, and in what follows, the notation a b means there exist two positive constants c 1 and

c 2 such that c 1 b ≤ a ≤ c 2 b.) 3. Temlyakov property. Let σ ∈ [0, ∞). Let ψ τ -1,k = φ τ,k . For any subset A ⊆ {τ -1, . . . , ∞}
and for any subset Ω ⊆ {0, . . . , 2 j -1}, we have 

( j∈A k∈Ω |2 jσ ψ jk | 2 ) 1/2 p
M ∈ (0, ∞), s ∈ (0, R), ρ ∈ [1, ∞] and r ∈ [1, ∞].
(Here, R refers to the number of vanishing moments and continuous derivatives of the mother wavelet function ψ * (•); note that, for the Meyer

wavelet basis, R = ∞.) Let β τ -1,k = α τ,k .
We say that a function f belongs to the Besov ball

B s ρ,r (M ) if and only if the associated wavelet coefficients β jk , when ρ ∈ [1, ∞) and r ∈ [1, ∞), satisfy ∞ j=τ -1 2 j(s+1/2-1/ρ) 2 j -1 k=0 |β jk | ρ 1/ρ r 1/r ≤ M,
with respective sum(s) replaced by maximum when ρ = ∞ and/or r = ∞.

Construction of the wavelet estimator

Let e m (t) = e i2πmt , m ∈ Z, and for any j 0 ≥ 0 and any j ≥ j 0 , let

φ mj 0 k = e m , φ j 0 k , ψ mjk = e m , ψ jk , f m = e m , f
be the Fourier coefficients of φ j 0 k (•), ψ jk (•) and f (•), respectively. Moreover, let

h(u, t) = f (x)g(u, t -x)dx, t ∈ T = [0, 1], u ∈ U = [a, b], (4) 
and let the functional Fourier coefficients of h(u, •), y(u, •), g(u, •) and z(u, •) be given, respectively, by

h m (u) = e m , h(u, •) , y m (u) = e m , y(u, •) , g m (u) = e m , g(u, •) , z m (u) = e m , z(u, •) .
Using the properties of the Fourier transform, then for each u ∈ U , for the continuous model (1), we have

y m (u) = g m (u)f m + 1 √ n z m (u),
where g m (u) = h m (u)/f m and z m (u) are generalized one-dimensional Gaussian processes satisfying

E(z m 1 (u 1 )z m 2 (u 2 )) = δ m 1 ,m 2 δ(u 1 -u 2 ),
where δ ml is the Kronecker's delta. For the discrete version (2), using properties of the discrete Fourier transform, for each l = 1, 2, . . . , M , we have

y m (u l ) = g m (u l )f m + 1 √ N z ml ,
where z ml are standard Gaussian random variables, independent for different m and l, i.e.,

E(z m 1 ,l 1 z m 2 ,l 2 ) = δ m 1 ,m 2 δ l 1 ,l 2 .
A natural estimator of f m is given by

fm =    R b a gm(u)ym(u)du R b a |gm(u)| 2 du
, in the continuous case,

P M l=1 gm(u l )ym(u l ) P m l=1 |gm(u l )| 2
, in the discrete case. (Here, and in what follows, h denotes the conjugate of a complex number or a complex function h; h is real if and only if h = h.)

Consider also the following assumptions on the blurring function g(•, •). Define

τ 1 (m) = b a |g m (u)| 2 du, in the continuous case, 1 M M l=1 |g m (u l )| 2 , in the discrete case,
and suppose that, for some constants ν ∈ R, α ≥ 0 (with ν > 0 if α = 0), β > 0 and some constants K 1 and K 2 , independent of m, the choice of M and the selection of points u l , l = 1, 2, . . . , M , with

0 < K 1 ≤ K 2 , τ 1 (m) ≤ K 2 |m| -2ν exp(-α|m| β ), (5) 
and

τ 1 (m) ≥ K 1 |m| -2ν exp(-α|m| β ). ( 6 
)
Following standard terminology, α = 0 corresponds to regular-smooth and α > 0 corresponds to super-smooth blurring functions g(•, •). Define also

2 j 0 = 2 J = 3 8π log(n) 2α 1/β , α > 0, 2 j 0 = [log(n) max(p/2,1) ], 2 J = n δ , α = 0, (7) 
where δ ∈ (0, (2ν + 1) -1 ]. (Here, and in what follows, [x] denotes the integer part of x.)
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By Plancherel's formula, the scaling coefficients, α j 0 k , and the wavelet coefficients, β jk , can be represented as

α j 0 k = m∈C * j 0 f m φ mj 0 k , β jk = m∈C j f m ψ mjk ,
where C * j 0 = {m : φ mj 0 k = 0} and, for all j ≥ j 0 , C j = {m : ψ mjk = 0}, both subsets of 2π/3[-2 j+2 , -2 j ] ∪ [2 j , 2 j+2 ], due to the fact that Meyer wavelets are band limited (see, e.g., Johnstone, Kerkyacharian, Picard & Raimondo (2004), Section 3.1). Hence, α j 0 k and β jk , are naturally estimated by

αj 0 k = m∈C * j 0 fm φ mj 0 k βjk = m∈C j fm ψ mjk . (8) 
We now construct a wavelet (linear or block thresholding) estimator of f (•). For this purpose, we divide the wavelet coefficients at each resolution level into blocks of length l j . More specifically, let the following set of indices

A j = {1, 2, . . . , 2 j /l j }, U jt = {k = 0, 1, . . . , 2 j -1 | (t -1)l j ≤ k ≤ tl j -1}
and let

l j [log(n) max(p/2,1) ], Bjt = k∈U jt | βjk | p /l j 1/p .
For any j 0 ≥ 0, we finally reconstruct f (•) as fn (t) =

2 j 0 -1 k=0 αj 0 k φ j 0 k (t) + J-1 j=j 0 t∈A j k∈U jt βjk I | Bjt | ≥ d2 jν n -1/2 ψ jk (t), (9) 
where I(A) is the indicator function of the set A. (Since j 0 > J -1 when α > 0, the estimator [START_REF] Johnstone | Wavelet deconvolution in a periodic setting[END_REF] only consists of the first (linear) part and, hence, a threshold parameter does not need to be selected in this case.)

Note that since the choices of j 0 , J and the threshold value are independent of the parameters s, ρ, r and M (that are usually unknown in practical situations) of the Besov ball B s ρ,r (M ), the wavelet estimator ( 9) is adaptive with respect to these parameters.

In what follows, we use the symbol C for a generic positive constant, independent of n, which may take different values at different places.

Main Results

We construct below minimax lower bounds for the L p -risk, 1 ≤ p < ∞, both for the continuous model ( 1) and the discrete model [START_REF] Casey | Systems of convolution equations, deconvolution, Shannon sampling, and the wavelet and Gabor transforms[END_REF]. For this purpose, we define the minimax L p -risk, 1 ≤ p < ∞, over the set Ω as

R n (Ω) = inf fn sup f ∈Ω E fn -f p p ,
where g p is the L p -norm, 1 ≤ p < ∞, of a function g(•) and the infimum is taken over all possible estimators fn (•) (measurable functions) of f (•), based on observations either from the continuous model ( 1) or the discrete model [START_REF] Casey | Systems of convolution equations, deconvolution, Shannon sampling, and the wavelet and Gabor transforms[END_REF].

The following theorem provides the minimax lower bounds for the L p -risk, 1 ≤ p < ∞, under assumption (5).

Theorem 4.1 Let {φ j 0 ,k (•), ψ j,k (•)} be the periodic Meyer wavelet basis discussed in Section 2. Let

s > max(0, 1/ρ -1/2), 1 ≤ ρ ≤ ∞, 1 ≤ r ≤ ∞ and M > 0.
Then, under the assumption (5), as n → ∞, there exists some constant C > 0 such that,

R n (B s ρ,r (M )) ≥        C(log n) -ps * /β , if α > 0, Cn -α 1 p , if α = 0, > 0, C( log n n ) α 2 p , if α = 0, ≤ 0, (10) 
where The next theorem provides the minimax upper bounds for the adaptive (with repsect to the Besov parameters) wavelet estimator given by ( 9), under the assumption (6).

α 1 = s 2(s + ν) + 1 , α 2 = s -1/ρ + 1/p 2(s -1/ρ + ν) + 1 , = sρ + 2ν + 1 2 (ρ -p) and s * = s + 1/p -1/ min(p, ρ).
Theorem 4.2 Let fn (•) be the adaptive wavelet estimator defined by ( 9), with j 0 , J and δ given by

(7). Let s > 1/ρ -1/2 + 1/(2δ) -ν if α = 0 and s > 1/ρ if α > 0, 1 ≤ ρ ≤ ∞, 1 ≤ r ≤ ∞ and M > 0.
Then, under assumption ( 6), as n → ∞, there exists some constant C > 0 such that,

sup f ∈B s ρ,r (M ) E( fn -f p p ) ≤        C(log n) -ps * /β , if α > 0, Cn -α 1 p (log n) α 1 pI {p>ρ} , if α = 0, > 0, C( log n n ) α 2 p (log n) max(0,p-ρ/r)I { =0} , if α = 0, ≤ 0, ( 11 
)
where α 1 , α 2 , and s * as in Theorem 4.1.
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Remark 4.2 Theorems 4.1 and 4.2 imply that, for the L p -risk, 1 ≤ p < ∞, the estimator fn (•) defined by ( 9) is asymptotically optimal (in the minimax sense), or near-optimal within a logarithmic factor, over a wide range of Besov balls B s ρ,r (M ) of radius M > 0 with s > 1/ρ -1/2 + 1/(2δ)ν if α = 0 and s > 1/ρ if α > 0, 1 ≤ ρ ≤ ∞ and 1 ≤ r ≤ ∞. In particular, the estimator ( 9) is asymptotically optimal, except for the cases (i) α = 0, = 0, p > ρ/r and (ii) α = 0, > 0, p > ρ; in these latter cases, the estimator fn (•) defined by ( 9) is asymptotically near-optimal within a logarithmic factor, i.e.,

R n (B s ρ,r (M ))              (ln n) -ps * /β , if α > 0, n -α 1 p , if α = 0, > 0, p ≤ ρ, ( ln n n ) α 2 p , if α = 0, < 0, or α = 0, = 0, p ≤ ρ/r and sup f ∈B s ρ,r (M ) E fn -f p p ≤ Cn -α 1 p (log n) α 1 p , if α = 0, > 0, p > ρ, C( ln n n ) α 2 p (log n) (p-ρ r )
, if α = 0, = 0, p > ρ/r. (Here, and in similar expressions, we abuse notation, and

g 1 (n) g 2 (n) denotes 0 < lim inf(g 1 (n)/g 2 (n)) ≤ lim sup(g 1 (n)/g 2 (n)) < ∞ as n → ∞.
) Note that since the constant C in Theorems 4.1 and 4.2 is different, it means that the estimator fn (•) defined by ( 9) is rate optimal.

Examples

In this section, we briefly present inverse problems discussed in Section 1 which can be seen as applications of the functional deconvolution model [START_REF] Abramovich | Wavelet decomposition approaches to statistical inverse problems[END_REF] or its discrete version [START_REF] Casey | Systems of convolution equations, deconvolution, Shannon sampling, and the wavelet and Gabor transforms[END_REF]. The optimality (in the minimax sense), or near-optimality within a logarithmic factor, for the L 2 -risk over a wide range of Besov balls in the Examples 1, 2 and 3 below have been discussed in [START_REF] Pensky | Functional deconvolution in a periodic setting: uniform case[END_REF] (see their Examples 4, 1, 5, respectively); here, we use the methodology presented in Sections 3 and 4 to check that the corresponding estimators are also optimal or near optimal under the L p -risk

(1 ≤ p < ∞).
Example 1. Estimation of the speed of a wave on a finite interval. Let h(t, x) be a solution of the initial-boundary value problem for the wave equation

∂ 2 h(t, x) ∂t 2 = ∂ 2 h(t, x) ∂x 2 with h(0, x) = 0, ∂h(t, x) ∂t t=0 = f (x), h(t, 0) = h(t, 1) = 0. (12) 
Here, f (•) is a function defined on the unit interval [0, 1] and t ∈ [a, b], a > 0, b < 1. We assume that a noisy solution y(t, x) = h(t, x) + n -1/2 z(t, x) is observed, where z(t, x) is a generalized twodimensional Gaussian field with covariance function

E[z(t 1 , x 1 )z(t 2 , x 2 )] = δ(t 1 -t 2 )δ(x 1 -x 2 )
, and the goal is to recover the unknown speed of a wave f (•) on the basis of observations y(t, x).

A C C E P T E D M A N U S C R I P T

ACCEPTED MANUSCRIPT

Extending f (•) periodically over the real line, it is well-known (see, e.g., [START_REF] Strauss | Partial Differential Equations: An Introduction[END_REF], p. 61) that the solution h(t, x) can then be recovered as

h(t, x) = 1 2 1 0 I(|x -z| < t)f (z)dz, (13) 
so that (13) takes the form (4) with g(u, x) = 0.5 I(|x| < u), where u in ( 4) is replaced by t in [START_REF] Park | Deconvolution of long-pulse lidar signals with matrix formulation[END_REF]. It is easily seen that the functional Fourier coefficients g m (•) satisfy ( 5) and ( 6) with ν = 1 and α = 0.

Hence, according to Theorem 4.1 and Theorem 4.2, the adaptive block thresholding wavelet estimator given by ( 9) achieves the following minimax upper bounds (in the Let h(t, x) be a solution of the heat conductivity equation

L p -risk, 1 ≤ p < ∞) R n (B s ρ,r (M )) ≤    n -sp 2s+3 (ln n) sp 2s+3 , if s > 3 2 (1 -p/ρ), ln n n p(s-1/ρ+1/p) 2s-2/ρ+3 (ln n) max(0,p-ρ/r)I( =0) , if s ≤ 3 2 (1 -p/ρ), over Besov balls B s ρ,r (M ) of radius M > 0 with s > 1/ρ -1/2 -1/(2δ) + ν, 1 ≤ ρ ≤ ∞
∂h(t, x) ∂t = ∂ 2 h(t, x) ∂x 2 , x ∈ [0, 1], t ∈ [a, b], a > 0, b < ∞,
with initial condition h(0, x) = f (x) and periodic boundary conditions 

h(t, 0) = h(t,
h(t, x) = (4ρt) -1/2 1 0 k∈Z exp - (x + k -z) 2 4t f (z)dz, (14) 
which coincides with (4) when t and x are replaced by u and t, respectively. It is easily seen that the functional Fourier coefficients g m (•) satisfy ( 5) and ( 6) with ν = 1, α = 8π2 a and β = 2.

Hence, according to Theorem 4.1 and Theorem 4.2, the adaptive wavelet estimator given by [START_REF] Johnstone | Wavelet deconvolution in a periodic setting[END_REF] achieves the following minimax convergence rates (in the

L p -risk, 1 ≤ p < ∞) R n (B s ρ,r (M )) (ln n) -p A C C E P T E D M A N U S C R I P T
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(F2) There exist two constants d > 0 and C > 0 such that, for j ∈ {j 0 , j 0 + 1, . . . , J}, t ∈ A j and n sufficiently large, P

l j k∈U jt | βjk -β jk | ≥ 2 -1 d2 jν n -1/2 ≤ Cn -p . 1 
We show below that Assumptions (F1) and (F2) hold in order to apply Theorems 4.5.1 and 4.5.2

in [START_REF] Chesneau | Quelques contributions à l'estimation fonctionnelle par méthodes d'ondelettes[END_REF], for the case a = 0.

Assumption (F1). Using the theory of generalized random fields, it is easy to check that αj 0 kα j 0 k is a centered Gaussian random variable,

Var(α j 0 k -α j 0 k ) =              1 n m∈C * j 0 |φ mj 0 k | 2 b a |g m (u)| 2 du -1
, for the continuous model,

1 N M m∈C * j 0 |φ mj 0 k | 2 P M l=1 |gm(u l )| 2 M -1
, for the discrete model.

Under assumption [START_REF] De Canditiis | Simultaneous wavelet deconvolution in periodic setting[END_REF], it is easy to see that

Var(α j 0 k -α j 0 k ) ≤ 2 -j 0 m∈C * j 0 |φ mj 0 k | 2 τ -1 1 (m) n ≤ 2 -j 0 K 1 n m∈C * j 0 |m| 2ν ≤ c2 2j 0 ν n ,
for both the continuous model ( 1) and the discrete model [START_REF] Casey | Systems of convolution equations, deconvolution, Shannon sampling, and the wavelet and Gabor transforms[END_REF]. Using the same arguments, it is easy to see that, for each j ≥ j 0 , βjkb jk are also centered Gaussian random variables with variance Var βjkβ jk ≤ c2 2jν n .

Therefore, the following inequalities hold

E(|α j 0 k -α j 0 k | p ) ≤ c p Var(α j 0 k -α j 0 k ) p/2 ≤ c2 j 0 νp n p/2 , E(| βjk -β jk | 2p ) ≤ c p (Var( βjk )) p ≤ c2 2pνj n p .
Assumption (F2). We first show that Assumption (F2) hold for p ≥ 2. It is sufficient to show that P 1

l j k∈U j,t | βjk -β jk | p 1/p ≥ d2 jν n -1/2 2 ≤ cn -p . ( 16 
)
Consider the centered Gaussian process

Z jt = k∈U jt v k ( βjk -β jk ),
where v k ∈ Ω qjt = v k : k ∈ U jt and k∈U jt |v k | q ≤ 1 and 1 p + 1 q = 1. By the duality argument used by [START_REF] Chesneau | Wavelet estimation via block thresholding: a minimax study under the L p -risk[END_REF] Under assumption [START_REF] De Canditiis | Simultaneous wavelet deconvolution in periodic setting[END_REF], it is easy to see that E ( βjkβ jk )( βjkβ jk ) = 

Remark 2 . 1

 21 The property of concentration is used in the proof of Theorem 4.2, in the case of supersmooth convolutions. The property of unconditionality and Temlyakov property are indirectly used in the proof of Theorem 4.2, since they are used in the proofs of some auxiliary results (i.e., Theorems 4.5.1 and 4.5.2 in Chesneau (2006)). Now, let us give the definition of Besov balls, the main function spaces used in our study. Let

Remark 4 . 1

 41 The two different lower bounds for α = 0 in[START_REF] Johnstone | Periodic boxcar deconvolution and Diophantine approximation[END_REF] refer to the dense case ( > 0) when the worst functions f (•) (i.e., the hardest functions to estimate) are spread uniformly over the unit interval T , and the sparse case ( ≤ 0) when the worst functions f (•) have only one non-vanishing wavelet coefficient. Also, the restriction s > max(0, 1/ρ -1/2), 1 ≤ ρ ≤ ∞, 1 ≤ r ≤ ∞, that appears in the statement of Theorem 4.1, ensures that the corresponding Besov spaces are embedded in L 2 (T ).

Example 2 .

 2 and 1 ≤ r ≤ ∞. (The minimax lower bounds (in the L p -risk, 1 ≤ p < ∞) have the same form without the extra logarithmic factor.) Estimation of the initial condition in the heat conductivity equation.

  , we getsup v∈Ωq Z jt (v) = k∈U jt | βjkβ jk | p 1/p .Thus, Jensen's inequality, (17) and Assumption (F1) lead toE( sup v∈Ωq Z jt (v)) = E k∈U jt | βjkβ jk | p 1/p ≤ k∈U jt E | βjkβ jk | p j n -1/2 2 νj := V 1 .

≤ K 1 2 2jν n sup v∈Ωq k∈U jt |v k | 2 1 /2 l 1 /p j 2 νj 4 , V 1 = 1 l

 211411 (17), ψ mjk ψ mjk = 0 for k = k and m∈C j |ψ mjk | 2 = 1, we arrive atsup v∈Ωq Var Z jt (v) = sup v∈Ωq k∈U jt k ∈U jt v k v k E( βjkβ jk )( βjkβ jk )) proof ofTheorem 4.2, we are going to use Lemmas 2 and 5 in Pensky & Sapatinas (2009). Applying Lemma 5 in Pensky & Sapatinas (2009) with x = dn -Cl1/p j n -1/2 2 νj , V 2 = K 1 2 2νjn and d sufficiently large, we haveP j k∈U jt | βjkβ jk | p 1/p ≥ 2 -1 2 νj dn -1/2 = P sup v∈Ωq Z(v) ≥ l 1/p j 2 -1 2 jδ dn -1/2

  ≤ exp(-cd 2 log n) ≤ n -p . Now, we show that Assumption (F2) holds for 1 ≤ p < 2. It is easy to see that the following In order to complete the proof of Theorem 4.2, we now apply Lemma 2 in Pensky & Sapatinas (2009) which, combining with (19), gives[START_REF] Strauss | Partial Differential Equations: An Introduction[END_REF]. Hence, we have shown that (F1) and (F2) are satisfied for all 1 ≤ p < ∞. Applying Theorems 4.5.1 and 4.5.2 in Chesneau (2008), we obtain the required upper bounds.

	≤ exp(-) inequality hold x 2 2V 2		
	P	1 l j k∈U jt	| βjk -β jk | p	1/p	≥ 0.5d2 jν n -1/2 ≤ P	1 l j k∈U jt	| βjk -β jk | 2	1/2	≥ 0.5d2 jν n -1/2 .(19)

≤ P sup v∈Ωq Z(v)) ≥ x + V 1

(s+1/p-1/ min(p,ρ))
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over Besov balls B s ρ,r (M ) of radius M > 0 with s > 1/ρ, 1 ≤ ρ ≤ ∞ and 1 ≤ r ≤ ∞.

Example 3. Estimation in the multichannel deconvolution problem. Consider the problem of estimating f (•) ∈ L p (T ) on the basis of the following model

where g l (•) are known blurring functions and W l (t) are independent standard Wiener processes.

Adaptive term-by-term wavelet thresholding estimators for the model [START_REF] Petsa | Contributions to Wavelet Methods in Nonparametric Statistics[END_REF] were constructed in De Canditiis & [START_REF] De Canditiis | Simultaneous wavelet deconvolution in periodic setting[END_REF] for regular-smooth convolutions (i.e., α = 0 in ( 5) and ( 6)), over a wide range of Besov balls. However, minimax lower and upper bounds were not obtained by these authors who concentrate instead on upper bounds (in the L p -risk, 1 < p < ∞) for the error, for a fixed target function (using the maxiset approach). Moreover, the case of super-smooth convolutions (i.e., α > 0 in ( 5) and ( 6)) and the case when M can increase together with N have not been treated

in De Canditiis & [START_REF] De Canditiis | Simultaneous wavelet deconvolution in periodic setting[END_REF].

Consider now the adaptive wavelet estimator fn (•) defined by ( 9) for the continuous model ( 1) or the discrete model [START_REF] Casey | Systems of convolution equations, deconvolution, Shannon sampling, and the wavelet and Gabor transforms[END_REF]. Then, under the assumption ( 6), the corresponding minimax lower bounds are given by Theorem 4.1, while, under the assumption (5), the corresponding minimax upper bounds are given by Theorem 4.2. Thus, the proposed functional deconvolution methodology significantly expands on the theoretical findings in De Canditiis & [START_REF] De Canditiis | Simultaneous wavelet deconvolution in periodic setting[END_REF].

Acknowledgements. The authors wish to express their thanks to Professors Christophe Chesneau and Marianna Pensky for useful discussions. Helpful comments of a reviewer on improvements to this paper are also gratefully acknowledged.

6 Appendix: Proofs (F1) Let us set βj 0 -1,k = αj 0 k . There exist some constant C > 0 such that, for all j ∈ {j 0 -1, j 0 , . . . , J}, k ∈ {0, 1, . . . , 2 j -1} and n sufficiently large,
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For the case α > 0, the estimator is given by fn (t) = 2 j 0 -1 k=0 αj 0 k φ j 0 k (t). Minkowski's inequality leads to

Additionally, using the property of concentration (3), (F1) and the definition of j 0 , we have E( 

Inequalities ( 20), ( 21) and ( 22) lead to the optimal rate of convergence for the case α > 0.