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PII: S0167-7152(09)00115-1
DOI: 10.1016/j.spl.2009.03.011
Reference: STAPRO 5378

To appear in: Statistics and Probability Letters

Received date: 23 November 2008
Revised date: 6 March 2009
Accepted date: 6 March 2009

Please cite this article as: Kosiński, K.M., On the functional limits for sums of a function of
partial sums. Statistics and Probability Letters (2009), doi:10.1016/j.spl.2009.03.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.spl.2009.03.011


AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

On the functional limits for sums of a function of partial sums1

Kamil M. Kosiński∗,12

Wydział Matematyki, Informatyki i Mechaniki, Uniwersytet Warszawski, Warszawa, Poland3

Abstract4

We derive a functional central limit theorem (fclt) for normalised sums of a function of the partial sums of independent
and identically distributed random variables. In particular, we show, using a technique presented in Huang and Zhang
(Electron. Comm. Probab. 12, 51–56), that the result from Qi (Statist. Probab. Lett. 62, 93–100), for normalised
products of partial sums, can be generalised in this fashion to a fclt.

Key words: Limit distributions, Product of sums, Stable laws5

1. Introduction6

While considering limiting properties of sums of records, Arnold and Villaseñor (1998) obtained the following7

version of the central limit theorem (clt) for a sequence (Xn) of independent, identically distributed (iid) exponential8

random variables (rv’s) with the mean equal one:9


n∏

k=1

S k

k


1/
√

n
d→ e

√
2N as n→ ∞,

where S n =
∑n

k=1 Xk and N is a standard normal random variable.10

Later Rempała and Wesołowski (2002) extended such a clt to general iid positive rv’s (Xn). Namely, provided that11

EX2
1 < ∞,12


n∏

k=1

S k

kµ


γ/
√

n
d→ e

√
2N as n→ ∞, (1)

where µ = EX1 and γ = µ/σ with σ2 = Var X1 > 0.13

This result was generalised by Qi (2003) by assuming that the underlying distribution of X1 is in the domain of14

attraction of a stable law with index α ∈ (1, 2]. In this case15


n∏

k=1

S k

kµ


µ/an

d→ e(Γ(α+1))1/αL as n→ ∞, (2)

where Γ(α + 1) =
∫ ∞

0
xαe−x dx and the sequence an is taken such that16

S n − nµ
an

d→ L,

where L is one of the stable distributions with index α ∈ (1, 2]. Lu and Qi (2004) obtained a similar result in the case17

α = 1 with E|X1| < ∞. In a paper by Huang and Zhang (2007) it is shown that (1) follows from the weak invariance18

principle and the whole result can be reformulated to a functional theorem.19
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Let (S n) be any nondecreasing sequence of positive rv’s (which do not have to be a sequence of partial sums).20

Suppose there exists a standard Wiener process (W(t))t≥0 and two positive constants µ and σ such that21

S [nt] − [nt]µ

σ
√

n

d→ W(t) in D[0, 1] as n→ ∞, (3)

and22

sup
n

E|S n − nµ|√
n

< ∞. (4)

Then the result from Huang and Zhang (2007) states that23


[nt]∏

k=1

S k

kµ



γ/
√

n
d→ exp

{∫ t

0

W(x)
x

dx

}
in D[0, 1] as n→ ∞, (5)

where γ = µ/σ.24

For example, if (Xn) are iid positive rv’s with mean µ and variance σ2 and S n are the partial sums, then (3) is25

satisfied by the invariance principle (c.f. Billingsley, 1999, Theorem 14.1), and (4) follows from the Cauchy-Schwarz26

inequality. Then, one can check that (5) implies (1).27

The purpose of this paper is to show that the technique used by Huang and Zhang (2007) can be utilised to obtain28

a similar result for the rv’s in the domain of attraction of a stable law with index α ∈ (1, 2]. Furthermore, we will set29

our discussion in a more general setting. It is straightforward that (1), and analogously (2), is a simple corollary from30

∑n
k=1 f (S k/k) − bn

an

d→ N ,

if one sets f (x) = log x and chooses the sequences an, bn properly.31

2. Preliminaries32

The following theorem is well known and can be easily found in the literature (see e.g. Bingham et al., 1987).33

Theorem 1 (Stability Theorem). The general stable law with index α ∈ (0, 2] is given by a characteristic function of34

one of the following forms:35

1. φ(t) = exp(−σα|t|α(1 − iβ(sgn t) tan 1
2πα) + iµt), α , 1,36

2. φ(t) = exp(−σ|t|(1 + iβ(sgn t) 2
π

log |t|) + iµt), α = 1,37

3. φ(t) = exp(−σ2t2/2 + iµt), α = 238

with β ∈ [−1, 1], µ ∈ R and σ > 0.39

From the above theorem one can see that every stable law with index α ∈ (0, 2) can be parametrized by four40

parameters and written as S α(σ, β, µ). We distinguish the case α = 2 because otherwise S 2(σ, β, µ)
d
= N(µ, 2σ2) and41

β plays no role, moreover one would like to think of S 2(1, β, 0) as N not N(0, 2).42

Let (Xn) be a sequence of iid rv’s, set S n =
∑n

k=1 Xk and assume X1 is in the domain of attraction of a stable law43

with index α ∈ (1, 2]. Note that for such X1 we have E|X1| < ∞. Recall that a sequence of iid rv’s (Xn) is said to be in44

the domain of attraction of a stable law S α(σ, β, µ), if there exists constants an > 0 and bn ∈ R such that45

S n − bn

an

d→ S α(σ, β, µ). (6)

Clearly by scaling it suffices to let σ = 1 and µ = 0, hence only the parameters α and β are unaltered by scaling. In46

case α = 2 as mentioned above, we understand S 2(1, β, 0) as N . Moreover, in case α ∈ (1, 2], the sequence bn can47

be taken equal to µn. On how to choose an we refer to (Whitt, 2002, Theorem 4.5.1). The choice is irrelevant for our48

discussion, the only fact that plays the crucial role is the fact that if (6) holds, then an = n1/αL(n), where L is slowly49

varying.50
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Furthermore, in addition to stable clt (6), there is convergence in distribution51

S n(t) B
S [nt] − [nt]µ

an

d→ L(t) in D[0, 1], (7)

where L is a standard (α, β)-stable Lévy motion, with52

L(t)
d
= t1/αS α(1, β, 0)

d
= S α(t, β, 0)

and as before, for α = 2, L is a standard Wiener process (c.f. Whitt, 2002, Theorem 4.5.3).53

3. Main Results54

Theorem 2. Let (Xn) be a sequence of iid rv’s in the domain of attraction of the stable law S α(1, β, 0) with α ∈ (1, 2],55

so that (6) holds for some sequence an and bn = nµ, where µ = EX1. Let f be a real function defined on an interval I56

such that P(X1 ∈ I) = 1 and f ′(µ) exists. Then, as n→ ∞57

1
an

[nt]∑

k=1

( f (S k/k) − f (µ))
d→ f ′(µ)

∫ t

0

L(x)
x

dx in D[0, 1], (8)

where S k denotes the k-th partial sum.58

Because L(x) is cádlág, it has at most countably many discontinuity points, so the integral on the right hand side59

of (8) exists and is finite almost surely if60 ∫ 1

0

|L(x)|
x

dx < ∞ a.s.

To ensure this, note that for a positive nondecreasing function h we have61

∫ t

0

|L(x)|
x

dx ≤ sup
0≤s≤t

{ |L(s)|
h(s)

}∫ t

0

h(x)
x

dx.

Setting h(x) = xγ with γ ∈ (0, 1/α) we get
∫ 1

0
h(x)

x dx < ∞ and62

sup
0≤s≤t

{ |L(s)|
h(s)

}
→ 0 a.s. as t → 0,

by Khintchine’s Theorem (see e.g., Barndorff-Nielsen et al., 2001, Theorem 2.1). This guaranties the existence of the63

integral in (8) as well as implies that64

sup
0≤s≤t

∣∣∣∣∣∣

∫ t

0

L(x)
x

dx

∣∣∣∣∣∣ = 0 a.s. as t → 0,

a fact that is going to be used later in the proof.65
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Remark 1. Observe that

∫ t

0

L(x)
x

dx = lim
n→∞

n∑

k=1

t
n

n
tk
L

(
tk
n

)
= lim

n→∞

n∑

k=1

k∑

i=1

1
k

(
L

( ti
n

)
− L

(
t(i − 1)

n

))

= lim
n→∞

n∑

i=1

(
L

( ti
n

)
− L

(
t(i − 1)

n

)) n∑

k=i

1
k

d
= lim

n→∞


n∑

i=1


n∑

k=i

1
k


α

1/α

S α

( t
n
, β, 0

)

d
= S α (t, β, 0) lim

n→∞


n∑

i=1

1
n


n∑

k=i

1
k


α

1/α

= S α (t, β, 0)
(∫ 1

0
(− log x)α dx

)1/α

= S α (t, β, 0) (Γ(α + 1))1/α .

If X1 is a positive rv, then the limiting stable law has β = 1. Setting f (x) = µ log(x/µ), Theorem 2 yields66


n∏

k=1

S k

kµ


µ/an

d→ exp (S α (Γ(α + 1), 1, 0)) , as n→ ∞.

which is the result (2) obtained by Qi (2003).67

Remark 2. If EX2
1 < ∞, then X1 is in the domain of attraction of normal distribution N and an ∼ σ

√
n, where68

σ2 = Var(X1) > 0. If furthermore X1 is positive, then setting γ = µ/σ69


[nt]∏

k=1

S k

kµ



γ/
√

n
d→ exp

(∫ t

0

W(x)
x

dx

)
, in D[0, 1] as n→ ∞,

which coincides with the result (5) by Huang and Zhang (2007).70

Before proceeding to the proof of the main theorem, we need a technical lemma.71

Lemma 3. Under the assumptions of Theorem 272

n∑

k=1

E|S k − kµ|
k

= O(an).

Proof. Note that73

n∑

k=1

E|S k − kµ|
k

≤ sup
k≤n

{
E
|S k − kµ|

ak

} n∑

k=1

ak

k
.

By Theorem 6.1 in DeAcosta and Giné (1979)74

E
|S n − nµ|

an
= O(1). (9)

Now, for a regularly varying function A > 0 with index γ > −1, its easy to see that75

∑

k≤x

A(k) ∼
∫ x

1
A(t)dt ∼ 1

1 + γ
xA(x) as x→ ∞ if γ > −1,

4
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where the last asymptotic equivalence follows from the Karamata’s Theorem (c.f. Bingham et al., 1987, Theorem76

1.5.8). Recall that an is slowly varying with index 1/α > 0, this implies77

n∑

k=1

ak

k
= O(an),

and proves the Lemma.78

Now we may proceed to the proof of the main theorem. The proof follows the steps of the proof of (5) in Huang79

and Zhang (2007).80

Proof of Theorem 2. Expand f in the neighbourhood of µ, then81

1
an

[nt]∑

k=1

( f (S k/k) − f (µ)) =
f ′(µ)
an

[nt]∑

k=1

(S k/k − µ) +
1
an

[nt]∑

k=1

(S k/k − µ)r(S k/k), (10)

where r(x)→ 0 as x→ µ. Note that E|X1| < ∞ so by the SLLN r(S k/k)→ 0 a.s.. It now follows from Lemma 3 that82

sup
0≤t≤1

∣∣∣∣∣∣∣
1
an

[nt]∑

k=1

(S k/k − µ)r(S k/k)

∣∣∣∣∣∣∣
≤ 1

an

n∑

k=1

|S k − kµ|
k

|r(S k/k)| = oP(1).

So, according to (10) it suffices to show that, as n→ ∞83

Yn(t) :=
1
an

[nt]∑

k=1

S k − kµ
k

d→
∫ t

0

L(x)
x

dx, in D[0, 1]. (11)

Let84

Hε( f )(t) =

{ ∫ t

ε

f (x)
x dx, ε < t ≤ 1

0, 0 ≤ t ≤ ε
and85

Yn,ε(t) =

{
1
an

∑[nt]
k=[nε]+1

S k−kµ
k , ε < t ≤ 1

0, 0 ≤ t ≤ ε,
It is obvious that86

sup
0≤t≤1

∣∣∣∣∣∣

∫ t

0

L(x)
x

dx − Hε(L)(t)

∣∣∣∣∣∣ = sup
0≤t≤ε

∣∣∣∣∣∣

∫ t

0

L(x)
x

dx

∣∣∣∣∣∣→ 0 a.s. as ε→ 0 (12)

and87

E max
0≤t≤1

∣∣∣Yn(t) − Yn,ε(t)
∣∣∣ ≤ 1

an

[nε]∑

k=1

E|S k − kµ|
k

≤ Cε1/α (13)

by the same argumentation as in the proof of Lemma 3.88

On the other hand, it is easily seen that, for n large enough such that nε ≥ 1,

sup
ε≤t≤1

∣∣∣∣∣∣
[nt]∑

k=[nε]+1

S k − kµ
k

−
∫ nt

nε

S [x] − [x]µ
x

dx

∣∣∣∣∣∣ = sup
ε≤t≤1

∣∣∣∣∣∣

∫ [nt]+1

[nε]+1

S [x] − [x]µ
[x]

dx −
∫ nt

nε

S [x] − [x]µ
x

dx

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

∫ [nε]+1

nε

S [x] − [x]µ
x

dx

∣∣∣∣∣∣ + sup
ε≤t≤1

∣∣∣∣∣∣

∫ [nt]+1

nt

S [x] − [x]µ
x

dx

∣∣∣∣∣∣

+ sup
ε≤t≤1

∣∣∣∣∣∣

∫ [nt]+1

[nε]+1
(S [x] − [x]µ)

(
1
x
− 1

[x]

)
dx

∣∣∣∣∣∣

≤ max
k≤n
|S k − kµ| sup

ε≤t≤1

(
2
nε

+
2
nt

+
1
nε

)

≤ 5 max
k≤n
|S k − kµ|/(nε) = OP(an/n) = oP(1),

5
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by noticing that maxk≤n |S k − kµ|/an
d→ sup0≤t≤1 |L(t)| according to (7). So89

1
an

[nt]∑

k=[nε]+1

S k − kµ
k

=
1
an

∫ nt

nε

S [x] − [x]µ
x

dx + oP(1) =

∫ t

ε

S n(x)
x

dx + oP(1)

uniformly in t ∈ [ε, 1]. Notice that Hε(·) is a continuous mapping on the space D[0, 1]. Using the continuous mapping90

theorem (c.f. Theorem 2.7. of Billingsley (1999)) it follows that91

Yn,ε(t) = Hε(S n)(t) + oP(1)
d→ Hε(L)(t) in D[0, 1] as n→ ∞. (14)

Combining (12)-(14) yields (11) by Theorem 3.2 of Billingsley (1999).92

4. Extensions93

To prove Lemma 3, we have only used the property (9) (which is in fact the condition (4)) and the fact that an94

varies regularly with a positive index. The proof of Theorem 2 was based on the convergence (7) and the fact that95

S k/k → µ a.s.. All those conditions are satisfied when S k is defined to be the partial sum of a sequence of iid rv’s in96

the domain of attraction of a stable law with index greater than one. However, we do not need to assume anything97

about S k and only require that it satisfies the aforementioned conditions. This leads to98

Theorem 4. Let (S k) be a sequence of random variables. Suppose there exists an (α, β)-stable Lévy process (L(t))t≥0,99

a constant µ and a sequence an such that as n→ ∞100

S [nt] − [nt]µ
an

d→ L(t) in D[0, 1],

where an can be written as an = n1/αL(n) with α ∈ (1, 2] and L slowly varying. In addition, suppose that101

sup
n

E|S n − nµ|
an

= O(1), (15)

and S n/n→ µ a.s., then, as n→ ∞102

1
an

[nt]∑

k=1

( f (S k/k) − f (µ))
d→ f ′(µ)

∫ t

0

L(x)
x

dx in D[0, 1],

for any real function f defined on an interval I such that P(S k/k ∈ I) = 1 for all k, provided that f ′(µ) exists.103

In their paper, Huang and Zhang showed that if (S k) is a nondecreasing (in fact we only need monotonicity)104

sequence satisfying (15), then S k/k → µ a.s.. Thus, Theorem 4 is an extension of the result (5) from Huang and105

Zhang (2007).106
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