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Abstract 
 

Explicit numerical schemes are used to integrate in time finite element discretization methods. Unfortunately, 
these numerical approaches can induce high-frequency numerical oscillations into the solution. To eliminate or to 
reduce these oscillations, numerical dissipation can be introduced.  The paper deals with the comparison of three 
different explicit schemes: the central difference scheme which is a non-dissipative method, the Hulbert Chung 
dissipative explicit scheme and the Tchamwa-Wielgosz dissipative scheme.  Particular attention is paid to the 
study of these algorithms’ behavior in problems involving high-velocity impacts like Taylor anvil impact and 
bullet-target interactions. It has been shown that Tchamwa-Wielgosz scheme is efficient in filtering the high-
frequency oscillations and is more dissipative than Hulbert Chung explicit scheme. Although its convergence rate 
is only first order, the loss of accuracy remains limited to acceptable values. 

Keywords: Finite elements, dynamics, explicit scheme, numerical dissipation, impact. 

1. Introduction 

Problems like ballistic impacts, vehicle collisions, bird strike, blade loss in a turbo-engine … raise 
major concerns about safety. Therefore, there is an increasing need to understand such phenomena and 
numerical tools are used to predict, optimize or design systems for efficient protection. Usually, spatial 
discretization and temporal discretization are prerequisite to solving the governing equations. Spatial 
discretization is solved by recourse of the finite element method, while this FE discretization is 
integrated in time using finite-difference schemes. Although there are two main time integration 
families [1-3] - the implicit family of iterative, unconditionally stable algorithms and the explicit family 
of non-iterative but conditionally stable algorithms - we will focus on explicit time integration schemes. 
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Indeed, their non-iterative characteristic is well suited for highly non-linear impact problems as they 
avoid issues resulting from the lack of convergence in the Newton-Raphson iterations. Moreover, their 
time step size limitation, due to the conditional stability, is not restrictive for their efficiency as small 
time steps are required to capture the high frequency phenomena occurring during impact problems.  

A problem encountered when dealing with numerical time integration is the presence in the solution 
of unphysical high-frequency oscillations resulting from a spatial discretization, which leads to the loss 
of accuracy in the solution. Indeed, even for stable integration schemes and in the absence of hourglass 
in the element formulations, the finite discretization introduces one eigen-mode by degree of freedom, 
most of them (the ones at high frequencies) being non-physical, but numerical. To control these 
spurious frequencies, numerical dissipation can be introduced in time integration schemes. Although 
numerical dissipation has been widely used in combination with implicit scheme to enhance the 
convergence of the iterations, some recent works have shown interest in numerical dissipation when 
dealing with explicit schemes and non-linear dynamics [4-12].  

Since traditional central-difference explicit schemes cannot accommodate numerical dissipation, 
two new numerically-dissipative explicit schemes have recently been developed: the Hulbert-Chung 
explicit scheme [5, 6] and the Tchamwa-Wielgosz explicit scheme [7-11]. Although comparisons 
between these schemes have already been conducted [10], a comparison in the field of high-velocity 
impact is still lacking. It is the purpose of this work to investigate the behavior of these algorithms 
when considering bullet-target interactions. 

The outline of the paper is the following. In section 2, a summary review of finite-element time-
integration by finite difference schemes is presented. In section 3, the stability and accuracy of the 
Tchamwa-Wielgosz (TW), Hulbert-Chung (HC) and central difference (CD) schemes are studied. In 
order to compare the TW scheme with the other, stability conditions are derived in a new way, allowing 
expressing all the relations in terms of the spectral radius at bifurcation. Numerical examples involving 
high-velocity impacts are conducted with the three explicit schemes in section 4, demonstrating the 
excellent behavior of the Tchamwa-Wielgosz scheme in smoothing high frequencies without loss of 
accuracy. 

2. Time Integration of a Finite-Element Discretization 

Let us assume that, as a result of finite element and time discretization process, the equations of 
motion for structural dynamics yield the nonlinear discrete equations  

[ ])x,x,x,x(F)x,x,x,x(FMx n1nnn
int

n1nnn
ext1

1n
&&r&r&rrr

&&r&r&rrr
&&r

++
−

+ −=                                   (1) 

where M is the mass matrix, intF
r

 and extF
r

are the vectors of nodal internal and external forces, 

respectively. Vectors nxr , nx&r and nx&&r  refer to nodal displacements, velocities and accelerations at time 

nt . They are respectively approximations of )t(x n
r , )t(x n

&r and )t(x n
&&r , the corresponding exact values. 

Given initial conditions 00 x)(x rr
= , 00 x)(x &r&r = , the initial boundary values problem consists of 

finding the unknown displacement vector xr  which satisfies Eqn. (1) for all ]t[0,t f∈ , the time 
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integration interval. To solve Eqn. (1), additional relations, the so-called time integration scheme 
equations, which express relations between displacements, velocities and accelerations at the current 
time and at the next time are also needed. They should also be consistent [4,6-8].  This leads to the set 
of equations which constitute the system or the problem to be solved: 
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There exist different types of time integration schemes and the choice of an integration scheme for 
any given problem mostly depends on two main factors: the accuracy and the computational cost. These 
numerical schemes are generally grouped into two categories: the implicit schemes and the explicit 
schemes. Other types of classification exist: single-step or multi-step methods and single-stage or multi-
stage methods [13]. 

In order to analyze the properties of the time integration scheme, it is advantageous to transform the 
system (2) into a set of coupled linear equations by a linearization process. These equations can be 
uncoupled after a modal decomposition, resulting in a set of uncoupled one-degree-of-freedom 
equations. To highlight numerical effects on the solution, it is advantageous to study the free undamped 
system, which is a conservative system, and whose equation for one mode is given by 

0)()( 2 =+ txtx ω&&                                                                                (3) 

Analytical solution of this free undamped system is given by  

)tsin(c)tcos(cx 21 ωω += ,                                                                     (4) 

where constants 1c and 2c  are determined by the initial conditions. Numerical integration of system (3) 
by recourse of the set of equations (2) can be stated in the form  
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where ( )ΩA  is the amplification matrix depending on the non-dimensional frequency tΔ=Ω ω ,  tΔ  
being the time step size.  

Characteristics like stability, accuracy, order of convergence, etc. can be deduced from the 
expression of this amplification matrix, and in particular from the expression of its eigenvaluesλ . The 
non-dimensional frequency bΩ , for which the two first complex conjugated eigenvalues 2,1λ becomes 
real, is called the bifurcation frequency. Obviously, if the non-dimensional frequency is larger than the 
bifurcation frequency, the algorithm is unable to provide a solution of the form (4), which leads to the 
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first condition on the time step size: 

ω
Ω

<Δ bt                                                                             (6) 

If this bifurcation condition is satisfied, the solution of the numerical scheme (5) has the general form 

1
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where 1c , 2c and 3c  are constant and are determined by specifying the initial conditions, and 
where 3λ  is the spurious real root.  

The numerical damping factor dξ  appearing in Eqn. (7) depends on the eigenvalues:  
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λ
Ω  is the effective frequency. Clearly, from this solution, if 0>dξ and 

13 <λ , the scheme is stable and the system numerically dissipates the energy, the scheme is 

conservative if 0=dξ and if 03 =λ  or 1, and for any other configurations, the scheme is unstable and 
energy is introduced in the system. Therefore, characteristics for stability analysis depend on the 
spectral radius ρ defined by i,,i

max)( λρ
321=

=Ω , which should remain lower or equal to 1 ( 1≤ρ ). In 

general, explicit algorithms are conditionally stable and one can define sΩ the stability limit for 
which 1)( =Ω sρ , leading to the stability limit 
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In order to maximizing the integration range, and to provide high numerical dissipation for high 
frequencies, the two following conditions are generally required 

bs ΩΩ ≥                  and                     2,13 λλ <                          (10) 

If the last condition is not satisfied, maximal numerical dissipation occurs for frequencies way below 
the bifurcation limit, which is not the purpose of a dissipative scheme. If this condition is satisfied, 
spectral radius )(Ωρ  is a decreasing function with respect ofΩ , and it decreases until the value at 
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bifurcation 1)()( ≤Ω=Ω= sbb ρρρ is reached. This value characterizes the amount of energy that is 
dissipated by the integration algorithm. Accuracy of the algorithm is defined from the errors on the 
damping ratio and on the frequency, which are respectively defined by 

)(Odce

)(Obae

32d

32
d
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++=
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++==
                                (11) 

If 0== ca , time integration is said accurate to the second order, if not, it is first order accurate. 

3. Theoretical Comparison of Explicit Schemes 

In this section, the analysis provided in the previous section is carried out for the different explicit 
schemes under consideration. We will briefly introduce the CD and the HC schemes and will give an 
extensive study of the TW scheme. 

3.1 Central difference explicit scheme 

The equation of motion (1) is expressed at time 1+nt , while the time integration equations (2) 
correspond to a mid-point scheme:  
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For the undamped system [1], the CD scheme is a second order non-dissipative scheme. Analysis of the 
corresponding spectral matrix leads to a conditionally stability of the scheme, with 2=Ω=Ω sb , and 
under conditions (9), the maximum allowable time step or the critical time step  is given by  

ω
γ

Δ s
crit

2t =                                                                       (13) 

where ω  is the maximal frequency of the system and sγ , a security factor used to take  into account 
nonlinearities. The CD scheme exhibits a period shortening [2]. 
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3.2 Hulbert-Chung explicit scheme 

The HC explicit scheme is a second order dissipative scheme aiming to maximize high-frequency 
dissipation and minimize low-frequency dissipation [5]. The equation of motion (1) is weighted at times 

nt  and 1+nt by recourse of the parameter Mα , while the time integration equations (2) are expressed in 
term of control parameters β  andγ , which yields to the system  
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The eigenvalues of the spectral matrix associated to the system (14) obey at bifurcation limits to the 
equation [5]: 

( ) ( ) 02 =++ sp ρλρλ                                                         (15) 

where pρ  and sρ are respectively the opposite of the principal and spurious eigenvalues. It has been 
demonstrated in [5] that the condition sp ρρ =  leads to a maximization of bΩ , which in turns 
maximizes the time step size. In order to lowering the low frequency dissipation, the spectral radius at 
bifurcation is chosen as being spb ρρρ == . In this particular case, the HC scheme is conditionally 
stable and the stability conditions are fulfilled for  
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Expression of bΩ and sΩ  are given by 
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The corresponding critical time step is then expressed by  

ω
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critt
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It clearly appears that bρ  controls the numerical dissipation: for 0b =ρ , the high-frequency response 
is nearly annihilated in one step time, while for 1=bρ , the scheme conserves energy. The HC scheme 
exhibits either period shortening or period elongation [5]. 

3.3 Tchamwa-Wielgosz scheme analysis 

For the TW scheme [9], the equation of motion (1) is expressed at time 1+nt , while the time 
integration equations (2) are expressed in term of control parameters α , β ,γ ,λ , which yields the 
system: 
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For the undamped linear system, one may write  
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From this expression of the amplification matrix, the eigenvalues can be computed, which allows to 
express the errors (11) in term of the control parameters. It has been shown [10] that the algorithm 
requires 1=+ βγλ  to be at least first order accurate. This relation should be completed by 

1)( =+γαλ  to be second order accurate. Consistency condition also requires [10] 1=λ  and 
1=+ γα . These conditions allow rewriting the system in term of a single control parameter  

γβφ +=                                                             (21) 

The three eigenvalues associated to the new amplification matrix are  
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From these expressions, the bifurcation limit bΩ , for which 2,1λ  are no longer complex, is 



TPIRCSUNAM DETPECCA

ARTICLE IN PRESS

Nsiampa, Ponthot, and Noels / International Journal of Impact Engineering 
 

φ
2

=Ωb                                     (23) 

while ( ) φφ /12 +=Ω s , providing  

1≥φ                                                                   (24) 

Under this last assumption, conditions (10) are satisfied and the critical time step (9) becomes 

ω
γ

φω
γ bsst Ω

==Δ
2

crit                   (25) 

The TW scheme is then stable and it conserves the energy when 1=φ  ( 2=Ωb ). In this case, the 
scheme is second order accurate and is spectrally equivalent to the CD method [6-8]. The parameter φ  
controls the numerical dissipation. Indeed, it can be expressed in terms of spectral radius at 
bifurcation bρ and of the bifurcation limit bΩ  (Fig. 1a).  

211 bb )( Ω−+= φρ     and     
bρ

φ
+

=
1

2
                                              (26) 

The spectral radius at bifurcation bρ  has great importance as it is the one user parameter allowing 
control of the numerical dissipation, so the characteristic curves are generally given as a function of bρ . 
Figure 1b illustrates the variation in spectral radius as a function of bρ . For 0=bρ , the high-frequency 
response will be nearly annihilated in one step time. 

       
(a) (b)  

Fig. 1.  Numerical characteristics of the TWS scheme. (a)  Parameter φ  and the bifurcation limit bΩ  function of the spectral 

radius at bifurcation bρ . (b) Evolution of spectral radius ρ  in terms of Ω . 
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          (a)                                       (b)  

Fig. 2.  Errors associated to the TW scheme. (a)  Numerical damping ratio. (b) Relative period error. 

Because time integration schemes are approximation methods, they introduce errors on the 
amplitude and on the period of the solution. These errors (11) are reported in Fig. 2.  

( ) )(e;)(1
2
1e 22 ΩΟΩΟΩφ Ωξ =+−=                                   (27) 

The relative period error is shown in the Fig. 2b for different values of bρ , and in function of the 

non-dimensional time step (
T

tΔ
). It is interesting to note that for all values of bρ , the relative period 

error is negative (period shortening). The period shortening increases from a minimum value when 
1=bρ  to a maximum value when 0=bρ .  The TW scheme is second order accurate only if 1=bρ , 

see Eqn. (27). 

4. Summary of the Different Schemes 

Table 1 summarizes the analysis of the three different time integration schemes (CD, TW and HC). 
For 2=Ωb , TW scheme and HC scheme are spectrally equivalent to the CD method. Moreover, the 
TW critical time step is globally lower than the HC critical time step, which in turn, is globally lower 
than the CD critical time step. As a consequence, the TW method is globally the most expensive.  

The CD method being the reference non dissipative method, the difference between the internal 
forces of the TW or of the HC and the CD scheme for the free undamped system corresponds to the 
numerical damping. The TW and the HC schemes are low-pass filters as the relation (28) shows that the 
higher the frequency, the larger the damping (proportional to the square of the frequency). Another fact 
is that TW damping depends on the displacements while HC damping depends on the displacement 
difference.  
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As a consequence, the TW scheme is generally more dissipative than the HC scheme. 

Table 1.   Comparison between CD, TW and HC schemes 

Scheme Scheme 
order 

Control 
parameter 

Period 
error 

Critical 
time step 

Modified 
balance 
equation 

Bifurcation 
pulsation 

CD 2 - shortening 
max

s2
ω
γ

 no 2b =Ω  

TW 
1 

(2 if 1=φ ) )(b φρ  shortening 
max

s2
φω

γ
 no 22

b ≤=
φ

Ω  

HC 2 ),,( Mb αγβρ
 

shortening 
or 

elongation max

sb

ω
γΩ

 yes 2b ≤Ω  

5. Numerical Examples 

The three explicit schemes have been implemented in Metafor, which is an object-oriented finite 
element code. Interest in numerical dissipation is illustrated by numerical examples. Being a 
conservative non dissipative scheme, the CD scheme is taken as the reference.  

5.1 Taylor impact test  

The Taylor impact test consists of the impact of a cylindrical projectile against a rigid wall. 
Originally, it has been used as a means for determining the dynamical yield strength of metals. Now it 
is mostly used as a means for validating plasticity models and time integration schemes. Length and 
diameter of the projectile are respectively L = 0.0324 m and D = 0.0064 m. The material characteristics 
of the projectile are: density = 8930 Kg/m³, Young Modulus = 117 GPa, Poisson coefficient = 0.35, 
yield strength = 0.4 GPa and linear hardening coefficient = 0.1 GPa. Initial velocity of the projectile is 
227 m/s. Due to symmetry, only one quarter of the projectile is considered. The projectile is discretized 
by 48x12 elements; the simulation time is 80 sμ . The results (Table 2) show that there is no significant 
difference in the final radius of the impact side after impact (max. error=0.6% ), in the final length of 
the bar (max. error = 0.2%), and in the corresponding final equivalent plastic deformation (max. error = 
2.4%). The plastically dissipated energy (Fig. 3a) as well as the final elastic energy shows (Fig. 3b) that 
when the numerical dissipation increases, there is a low decrease in the system energy (plastically and 
elastic) only for the TW scheme (≤ 1 %) while there is no difference for the HC scheme.  

Figure 4 illustrates that, in general, the computational time or the number of time steps increases as 
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the dissipation increases. The CD and the TW schemes for 1=bρ  bear the same results either for the 
number of time steps or the CPU time. In general case, the TW scheme is more expensive than the HC 
scheme since the bifurcation limit is lower, which induces more time steps.  

Table 2.   Final results of the Taylor bar for different schemes and different bρ  

Scheme bρ  Final radius (m) Final length (m) p
maxε  

CD - 0.0068448 0.0216144 2.53 
TW 1 0.0068594 0.0216144 2.53 

0.8 0.0068618 0.0216195 2.54 
0.6 0.0068646 0.0216252 2.55 
0.4 0.0068680 0.0216320 2.55 
0.2 0.0068729 0.0216411 2.56 

 

0 0.0068869 0.0216658 2.59 
HC 1 0.0068594 0.0216144 2.53 

0.8 0.0068594 0.0216144 2.53 
0.6 0.0068594 0.0216144 2.53 
0.4 0.0068594 0.0216145 2.53 
0.2 0.0068594 0.0216145 2.53 

 

0 0.0068595 0.0216147 2.53 
 

Let us now analyze the pressure histories (Fig. 5a) of the node A which is located at the center of 
the rear side of the bar and let us see the influence of the numerical dissipation. It appears that the TW 
scheme smoothes the high frequencies more than the HC scheme. Figure 5b illustrates the pressure 
history for the TW scheme and a spectral radius at bifurcation equals to 0.8. It appears that to obtain the 
same degree of high-frequency smoothing with a HC scheme, a lower spectral radius at bifurcation 
(0.2) has to be used. This demonstrates the high filtering capabilities of the TW scheme with regard to 
the HC scheme as it was already shown theoretically in section 3.4. 

 

        
          (a)                                       (b)  
 
Fig. 3.  Analysis of the energy balance for the Taylor’s impact problem (a) Relative error (%) on plastically dissipated energy. 

(b) Relative error on final reversible energy. 
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          (a)                                       (b)  
 

Fig. 4.  Computational costs of the schemes for the Taylor’s impact problem (a) Comparison of the number of time steps.      
(b) Comparison of CPU time (Intel ®, Pentium 4CPU 2.20 GHz, 2.22 GHz, 1 GB of Ram).  

5.2 Impact of aluminum spherical projectile onto a steel target  

Let us consider an aluminum spherical projectile impacting a steel target at a speed of 600 m/s. The 
projectile diameter is 9 mm. The target diameter and thickness are respectively 60 mm and 1 mm. The 
target is made of steel (density = 7870 Kg/m³, Young Modulus = 210 GPa, Poisson coefficient = 0.3, 
Yield strength = 0.75 GPa, Linear hardening coefficient = 1.15 GPa) and the projectile is made of 
aluminum (density = 2710 Kg/m³, Young Modulus = 69 GPa, Poisson coefficient = 0.3, Yield strength 
= 0.29 GPa, Linear hardening coefficient = 0.055 GPa). Frictional contact ( 1.0=μ ) is treated with a 
penalty scheme (normal and tangential penalty values are set to 1E+06). Spectral radii used in 
simulations are respectively 0.0, 0.6 and 1.0. DC is the reference scheme. 

 

       
          (a)                                                                                 (b) 

 
Fig. 5.  Comparison of high frequencies smoothing capabilities. (a) Smoothing at maximum capability for each scheme.       

(b)  Same degree of smoothing with different bρ .   
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 (a)                  (b)  

             
 (c)         
Fig. 6.   Penetration mechanism (DC scheme)  (a) s0t μ=      (b) s5.6t μ= (50% of the initial kinetic energy dissipated)   

(c)  s48t μ= (end of penetration mechanism, 100% of the initial kinetic energy dissipated) 

The material response at high velocity impact is analyzed for the different schemes. Figure 6 shows 
the simulation setup and the penetration process at two different times, corresponding to 50 and 100% 
of the kinetic energy plastically dissipated. The corresponding equivalent plastic strains are illustrated. 
Deformations are localized at the impact zone and the target underwent a great bulging phenomenon 
(Fig. 6c). Let us note that no failure model is used, which explain the large plastic strain observed to 
stop the projectile. 

 
(a)                  (b)  
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(c)                  (d)  
 

Fig. 7.  Comparison of different schemes   - (a) Energy function of time;    -  Acceleration of the center node of the sphere 
respectively for   (a) 1b =ρ  ,   (b)  6.0b =ρ   and  (c)  0.0b =ρ   

Considering the kinetic energy of the projectile (Fig 7a), except for the HC scheme with spectral 
radius equal to one, which exhibits a slight energy difference at the end, the energy, function of time is 
identical for all schemes: the initial kinetic energy is mostly dissipated by plastic behavior. Let us 
examine the acceleration at the centre of the bullet. For spectral radius equal to one (Fig. 7b), results are 
the same for the DC and for the TW, but the HC bears oscillations with higher amplitudes and higher 
frequency than the two other schemes. As dissipation increases, high frequency oscillations are 
attenuated. The TW presents the highest filtering capabilities (Fig. 7c,d) for the same spectral radius. In 
particular, it is worth noticing that numerical dissipation constrains the acceleration to negative values, 
while the DC scheme exhibits oscillations leading to positive values of the acceleration. 

Table 3 gives the final displacement of the center node of the sphere in the impact direction and the 
final equivalent plastic strain. As dissipation increases, the equivalent plastic strain decreases but there 
is no difference in the final displacement of the bullet center. Except for HC ( 1=bρ ), the equivalent 
plastic strains are of the same order. From this observation it can be stated that the numerical 
oscillations result in an over-estimation of the plastic strains. Numerical dissipation can be used to 
reduce these oscillations and improve the accuracy of the solutions. 

Table 3.   Final results for different schemes and different bρ  

Scheme bρ  Final displacement of the 
center of the sphere (mm) 

p
maxε  

CD - 10.267 4.24 
TW 1 10.270 3.85 

0.6 10.245 3.58  0.0 10.241 3.26 
HC 1 10.284 30.00 

0.6 10.260 4.11  0.0 10.260 3.33 
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6. Conclusions 

In this paper, it has been shown that the TW scheme is a more powerful scheme for smoothing high 
frequencies than the HC scheme. For spectral radius different from one, although the TW is a first-order 
scheme contrarily to the HC which is a second-order scheme, it gives satisfactory results without losing 
accuracy. Nevertheless, numerical dissipation is a tool to be used with precaution as it can lead to a loss 
of accuracy when dissipation increases. The TW scheme becomes more expensive than the HC scheme 
when the spectral radius at bifurcation departs from one, but this drawback is balanced by the fact that 
the same degree of dissipation is reached for a higher spectral radius with the TW scheme. The TW 
scheme with spectral radius at bifurcation equal to one is a second order non-dissipative, conservative 
scheme and is as efficient as the CD scheme. Numerical schemes have been studied to demonstrate the 
robustness and accuracy of the HC and TW schemes. For simulations of ballistic impact, numerical 
dissipation has been used extensively to reduce the oscillations due to finite-element spatial 
discretizations.  
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