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Towards a Reasoned 1-D River Model Calibration
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Model calibration remains a critical step in numerical modelling. After many attempts to automate this task in water-related domains, questions about the actual need for calibrating physics-based models are still open. This article proposes a framework for good model calibration practice for end-users of 1-D hydraulic simulation codes. This framework includes a formalisation of objects used in 1-D river hydraulics along with a generic conceptual description of the model calibration process. It was implemented within a knowledge-based system integrating a simulation code and expert knowledge about model calibration. A prototype calibration support system was then built up with a specific simulation code solving subcritical unsteady flow equations for fixed-bed rivers. The framework for model calibration is composed of three independent levels related respectively to the generic task, to the application domain, and to the simulation code itself. The first two knowledge levels can thus easily be reused to build calibration support systems for other application domains, like 2-D hydrodynamics or physics-based rainfall-runoff modelling.

Introduction

Good modelling practice has recently become a topical subject in water-related domains [START_REF] Scholten | Good Modelling Practice in Water Management[END_REF][START_REF] Cunge | Of Data and Models[END_REF]. Indeed, numerical models have become essential tools in these domains, from research purposes to engineering applications. Throughout several generations of hydraulic modelling (see [START_REF] Abbott | The Fourth Generation of Numerical Modeling in Hydraulics[END_REF]), simulation codes have been evolving from basic numerical solvers to efficient and user-friendly hydroinformatic tools. But in spite of efficiency improvement, their use for advanced purposes still requires expertise.

In particular, good achievement of calibration task depends on the skills of the modeller, as this task is based on heuristic rules. This article aims at defining a framework for a "good model calibration practice" -to quote [START_REF] Guinot | Calibration of Physically Based Models: Back to Basics?[END_REF] -in 1-D river hydraulics. This framework is planned to be the core of a knowledge-based system integrating numerical tools -simulation codes -and semantic expert knowledge about their operational use in a calibration context. Using this system, practitioners may thus be guided during model calibration by expert reasoning.

The definition of a calibration framework requires first to consider what is called model calibration in the numerical modelling context. The first part of the article thus proposes preliminary thoughts on this task, including terminology issues but also observations on the role of calibration in a modelling study. A second part introduces knowledge involved in model calibration and presents tools used for its formalisation. The two following parts show our proposal of a framework for good practice, throughout two aspects. On the one hand, a conceptual description of concepts involved in model calibration gives a static view of objects used during this task in 1-D hydraulics and of relations between them. Such a conceptual description is called an ontology in the Artificial Intelligence domain. On the other hand, a dynamic view of the corresponding process is detailed within a generic conceptual description of the activity. Finally, an application of the developed knowledge-based system with a specific simulation code is outlined, and conclusions are drawn.

About Model Calibration Model Calibration in the Numerical Modelling Context

Numerical modelling covers many different application domains, and thus various scientific communities using specific definitions, especially of generic terms like model. Therefore, we propose to use in this article a modelling terminology based on the attempt first made by the SCS Technical Committee on Model Credibility [START_REF] Schlesinger | Terminology for Model Credibility[END_REF] and extended by [START_REF] Refsgaard | Modelling Guidelines-Terminology and Guiding Principles[END_REF].

The corresponding graph in Figure 1 is composed of four elements linked by dashed arrows:

• Reality is a generic physical system.

• The behaviour of this system is analysed to get a conceptual model, which is constituted of governing equations.

• Programming converts this conceptual model into a computer program: the simulation code.

• This code is then applied to a particular system by model set-up to get a numerical model of this system. This numerical model can then simulate the behaviour of the system by predictive simulation.

Outer arrows refer to the procedures which evaluate the credibility of the processes described by inner arrows. Model calibration is thus defined as the procedure which assesses that a model is properly set-up and that it simulates well the selected system.

Examples in hydrodynamic modelling can easily be derived from these generic definitions. In the following, we consider that the physical system is a fixed-bed river reach, and the corresponding conceptual model is Saint-Venant equations. The simulation code may thus be one of the many available codes able to solve 

Role of Calibration in the Modelling Activity

The commonly used modelling activity is defined by a four-step framework: model set-up, model calibration, model validation, and finally exploitation [START_REF] Cunge | Of Data and Models[END_REF]. A detailed generic framework has been developed by [START_REF] Van Waveren | Good Modelling Practice Handbook[END_REF] in order to define the current good modelling practice in waterrelated domains. This framework presents calibration as an alternative to formal identification of parameters if this procedure is impossible because of the lack of sufficient gauged data.

This remark led us to wonder about the actual definition of "model calibration". [START_REF] Refsgaard | Modelling Guidelines-Terminology and Guiding Principles[END_REF] propose the following one: "the procedure of adjustment of parameter values of a model to reproduce the response of reality within the range of accuracy specified in the performance criteria." Modellers are often encouraged by decision makers to respect this performance criteria and they may unfortunately force parameter values in that way, leading to models with poor predictive capacities (for relevant examples in river hydraulics, see [START_REF] Abbott | Towards the Hydraulics of the Hydroinformatics Era[END_REF]). For this reason, [START_REF] Cunge | Of Data and Models[END_REF] discusses the four-step paradigm and proposes a new one for deterministic -or "physics-based", as specified by [START_REF] Hall | Comment on 'Of data and models[END_REF] -models without calibration stage.

In our approach, we consider that calibration, defined as the procedure assessing model set-up, is a necessary stage in the modelling process. Indeed, calibration does not come down to tune parameters, but it implies many different reasoning processes to properly deal with the available data and to get a -relativelyreliable model. We thus propose to provide practitioners with guidelines extracted from engineering experience in order to avoid unrealistic parameter adjustments.

End-users of hydraulic simulation codes currently perform parameter adjustment by one of the two main traditional ways:

• Trial-and-error. This subjective method is based on visual comparison of computed and observed values, and manual adjustment of parameters. The major advantage of trial-and-error is its reliability, depending obviously on the level of expertise and on knowledge of the modeller about the site.

• Automatic optimisation.

In order to overcome subjectivity problems, automatic calibration methods may be applied. They rely on three main elements: an objective function that measures the discrepancy between observations and numerical results, an optimisation algorithm that adjusts parameters to reduce the value of the function, and a convergence criterion that tests its current value. This very kind of calibration has been widely used in hydraulics over the last thirty years (see for example [START_REF] Wormleaton | Parameter Optimisation in Flood Routing[END_REF], [START_REF] Khatibi | Identification Problem of Open-Channel Friction Parameters[END_REF], Anastasiadou-Partheniou and Samuels (1998)). The major drawback of optimisation stands in the equifinality problem -as defined by [START_REF] Beven | Prophecy, Reality and Uncertainty in Distributed Hydrological Modeling[END_REF] -which predicts that the same result might be achieved by different parameter sets. Thus, local minima of the objective function might not be identified by the algorithm and lead to unrealistic parameter values and consequently to models with poor predictive capacities.

Guidelines to provide to practitioners belong to a wider knowledge about model calibration. This knowledge, constituting the symbolic part of our framework, was formalised to be integrated into a knowledge-based system.

Methods for Knowledge Formalisation Knowledge Involved

In a generic approach, knowledge about model calibration may be classified into three types, following [START_REF] Chau | Knowledge Management System on Flow and Water Quality Modeling[END_REF]:

• Descriptive knowledge is about entities necessary in the model calibration process. These entities may be representations of real objects -e.g., a discharge hydrograph or a simulation code -but also concepts, like data or parameter.

• Procedural knowledge deals with activities performed during the model calibration process. These activities may include generic procedures -e.g., model calibration -or more specific ones, like initializing roughness parameter values.

• Reasoning knowledge is about the way of using descriptive and procedural knowledge to carry out model calibration. This third type of knowledge is expressed by production rules as defined in Artificial Intelligence:

IF conditions THEN actions

Descriptive knowledge was formalised by building ontologies gathering and linking all the concepts involved in model calibration. A workflow for model calibration formalises the second kind of knowledge.

After a preliminary graphic representation of descriptive and operative knowledge, all three kinds of knowledge were transcribed using a knowledge description language. Tools used for these steps are presented below.

Graphic Representation

We used the Unified Modelling Language (UML) and its associated object-oriented graphical formalism (OMG, 2003) to represent descriptive and procedural knowledge. This formalism has become a standard in computer science and is widely used for describing software artefacts. It served us as a tool to specify our prototype calibration support system.

Concerning descriptive knowledge, UML class diagrams served us to formalise objects involved in the model calibration task. These diagrams allow to represent descriptive concepts -as classes in the objectoriented sense -linked together thanks to two kinds of relationships. Associations -shown as lines with optional arrows for simple relations, or with hollow diamond for a subpart relation called aggregationformalise semantic relationship between two or more classes. Generalisation is a taxonomic relationship between a more generic element and a more specific element. This second kind of relations is shown as a solid-line path with a large hollow triangle at the end of the path where it meets the more general element.

Concerning procedural knowledge, we used UML activity diagrams to formalise subtasks of the model calibration task. Within this kind of diagrams, an action-state -representing here a subtask -is shown as a shape with straight top and bottom and with convex arcs on the two sides. These actions operate on objects, 

which

Use of a Knowledge Description Language

Knowledge description languages allow to formalise knowledge in a both readable and operational way. The YAKL language, developed at INRIA [START_REF] Moisan | Knowledge Representation for Program Reuse[END_REF], particularly suited our problem, since it has been developed for the formalisation of knowledge about the skilled use and planning of codes -called program supervision [START_REF] Moisan | Program Supervision: YAKL and PEGASE+ Reference and User Manual[END_REF]. It had been previously applied to image processing programs [START_REF] Thonnat | Experience in Integrating Image Processing Programs[END_REF] and was slightly adapted for simulation codes [START_REF] Vidal | Knowledge-Based Hydraulic Model Calibration[END_REF].

The YAKL language supports both object and rule-oriented descriptions. It allows to get a textual translation of UML class and activity diagrams for both descriptive and procedural knowledge. Moreover, reasoning knowledge can also be easily taken into account thanks to rule-oriented descriptions. Knowledge is represented in the YAKL syntax in an explicit, human readable form, which makes this language easy to use.

An inference engine, developed in INRIA together with the YAKL language, serves us to put this formalised knowledge into practice. The result is an interactive knowledge-based system which adds a layer of expertuser knowledge on top of the simulation code itself.

1-D River Model Calibration Concepts

The static side of our framework has been formalised throughout an ontology of model calibration domain.

It gathers descriptive knowledge used during this task, and extracted from both our experience and interviews of experts.

Generic Concepts in Operational Validation

The first step in building an ontology is to define generic concepts that could be reused and specialised in several domains. The goal of operational validation is "to assure that the model compares well to perceived reality" [START_REF] Knepell | Simulation Validation: a Confidence Assessment Methodology[END_REF]. In other words, operational validation consists in comparing model results to reality and modifying the model if needed. What has to be noticed in this indirect definition is that it covers both calibration and validation stages of the current modelling paradigm. Thus, it could be easily related to the model proving stage detailed by [START_REF] Seed | Quality Assurance in Computational River Modelling[END_REF]. Therefore, we decided to build up a generic formalisation of concepts from operational validation, which could be used in the particular case of model calibration. The resulting UML class diagram is presented in Figure 2. The first formalisation step is the description of the physical part of the problem. The physical system to be modelled is linked with events affecting it. Following [START_REF] Amdisen | An Architecture for Hydroinformatic Systems Based on Rational Reasoning[END_REF], we distinguish two types of data3 : static data are linked to the system itself and are supposed to be invariant. On the contrary, dynamic data characterise events, by ways of measurement or computation.

For the modelling part of the problem, we define a numerical model as an aggregation of static data from the system, parameters and a simulation code. Simulation code and numerical model definitions are here in accordance with concepts from Figure 1. Static data provide estimates for parameter values. A numerical model uses dynamic data corresponding to some events as input data. Dynamic data produced by the simulation are called output data. These output data are then compared to reference data selected from the dynamic data set, to assess if the numerical model simulates correctly the behaviour of the system.

For instance, in river hydraulics, events may be floods affecting a given river reach. In our approach, static data include river reach topography and physical description. Thus, we do not take into account movable bed rivers and we assume that river topography is not to be adjusted during the calibration process. Dynamic data are constituted by hydraulic measurements or computational results related to a particular flood. A numerical model of the given reach is composed of static data detailed above, parameters -among them roughness parameters -and a simulation code solving flood propagation equations.

We first specialised dynamic data on the basis of their function in the calibration process, into input data, reference data and simulation output data.

Then, we define input data -objects given to the model in order to run the simulation -as an aggregation of an upstream boundary condition, a downstream boundary condition, optionally a lateral boundary condition and a initial condition. An upstream boundary condition consists -in the case of subcritical unsteady flow modelling of a single river reach -of an input discharge hydrograph set at the upstream end of the river system modelled.

Simulation output data are computed results of the simulation run, whereas reference data are field data to compare these results with. For example, water-surface profiles may be part of the simulation output data, whereas floodmarks are attributes of reference data. Various natures of reference data may be used, some subjective, like witnesses, and some complex, like remote sensing data. At first, we restricted our analysis to the ones based on standard hydraulic measurements: floodmarks, water levels, and gaugings. Moreover, we did not take into account any imprecision or uncertainty on these values.

Formalisation of Concepts in 1-D River Hydraulics

All 1-D river hydraulics data described in the previous section have been linked together in order to get a hierarchy of bidimensional graphs which can be easily manipulated in an object-oriented approach. The resulting hierarchy is shown in Figure 3.

The most generic concept of graphical object is first divided into curves and points subtypes. Points are then divided into dynamic and static points, depending if they are linked or not with a flood event. Ground points -and bottom points -inherit from static points. Water levels, gauging points, and discharges are dynamic points measured -or computed -at a given time (GivenTimePoint in Figure 3). Floodmarks are dynamic points representing a maximum reached during a given duration (MaximumPoint).

Curves are in the same way divided into dynamic and static curves. Cross-sections are considered to be static curves. Rating curves, stage hydrographs and discharge hydrographs are dynamic curves measured in a cross-section (GivenSectionCurve in Figure 3) whereas water-surface profiles and discharge spatial evolutions are dynamic curves measured along a reach (GivenReachCurve). Moreover, these two curves are measured or computed at a given time (GivenTimeCurve). Finally, envelop water-surface profiles are composed of maximum water levels (EnvelopCurve).

Proposed Workflow for Model Calibration

The dynamic side of our framework has been formalised throughout a workflow for model calibration as a generic task. This workflow was then used to define subtasks specialised for 1-D hydraulics.

Generic Workflow

Generic procedural knowledge about model calibration was formalised graphically in Figure 4. The formalism used in this figure refers to the one described above in the presentation of UML activity diagrams.

This representation of generic procedural knowledge -constituting a paradigm for model calibration -was established on the basis of the formalisation of procedural knowledge used by experts to achieve this task. It is worth noting that this workflow contains implicitly the "sensitivity analysis" task. As a matter of fact, performing manually a sensitivity analysis only requires to initialise parameters, to run a simulation and to start again, by applying appropriate reasoning rules.

We decomposed the model calibration task into six main generic subtasks. This kind of knowledge has been extracted from the few guidelines available [START_REF] Cunge | Practical Aspects of Computational River Hydraulics[END_REF][START_REF] Hill | Methods and Guidelines for Effective Model Calibration[END_REF] Each subtask of model calibration is described more precisely below. For each subtask, the functions that have been automated and implemented within the knowledge-based system are described. Examples of the formalisation of reasoning knowledge with the form of production rules written in the YAKL language are also provided in the following paragraphs.

Description of Subtasks and Implemented Knowledge Data Allocation

The first question one has to answer when calibrating a model is: "Which data will be used, and how?" The modeller has to choose among available data which of them will be used in the calibration process, depending on the objective of the study. For example, a model intended to simulate flood propagation should be calibrated with measurements from past flood events, and not from low flow stage periods. The first step in data allocation is thus to select past events, and related dynamic data. These events should be as representative as possible of the variety of situations that the model should be able to reproduce. Another key point discussed by [START_REF] Khatibi | Sample Size Determination in Open-Channel Inverse Problems[END_REF] is the minimum number of independent events to be used in order to get a satisfactory confidence in the calibrated model.

For each event, two sets should be constituted: input data, given to the code to run simulations, and reference data, used for comparison with simulation output data. There is sometimes no real choice for the number of field data is often very scarce. But this choice should always be made in agreement with the actual aim of the future calibrated model and with its "performance criteria". During this task, the modeller may be encouraged to get hold of particular field data which prove to be indispensable to assess that the criteria will be reached or not.

An example of reasoning knowledge used during this subtask is provided by the following rule: if a hydrograph was measured during the selected event in the upstream section of the modelled reach, it will be used as an upstream boundary condition for the simulation run.

This task should be repeated as many times as there are events from which the modeller can extract two coherent sets of data, in order to make use of field measurements in an optimal way.

Parameter Definition

The second important step in preprocessing is the definition of parameters. It aims at choosing which parameters will be tuned during the calibration process. In our approach, two kinds of physically-based parameters may be identified: localised parameters -e.g., discharge coefficient of a given hydraulic structure -and spatially and/or temporally distributed parameters -e.g., roughness coefficients. Whereas localised parameters only require to be considered tunable or not, the definition of distributed parameters includes their number and position in the reach.

In river hydraulics, the modeller has to determine how many different roughness parameters the model should include to represent at best physical distribution of roughness in the modelled reach. In this way, Wasantha Lal (1995) identified and used homogeneous groups of roughness parameters during an inverse calibration of the Upper Niagara River model. Identification of homogeneous zones can be performed thanks to field study about vegetation and bed material. If a description of the river -for example by the means of site photographs -is not available, a preliminary distribution of roughness parameters may be extracted from topographical characteristics, for instance by using channel slope homogeneous regions for channel roughness.

In most currently used 1-D simulation codes, spatial distribution of roughness parameters is partially imposed. Indeed, although longitudinal distribution is almost free, lateral distribution in a cross-section is often limited to two or three instances, for main channel and overbanks or floodplain.

In our knowledge modelling, we take into account one discharge coefficient per hydraulic structure considered and distributed roughness coefficients. These coefficients are defined as two Manning's n values -one for main channel roughness and one for floodplain roughness -for a river length inside a reach.

Homogeneous zones are defined in an interactive way. If no homogeneous zone is known a priori, default river length is reach length. For the time being, advanced features like composite roughness or stage/discharge-dependent Manning's n have not been taken into account.

Parameter Initialisation

Once parameters have been defined, they have to be assigned values in order to run a simulation. In our knowledge-based system, with each parameter value, a variation range coming under physical concernsespecially for roughness coefficients -is provided. It is intended to prevent the user from using numerical values of roughness parameters which would be inconsistent with physical roughness values. Indeed, Manning's n has often been considered as a freely tunable coefficient at the detriment of its physical meaning [START_REF] Yen | Discussion about "Identification Problem of Open-Channel Friction Parameters[END_REF], especially when mathematical optimisation methods are used.

Value assignment thus remains a critical point in model calibration, especially when roughness parameters are concerned, and it is performed at the moment thanks to the modeller experience [START_REF] Cunge | Author's Response to Comment on 'Of data and models[END_REF]. In order to capitalise this experience, British Environment Agency is currently running a targeted R&D program to advise practitioners on the selection of roughness coefficients through online guides and pictures [START_REF] Samuels | Reducing Uncertainty in Conveyance Estimation[END_REF].

Three methods are presented by [START_REF] Chow | Open Channel Hydraulics[END_REF] for assigning values to roughness parameters:

• Analysis of influence factors. This method -described later in detail by [START_REF] Arcement | Guide for Selecting Manning's Roughness Coefficients for Natural Channels and Flood Plains[END_REF] -is based on Cowan's formula [START_REF] Cowan | Estimating Hydraulic Roughness Coefficients[END_REF] • Study of descriptive tables.

River typologies can be found in literature (see for example [START_REF] Chow | Open Channel Hydraulics[END_REF]) alongside with corresponding range and mean value of Manning's n coefficient.

• Visual comparison with reference cross-sections. Number of sources provide photographic evidence of rivers and their associated estimated or measured roughness coefficient [START_REF] Fasken | Guide for Selecting Roughness Coefficient "n" for Channels[END_REF][START_REF] Barnes | Roughness Characteristics of Natural Channels[END_REF][START_REF] Hicks | Roughness Characteristics of New Zealand Rivers[END_REF][START_REF] Nolan | Verified Roughness Characteristics of Natural Channels[END_REF].

We implemented the first two methods in the knowledge base, and an example of a rule in YAKL syntax is shown in Figure 5. Initialisation is done on the basis of reach descriptions and may be interactive if needed.

Both implemented methods provide a range for Manning's n roughness coefficient and a mean value which will be considered as the default value for the simulation. The point is that adjustment of this parameter during calibration will be restricted within this range in order to preserve physical coherence.

Simulation Run

In this subtask, our framework links symbolic and numerical features, by the means of a simulation code, which can compute hydraulic results from input data, as described in previous sections.

Formalising this task requires to encapsulate the knowledge about code execution: script, input files needed, relations between input and output files, conditions of execution, and especially failure detection and repair (see Figure 6 for an example of a rule on assessment of the initial condition).

Rule { name CalculateChannelBaseValueForFirmSoil

If RoughnessParameter.LengthAffected.ChannelDescription.BedMaterial == "firm soil" Then LowerBaseValue := 0.025 UpperBaseValue := 0.032 } 

Output Comparison

Simulation run produces outputs to be compared with reference data. Within automatic calibration methods, a single measure of discrepancy between computed results and observed data is provided by a goodness-offit criterion. This criterion is often derived from least-squares criterion and used as an objective function to be minimised by the algorithm. Many studies have been carried out to find the best objective function for a given application, since this method was first applied by [START_REF] Becker | Identification of Parameters in Unsteady Open Channel Flows[END_REF]. For a review of objective functions, one may refer to [START_REF] Morris | Calibration Criteria for 1D River Models[END_REF] and [START_REF] Lavedrine | Calibration Criteria for 1D River Models -Assessment of Objective Functions and Automatic Calibration[END_REF]. Two limitations of this method may be underscored in the context of equifinality discussed above:

• This task usually involves only a single comparison between two curves. For example, the same value of the objective function may come from differences in the shapes of compared hydrographs but also from a simple time lag between them. To the authors' knowledge, multi-objective comparison currently used for analysis of hydrological models has not yet been applied to river models.

• Many automatic calibration methods provide criteria derived from the coefficient of efficiency [START_REF] Nash | River Flow Forecasting Through Conceptual Models. Part 1 : A Discussion of Principles[END_REF] discussed by [START_REF] Hall | How Well Does Your Model Fit the Data?[END_REF]. This kind of criteria could hardly be applied to the comparison of an envelop water surface profile with floodmarks: it may certainly lead to accept unrealistic profiles if floodmarks are not spread in a homogeneous way over the reach, which is often the case in reality.

To overcome these difficulties, we decided to mimic the expert analysis and we used symbolic descriptions of curves, and symbolic comparisons between a curve and a set of points. To this aim, curves and points are related to a normalised square, and curves are segmented.

Curve description relies on the instantiation of symbolic descriptors (examples are proposed in braces):

• Each segment is described by two words or groups or words: one characterizing its width (short) and one characterizing its slope (low decrease).

• Peaks are described by their position on the curve (forward), width (narrow), height (small) and shape (sharp).

• Slope breaks are described by their position on the curve (centered) and trend (lower decrease).

For each curve type, a table displays all available symbolic descriptors for segment width and slope, peak position, width, height and shape, and slope break position and trend. Symbolic descriptors may thus differ from a curve type to another. Moreover, each of these symbolic values is related to a set of four numerical values which defines a trapezoidal fuzzy number. Thus, a lower decrease will not correspond to the same numerical value when considering a discharge hydrograph or a water surface profile. With this approach, comparing curves amounts to compare their symbolic descriptors.

To compare a curve with a set of points, we implemented two kinds of symbolic descriptors (examples are proposed in braces):

• vertical position of each point against the curve (above), and distance between them (very close).

• average vertical position of the set of points against the curve (most above), and average distance between them (globally rather close).

These descriptors and their associated numerical values obviously depend on the curve type. We are currently working on an automated determination of symbolic curves description and symbolic comparison on the basis of numeric curves.

If the agreement between simulation output data and reference data is not satisfactory, the modeller using standard trial-and-error method has to re-initialise parameter values or even re-define model parameters. We automated these heuristic choices (see an example in Figure 4) by criteria transmitting judgements to the suited subtask: parameter initialisation or parameter determination.

The modeller has to reproduce this task for all other data from reference set. Moreover, these comparisons should be made for all available events. We also formalised this feedback loops by transmission of judgements to the data allocation subtask.

Result Evaluation

Result evaluation subtask consists in assessing whether or not the calibrated numerical model satisfies the performance criteria defined by the objective of the study. Indeed, the calibrated model should be provided with an critical analysis of its weak and strong points, in the way proposed by [START_REF] Cunge | Of Data and Models[END_REF] for the validation stage of his modified paradigm.

In our knowledge-based system, the model is assessed with symbolic judgements to characterise its capacities. If the response of reality reproduced by the model is not within the range of accuracy of the performance criteria, the modeller should reconsider the model itself and build up a new model with different hypotheses. This building task is out of the calibration context and thus has not been implemented in the knowledge-based system.

Prototype Including a Specific Simulation Code: MAGE

A knowledge base was written in the YAKL language on the basis of descriptive and procedural knowledge described in the previous sections. Considering reasoning knowledge, only basic rules were implemented at first in order to test the system. We paid particular attention in distinguishing the three following levels of knowledge:

• At the numerical modelling level, knowledge covers generic notions as the ones shown in Figure 2 and Figure 4.

• The domain level includes knowledge specific to a particular application domain and attached notions. Considering the 1-D river hydraulics domain, this level includes entities presented in Figure 3, and activities like "calibration with given floods".

• At the simulation code level, we specialised the SimulationRun task in order to supervise a specific code called MAGE. This code, developed at CEMAGREF, has been used to simulate hydraulic behaviours of various wetlands (see for example [START_REF] Giraud | Hydrologic Modeling of a Complex Wetland[END_REF]. It solves the one-dimensional Saint-Venant equations for unsteady flow in looped channel network.

The distinction between these three levels will allow us to reuse components of the present knowledge base for calibration of models based on other 1-D river codes, but also on codes from other domains, for example hydrological models. Specific descriptive knowledge consists in formalisation of inputs and outputs. MAGE solver uses and produces text files with specific formats and contents which have been formalised by the way of argument types. For example, MAGE upstream boundary condition file contains the following information: a discharge hydrograph and a node of the river network to apply it (Figure 7).

Concerning procedural knowledge, generic activities like SimulationRun were specialised by the means of interoperability programs. Theses programs provide the files necessary to run the MAGE code with suited format. The code itself was encapsulated in a specific structure and specific reasoning knowledge about its use was described by criteria (sets of rules) attached to this operator shown in Figure 8. The prototype calibration support system, including both the MAGE simulation code and expert knowledge about model calibration, makes thus the process of calibrating models more reliable and reproducible. This prototype was used for the calibration of a model of the downstream part of Hogneau river, a small river situated near the border between France and Belgium. The model was calibrated against data from a rather large flood which occurred in winter 2002. Details of the model calibration are presented elsewhere [START_REF] Vidal | Decision Support System for Calibration of 1-D River Models[END_REF].

Conclusions

This article provides the bases of a framework for good calibration practice in 1-D river hydraulics. This framework was implemented within a knowledge-based system integrating both numerical -a simulation code -and symbolic -expert knowledge about model calibration -features.

This framework is composed of three independent knowledge levels. The first level, the core of our knowledge-based system, includes an generic ontology and a paradigm for model calibration. The second level corresponds to the 1-D river hydraulics domain. It includes concepts of the domain and reasoning knowledge about 1-D river model calibration, both of them currently set up for fixed-bed river models. The third level contains knowledge about the use of the MAGE code which served us to build an operational prototype of the knowledge-based system.

The prototype knowledge-based system is thus a decision support tool for calibration of models built with MAGE simulation code. Applications of the resulting hydroinformatic system are currently performed on real-life calibration cases, on several French rivers (Hogneau river, Ardèche river and Lèze river). These quite different cases -in terms of river types, but also of available data -will allow us to extend the reasoning knowledge implemented at the moment. To this aim, the system will be confronted to hydraulic experts -among them authors of corresponding calibrations -in order to validate implemented hydraulic reasoning.

The developed framework could easily be reused for other 1-D hydraulics simulation codes, but also for other application domains -like hydrology -where calibration of numerical models is required. Further work will thus direct towards application of this framework for physics-based rainfall-runoff models. 
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 1 Figure 1: Elements for a modelling terminology, after Refsgaard and Henriksen.
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 2 Figure 2: Formalisation of concepts for operational validation -UML class diagram.
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 3 Figure 3: Simplified formalisation of concepts in 1-D hydraulics -UML class diagram.
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 4 Figure 4: Procedural knowledge for model calibration -UML activity diagram.

  . The model calibration task aims at producing a well-calibrated model from an uncalibrated model and available data. Data allocation and parameter definition are executed in parallel within a global preprocessing task. Data allocation extracts two sets of data from the available data : inputs needed to run the simulation and references needed for the comparison with results from the simulation. Parameter determination aims at defining and initialising the model parameters. The model with initialised parameters is then used together with input data to produce outputs. These outputs are then compared with reference data. If no satisfactory agreement is found, model parameters are re-initialised or re-defined. Once an agreement has been reached -and if there is still available data -another couple of inputs/references is built up in order to draw other comparisons. Finally, the resulting model is evaluated considering the objectives of the calibration, and more generally of the modelling.

  which expresses Manning's n as a sum of values depending on factors affecting roughness: b : base value for a straight, uniform channel in natural materials, n 1 : correction factor for irregularities, n 2 : value for variations in shape and size of the channel cross section, n 3 : value for obstructions, n 4 : value for vegetation and flow conditions, m: correction factor for meandering of the channel.
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 56 Figure 5 : Example of a ParameterInitialization rule in YAKL syntax (The "." notation is for using attributes from a class, as in standard object-oriented languages.): initialization of minimum and maximum channel base value component -after Cowan's method -of Manning's n if channel bed material is firm soil.
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 7 Figure 7 : Upstream hydrograph for MAGE, formalised as a program argument type in YAKL syntax.
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 3 Figure 3: Elements for a modelling terminology, after Refsgaard and Henriksen.
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 4 Figure 4: Formalisation of concepts for operational validation -UML class diagram.

Figure 3 :

 3 Figure 3: Simplified formalisation of concepts in 1-D hydraulics -UML class diagram.

  

[START_REF] Khatibi | Guidelines Towards Forecasting Solutions[END_REF] defines five types of data for different modelling problems, but the two classifications match well by taking into account differences in contexts: forecasting in one case and calibration in the other one.
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Data Specialisation for 1-D River Hydraulics

We then specialised generic concepts of static data and dynamic data in order to manipulate data specific to 1-D river hydraulics. Moreover, we focused on subcritical unsteady flow modelling.