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INFINITE TIME CELLULAR AUTOMATA:

A REAL COMPUTATION MODEL

FABIEN GIVORS, GREGORY LAFITTE, AND NICOLAS OLLINGER

Laboratoire d’Informatique Fondamentale de Marseille (LIF), CNRS – Aix-Marseille Uni-
versité, 39 rue Joliot-Curie, 13453 Marseille Cedex 13, France

Abstract. We define a new transfinite time model of computation, infinite time

cellular automata. The model is shown to be as powerful than infinite time Turing
machines, both on finite and infinite inputs; thus inheriting many of its proper-
ties. We then show how to simulate the canonical real computation model, BSS
machines, with infinite time cellular automata in exactly ω steps.

Introduction

When the second and third authors of this paper were in their PhD years, their
common advisor, Jacques Mazoyer, had encouraged them to define a computation
model on real numbers using cellular automata. The second author had defined at
the end of the Nineties a cellular automata generalization running into transfinite
time, but it was never published and was only clumsily defined in his PhD thesis.
They thought of using it as a real computation model in 2001 in Riga but never did
anything about it since. This paper is a description of these ideas which had stayed
for ten years in the state of scribbled notes.

Transfinite time computation models were first considered in 1989 by Hamkins
and Kidder. Hamkins and Lewis later developed the model of infinite time Turing
machines and its theory in [HL00]. Koepke [Koe06] defined another transfinite time
model based on register machines, that was later refined by Koepke and Miller
[KM08]. These models differ in their computation power, the infinite time Turing
machines model being the most powerful one.

In [BSS89], Blum, Shub and Smale introduced, also in 1989, a model of com-
putation, coined BSS machines, intended to describe computations over the real
numbers. It can be viewed as Turing machines with tapes whose cells (or Random
Access Machines with registers that) can store arbitrary real numbers and that can
compute rational functions overs reals at unit cost. Their model, which is more
general1 than the presentation provided in this paper, is a canonical model of real
computation. The idea of real computation is to deal with hypothetical computing

The research presented in this paper has been made possible by the support of the French ANR
grants NAFIT (ANR-08-DEFIS-008-01) and EMC (ANR-09-BLAN-0164-01).

1It really provides a setting for computing over rather arbitrary structures.
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machines using infinite-precision real numbers and to be able to prove results of com-
putations operating on the set of real numbers. A typical example is studying the
computability of the Mandelbrot set. It can be viewed as an idealized analog com-
puter which operates on real numbers and is differential, whereas digital computers
are limited to integers and are algebraic. For a survey of analog computations, the
reader is referred to the survey [BC08].

In this paper, we introduce a transfinite time computation model, the infinite
time cellular automata. The model is arguably more natural and uniform than other
transfinite time models introduced, for the same reasons cellular automata are more
natural and uniform than Turing machines. There is no head wandering here and
there and there is no difference between states and data.

We show that the infinite time cellular automata have the same computing power
than infinite time Turing machines, both on finite and infinite inputs. They thus
inherit the nice properties of this latter model. We then show how to simulate the
BSS machines with infinite time cellular automata in exactly ω steps. We finish by
introducing another transfinite time model based on cellular automata.

1. Infinite time cellular automata

Definition 1.1. An infinite time cellular automaton (ITCA) A is defined by Σ,
the finite set of states of A, linearly ordered by ≺ and with a least element 0; and
δ : Σ3 → Σ, the local rule of A, satisfying δ(0, 0, 0) = 0, so that 0 is a quiescent
state.

A configuration is an element of ΣZ. The local rule δ induces a global rule
∆ : ΣZ → ΣZ on configurations such that ∆(C)i = δ(Ci−1, Ci, Ci+1) for i ∈ Z and
C ∈ ΣZ.

Starting from a configuration C ∈ ΣZ, the evolution of length θ ∈ Ord of A is
given by (∆α(C))α6θ:

∆β+1(C) = ∆(∆β(C))
∆λ(C)i = lim inf≺γ<λ ∆

γ(C)i for all i ∈ Z and λ limit

Definition 1.2. Let h ∈ Σ a particular state we will refer to as the halting state.
An evolution of length θ is called a computation if the state h appears in the

last configuration, ∆θ(C), but not before this stage.

We settle a convention on the way we code integers or real numbers in our
model. For example, we could code integers and real numbers in binary (using 0

and another state as symbols for 0 and 1) on the right cells (cells whose indices
belong to N).

Definition 1.3. LetX be a space for which a coding has been settled. (For example,
N, R, 2N or 2Z.)

A (partial) function F on X , F : X → X , is said to be infinite time computable
if there is an infinite time cellular automaton such that for each x ∈ dom(F ), there
is a computation starting with a configuration with a coding of x that halts on a
configuration with a similar coding of F (x).

A set A ⊆ X is infinite time decidable if its characteristic function is infinite
time computable, and is infinite time semi-decidable if it is the domain of an infinite
time computable function.
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We use the term “semi-decidable” instead of “enumerable”, since contrarily to
the classical computability concepts, in the transfinite time context, being semi-
decidable is not equivalent to being the range of a computable function.

2. Properties of infinite time cellular automata

2.1. Comparisons with other infinite time models

Hamkins, Kidder and Lewis [HL00] have defined an infinite time Turing machines
model and Koepke [Koe06] has defined an infinite time register machines model, that
was later refined by Koepke and Miller [KM08].

The infinite time Turing machines (ITTM) work as a classical Turing machine
with a head reading and writing on a bi-infinite tape, moving left and right in ac-
cordance with the instructions of a finite program with finitely many states. At
successor stages of computation, the machine operates in exactly the classical man-
ner. At limit stages, the machine enters a special limit state, with the head on the
origin cell, and each cell of the tape taking the value of the lim inf of the values
appearing in that cell before that limit stage.

The infinite time register machines behave like standard register machines at
successor stages. At limit times, the register contents are defined using lim inf’s
of the previous register contents. The difficulty here is that the lim inf does not
necessarily exist in that case, since a register can contain arbitrary large integers.
The machines of [Koe06] crashed in such a case. Those of [KM08] continue beyond
such crashes by resetting a register to 0 whenever it overflows.

The infinite time Turing machines are strictly stronger than infinite time register
machines: the halting problem for infinite time register machines can be decided by
an ITTM.

Theorem 2.1. Infinite time cellular automata have the same computing power of
infinite time Turing machines.

Proof. The right to left implication goes as follows:
At successor stages, the simulation of ITTM by ITCA works the same way it

does in the non-infinite-time case.
At limit stages, we have to put the configuration of the ITCA in the limit

configuration simulation of the ITTM simulated. To do this, we need to be able to
know that we are at a limit stage. It suffices to have two adjacent cells of the ITCA
at the origin that, at successor stages, alternate between 0 and some other state
such that the adjacent states are different. At the next limit stage, they will be
both equal to 0. We also have to use the same trick on the cells visited by the head
to make sure that at limit stages, if the ITTM becomes stationary, we can wipe out
the stationary state from our simulation tape and enter in the special limit state.
The ITCA can then prepare the configuration to continue the ITTM simulation.

The left to right implication: it takes ω steps with an ITTM machine to simulate
an ITCA global step (on an infinite input). It is just then a matter of determining
whether the ITTM is at a limit stage or not. This is easily achieved by an ITTM
since it enters a special limit state at limit stages.
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2.2. Features of those infinite time models

Hamkins, Kidder, Lewis and Welch [HL00, Wel99, Wel00b, Wel00a] have shown
many properties of infinite time Turing machines. By Theorem 2.1, infinite time
cellular automata have many of these same properties. We state in the following
the properties inherited by infinite time cellular automata.

Theorem 2.2. The set of reals coding well-orders is infinite time decidable.
The hyperarithmetic sets are those that are decidable in time less than some re-

cursive ordinal. Every Π1
1 set is decidable and the class of decidable sets is contained

in ∆1
2.

Definition 2.3. An ordinal α is clockable if there is an ITCA computation starting
from the all-but-one quiescent configuration C (C0 6= 0 and Ci = 0 ∀i ∈ Z \ {0})
and that halts after exactly α steps (meaning that the αth configuration, ∆α(C), is
the first configuration in which the halting state h appears).

A real r is writable if it is the output of an ITCA computation. An ordinal is
writable if it is coded by such a real.

There are of course only countably many clockable and writable ordinals, since
there are only countably many local rules.

Theorem 2.4. Every recursive ordinal is clockable. Even ωCK

1 + ω is clockable.
Beyond that, there are many intervals of non-clockable ordinals. The supremum
of clockable ordinals is recursively inaccessible2. Moreover, the writable ordinals
however form an initial segment of the ordinals. The supremum of the writable
ordinals is the supremum of the clockable ordinals.

One of the beautiful theorems of ITTMs that carry through to ITCAs is the
Lost Melody Theorem. The real constructed in this theorem is like a lost melody
that you can recognize when someones hums it to you, but which you cannot sing
on your own.

Theorem 2.5 (Lost Melody Theorem). There is a real r which is recognizable ({r}
is decidable), but not writable.

There are different ways to construct such lost melody reals. One way is to
consider the supremum γ of the ordinal stages by which an ITTM computation, on
an empty input, either halts or repeats. Notice that by a simple cofinality argument,
we can show that all these ordinals are countable. There is a smallest ordinal δ > γ

such that Lδ+1 |= “δ is countable”. Lδ+1 has a canonical well-ordering, thus there
is some real r ∈ Lδ+1 which is least with respect to the canonical L order, such
that r codes δ. γ (and thus r) are somehow a generalization of the busy beaver
problem to transfinite time computations. It is then not surprising that r cannot be
computable, since that would render the infinite time halting problem decidable. It
is recognizable because it is possible to reconstruct the L hierarchy using an ITTM
and verify that r is really the least coding of an ordinal having the properties of δ.

2A recursively inaccessible ordinal is an ordinal that is both admissible and a limit of admissibles.
An ordinal α is admissible if the construction of the Gödel universe, L, up to a stage α, yields
a model Lα of Kripke-Platek set theory. The Church-Kleene ordinal, ωCK

1 , is the smallest non-
recursive ordinal and is the smallest admissible ordinal. For more on admissibles, see the most
excellent book of Barwise [Bar75].
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3. Computations on the reals

3.1. Blum-Shub-Smale model

Blum, Shub and Smale [BSS89] introduced the BSS model.
A simplified presentation of the BSS model goes through defining “Turing ma-

chines with real numbers”. We follow Hainry’s presentation in his PhD thesis
[Hai06].

Definition 3.1. A simplified BSS machine (or shortly, BSS machine) is composed
of an infinite tape and a program. The infinite tape is made of cells, each containing
a real number. We denote the tape by (xn)n∈Z ∈ R

Z. The program is a numbered
(finite) sequence of instructions. The number of each instruction in the program
sequence is seen as a state (∈ Q). The instructions are

• go right: changes the tape to (xn+1)n∈Z;
• go left: changes the tape to (xn−1)n∈Z;
• branch if greater than 0: if the current cell (x0) is greater than 0, then it
branches to a specified location in the program;
• branch if equal to 0: if the current cell (x0) is equal to 0, then it branches to
a specified location in the program;
• make a computation: the current cell (x0) is changed to be equal to the result
of a computation from x0, x1 and possible constants (k ∈ R). A computation
is one of the following:

– x0 � −x0;
– x0 � k;
– x0 � x0 + x1;
– x0 � x0 × x1;
– x0 � k × x0.

The machine starts by executing the first instruction (with the least number) of the
program and continues by executing the next instruction and so on until it branches.
It halts when it has no more instructions to execute.

It is possible to give a definition for a more general BSS machine on rather
arbitrary structures. In this paper, we will stick with simplified BSS machines on
R.

For a lot more on the BSS model and computation on the real numbers, the
reader is referred to the book by Blum, Cucker, Shub and Smale [BCSS98].

3.2. BSS by ω-ITCA

We show how to simulate a simplified BSS machine with an ITCA.

Theorem 3.2. A simplified BSS machine can be simulated by an ITCA in ω steps.

Proof. Consider a BSS machine. At each time step t of a computation, only a finite
number of non-zero real numbers are defined: k constants inside the program and
l 6 t cells of the tape. For the sake of clarity, suppose that the BSS machine
works on reals in the interval [−1, 1]3. Imagine that we encode these k + l reals as

3The construction extends to R at the cost of non significant tricks, for example by adding just
after the bit of sign the encoding of the integer part of each real on a same number of bits followed
by a dot.



116 F. GIVORS, G. LAFITTE, AND N. OLLINGER

infinite words on the alphabet {0, 1} encoding a bit of sign followed by their binary
expansion.

Each computation instruction of the BSS machine has the nice property that
it can be computed, in time ω, by a Turing machine working synchronously on the
representation of its operands. For each finite initial portion of the tape, it is left
untouched by such a machine after some finite time. Moreover, at the cost of some
extra bookkeeping on the tape, such a computation can be achieved in a reversible
way4.

Each branch instruction of the BSS machine can be achieved in a similar way:
one can choose a initial hypothesis on the branch5 and start a computation by
a Turing machine working synchronously on the representation of the operands ;
either the machine eventually halts contradicting the hypothesis, or its head moves
infinitely towards the end of the infinite words. For each finite initial portion of
the tape, it is left untouched by such a machine after some finite time and the
computation can be achieved in a reversible way.

Packing it all together, we can simulate a BSS machine if we can launch as
many Turing computation threads as needed. Encode the k + l reals encodings as
a single infinite word and put some finite control at the beginning of it. The finite
control plays the role of the head of the BSS machine, keeping the current state
(instruction number). The control is responsible for launching the next instruction:
each time there is enough room on its right, it starts a new thread for the current
instruction. If the instruction is a move instruction, the thread simply selects the
next cell, adding a new 0 real to the tuple if necessary. If the instruction is a branch
instruction, the control takes the default hypothesis on the result and launches the
branch thread described before. If the instruction is a computation instruction,
the control launches the thread described above. At each time step, the control is
pointing to a current instruction and a finite number of threads are computing on its
right. Each thread works on a finite portion of tape where it should have exclusive
access. Somewhere on its right is the last point where he modified the reals. When
a thread wants to access a portion of the reals already modified by the next thread
on its left, it enforce this thread to undo its computation to restore the reals as
they were before. A cascade of undoing occurs in such a situation, each thread
undoing the next thread. At some point an undone thread reaches the control and
forces the control part to start again from the instruction where this thread was
started, removing the thread from the computing area. As each thread eventually
goes to infinity, such an inefficient compute/uncompute dance converges. The same
applies when a branch thread discovers that its hypothesis was wrong: it goes back
to control to take the other branch of computation, forcing threads newer than him
to undo. Notice that a key point of the construction is that there is always enough
room for bookkeeping: if a thread needs more space, it just can wait for more space
to be available before continuing its computation, either it will eventually happen,
or a backtrack will occur that can be handled.

The result of a computation is obtained easily: at time ω, if the control even-
tually converged to an accepting state, the control part encodes an accepting state
and the encoded reals contain the result of the computation ; if the BSS machine
did not converge, the control part does not encode an accepting state.

4Just store the non injective choices on a stack that the head pushes in front of itself.
5For branch if equal to zero the hypothesis is that x0 = 0.
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Figure 1. Layers encoding computation

Let us now explain how the described simulation can be carried on a ITCA.
Given a BSS machine, the ITCA is constructed as follows. Only a semi-infinite part
of the configuration is used. Cell #0 encodes control and the cells on its right encode
the reals, the computation area. The computation area is constructed in 3 layers,
as depicted on figure 1. The data layer encodes the bits of real numbers and the
current position of the head: it is divided into blocks of length k+ l, separated by #
border symbols, containing a bit for each real, the current position of the head being
circled. The stack layer encodes the working area for the threads, where each head
has its computing stack, and the boundaries of the threads: each thread delimits
monotonically the area it already modified by a ∗ symbol. The head layer encodes
the heads of the threads, the active parts of the ITCA.

Each instruction of the BSS machine is simulated as explained before. A move
thread simply moves the circle to the previous or next bit, adding a new real if
necessary, using its thread stack. A branch thread does not modify reals but checks
if the hypothesis was true or false, as depicted on figure 2. A computation thread
modifies the reals, making choices (for example the values of carries when adding
two reals), backtracking when the choice was a bad one, as depicted for addition on
figure 3a. Notice that multiplication can be significantly simplified by the fact that
we can create new threads, thus it can be decomposed into additions launched by a
master thread, as depicted on figure 3b.

It is important to notice that the monotonicity of the forward movement of
∗ symbols ensures that there is no concurrency problem due to neighbor threads
backtracking and coming back forward in a same area: when a thread wants to
access an area already explored by its follower, the follower is asked to undo its
computation. To ask a neighbor to undo, a thread simply modifies its neighbor ∗
symbol to inform him.

The details of the construction use rather classical but tedious CA encoding
tricks. The key argument of the proof is that an ITCA can simulate in time ω the
work of an unbounded number of Turing heads, thus achieving the same quantity
of work than a ITTM in time ω2.

By diagonalization, it is easy to see that there are functions on the real numbers,
computable by ITCAs in ω steps but that are not computable by BSS machines.
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Figure 2. Branch if equal to 0 thread

Concluding remarks

We finish this paper by pointing in a direction that we believe to be promising.
Koepke [Koe05] has defined a transfinite time computation model based on Tur-

ing machines that has transfinite space. It can thus compute on arbitrary ordinals
and sets of ordinals. Koepke and Siders [KS08] have also extended the infinite time
register machines model to machines with registers containing arbitrary ordinals.
These models make it possible to compute the bounded truth predicate of the con-
structible universe, {(α, ϕ, ~x) : α ∈ Ord, ϕ an ∈-formula, ~x ∈ Lα, Lα |= ϕ(~x)}, and
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allows the following characterization of computable sets of ordinals: a set of ordi-
nals is ordinal computable from of a finite set of ordinal parameters if and only if it
an element of Gödel’s constructible universe L. Ordinal computability is moreover
interesting to be able to reprove some facts about L.

We propose the following definition for ordinal computations over cellular au-
tomata.

Definition 3.3. An ordinal cellular automaton A is defined by Σ, the finite set of
states of A, linearly ordered by ≺ and with a least element 0; and δ : Σ3 → Σ, the
local rule of A, satisfying δ(0, 0, 0) = 0, so that 0 is a quiescent state.

A configuration of length ξ is an element of Σξ. The local rule δ induces on
configurations of length ξ a global rule ∆ : Σξ → Σξ such that







∆(C)0 = δ(lim inf≺γ<ξ Cγ, C0, C1),
∆(C)β+1 = δ(Cβ, Cβ+1, Cβ+2),
∆(C)λ = δ(lim inf≺γ<λ Cγ, Cλ, Cλ+1) if λ limit and λ > 0.

Starting from a configuration C ∈ Σξ, the evolution of length θ of A is given by
(∆α(C))α6θ:

∆β+1(C) = ∆(∆β(C))
∆λ(C)ι = lim inf≺γ<λ ∆

γ(C)ι for all ι < ξ and λ limit

We think that it would be interesting to try to carry the results of the other
ordinal machines models over to this ordinal cellular automata model. In this model,
there is the limitation due to the fixed length of configurations, which is imposed
by the cylindrical nature of our model. There are certainly other ways to allow
information to flow from the right to the left of the configurations (and not only left
to right).
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