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Abstract. Most of modern constraint modeling languages combine rich
constraint languages with mathematical notations to tackle combinato-
rial optimization problems. Our purpose is to introduce new component-
oriented language constructs to manipulate hierarchical problems, for
instance for modeling engineering system architectures with conditional
sub-problems. To this end, an object-oriented modeling language is as-
sociated with a powerful constraint language. It offers the possibility of
defining conditional components to be activated at solving time, declar-
ing polymorphic components whose concrete types have to be deter-
mined, and overriding model elements. We illustrate the benefits of this
new approach in the modeling process of a difficult embodiment design
problem having several architectural alternatives.

1 Introduction

Constraint programming (CP) is a generic framework allowing users to state
various kinds of constraint satisfaction problems (CSPs). Several specialized
paradigms emerged to tackle specific concepts, for instance conditional CSPs [5]
and composite CSPs [13].

A CSP is conditional when its sub-problems may not participate in the so-
lutions. The activation of sub-problems is subjected to constraints to be verified
during the solving process. A composite CSP can be seen as a hierarchy of
sub-problems. It captures the inherent structure of a component-based system.
Combining both features, composite and conditional CSPs make it possible to
formulate models of complex systems and to study some variations in their ar-
chitectures. This class of problems finds many applications in the configuration
and design areas [12, 5, 8].

Modeling such problems is not trivial, as it is necessary to handle various
concerns e.g., the component hierarchy, the activation of sub-problems, and even
the definition of families of components sharing some properties. In this paper,
we present a new approach to elegantly represent component-based CSPs. We
extend the s-COMMA modeling language [15] by adding a new set of language
constructs. We firstly introduce the concept of conditional (optional) compo-
nent and we provide a simple construct to employ them in constraint models.



Depending on constraint-based conditions, it is possible to dynamically modify
the problem architectures by activating new components. Second, components
can be polymorphic. It is possible to define families of components, whose types
can be refined at solving time. Third, as usual in object-oriented languages,
model elements can be overridden in sub-types to facilitate the implementation
of sub-classes. Finally, the language also makes it possible to handle components
off the shelf or catalogs by means of compatibility constraints, which are sets of
tuples to be assigned to a given set of variables.

Modeling complex real-world CSPs is a really hard task and s-COMMA is the
result of several years of experience tackling that kind of problems. Now, let
us illustrate such new modeling features by presenting a real-world CSP from
Dassault Aviation about the design of an air conditioning system (ACS) for
aircrafts.

1.1 Example

The ACS in an aircraft roughly mixes hot air from the turbojet (main air)
and cold air from atmosphere (ram air) to inject air at right temperature and
pressure in the cabin (see [3] for more details). Two topologies connecting several
components are depicted in Fig. 1. On the left, only one heat exchanger is used
to transfer the calorific energy between the main air and the ram air. On the
right, a second heat exchanger is used to pre-cool the main air. Several other
topological changes may also be considered in a more complete analysis of this
complex system.

Fig. 1. Two possible topologies of an air conditioning system in an aircraft.

These architectures are hierarchical, since every component can be refined as
a complex system. Moreover, the choice of topology may depend on conditions.
In this problem, the goals may be to simultaneously study:



– the embodiment design of the ACS, which in particular requires the solving
of nonlinear constraints over continuous variables related to the geometry or
the physical behavior of the system,

– the feasibility of each architectural design alternative.

Thus, we need a high-level modeling language being able to represent at least
components subject to constraints, discrete and continuous variables, and con-
ditional components.

1.2 Outline

The remaining of this paper is organized as follows. s-COMMA and the new mod-
eling features are presented in Section 2. The architecture supporting the mod-
eling language is shortly described in Sect. 3. The related work and conclusions
follow.

2 Modeling

The core of the s-COMMA modeling language is briefly described now. A model
is a collection of classes to be linked through usual composition and inheritance
relations. The main class corresponds to the model entry, as follows.

1 // Model f i l e
2 main class AirCraf t {
3 ACS acs ; // the ACS
4 TurboJet t j ; // the tu rbo j e t
5
6 constraint Ai r f l ows {
7 t j . TIn = TRam; // t j input = atmosphere
8 t j .TOut = acs . THotIn ; // t j output = ACS input
9 acs . THotOut = TCab ; // ACS output = cabin

10 acs . TColdIn = TRam; // ACS input = atmosphere
11 . . .
12 }
13 }
14
15 class ACS {
16 HeatExchanger ex1 ; // the ( f i r s t ) heat exchanger
17 Turbine turb ine ; // the turb ine
18
19 real THotIn in [ 2 0 0 , 1 0 0 0 ] ; // temperature in K o f input hot a i r
20 real TColdIn in [ 2 0 0 , 1 0 0 0 ] ; // ” in K o f input co ld a i r
21 real THotOut in [ 2 0 0 , 1 0 0 0 ] ; // ” in K o f output hot a i r
22 real TColdOut in [ 2 0 0 , 1 0 0 0 ] ; // ” in K o f output co ld a i r
23 real e p s i l o n in [ 0 , 1 ] ; // heat t r an s f e r e f f i c i e n c y
24 . . .
25 }
26
27 class HeatExchanger {
28 real THotIn in [ 2 0 0 , 1 0 0 0 ] ; // temperature in K o f input hot a i r
29 real TColdIn in [ 2 0 0 , 1 0 0 0 ] ; // ” in K o f input co ld a i r
30 real THotOut in [ 2 0 0 , 1 0 0 0 ] ; // ” in K o f output hot a i r
31 real TColdOut in [ 2 0 0 , 1 0 0 0 ] ; // ” in K o f output co ld a i r
32 . . .

In this model, the aircraft is composed of an air conditioning system acs

and a turbojet tj, being instances of other classes. A constraint block Airflows



is defined to link the temperatures of air flows between the atmosphere, the
turbojet, the ACS, and the cabin. A set of equality constraints is simply stated
between air temperature attributes of acs and tj, and the flight conditions,
namely the atmosphere air temperature TRam and the cabin air temperature
TCab. These two parameters can be defined as constants in a data file for given
flight conditions, as follows:

1 // Data f i l e
2 real TRam := 220 . 055 ; // atmosphere a i r temperature in K at 10500m
3 real TCab := 280 ; // expected cabin a i r temperature in K

The ex1 attribute corresponds to the heat exchanger in the first topology,
and to the first one in the second topology. That means that every topology at
least requires one exchanger. The presence of one or two exchangers will be more
precisely discussed in Sect. 2.2.

For the sake of clarity, only a small extract of the full model is presented
above. The other components are defined in the same way. In the rest of the
section we focus on the new component-oriented language constructs.

2.1 Catalogs

In most configuration and design problems, it is necessary to reuse some com-
ponents from the shelf, given as catalogs stating tuples of values for their main
characteristics. For instance, a heat exchanger is made of exchange surfaces to
be chosen from a set of known shapes. This can simply be modeled by means of
a Boolean formula that restricts the possible values of several variables such as
rh, bh, and betah.

1 class HeatExchanger {
2 . . .
3 // Var i ab l e s r e l a t e d to the exchange s u r f a c e s
4 real bh in [ 0 , 0 . 1 ] ;
5 real rh in [ 0 , 0 . 1 ] ;
6 real betah in [ 1 0 0 , 1 . 0 e4 ] ;
7 . . .
8 constraint Sur face sCata log {
9 ( rh =7.7089 e−4 and bh=6.35e−3 and betah=1.204 e+3) or

10 ( rh =3.61315 e−3 and bh=1.905 e−3 and betah =2.496 e+2) or
11 ( rh =6.6167 e−4 and bh=1.051 e−2 and betah =1.368 e+3) or
12 ( rh =6.6992 e−4 and bh=9.525 e−3 and betah= 1.25 e+3) ;
13 }

This is a natural representation of catalogs, but it is not suitable to deal with
a higher number of constraints, as the model becomes confuse. To avoid this, it
is possible to compact the model by using a compatibility constraint.

1 constraint Sur face sCata log {
2 compatibility

3 ( rh , bh , betah ) {
4 (7 .7089 e−4, 6 .35 e−3, 1 .204 e+3) ;
5 (3 .61315 e−3, 1 .905 e−2, 2 .496 e+2) ;
6 (6 .6167 e−4, 1 .051 e−2, 1 .368 e+3) ;
7 (6 .6992 e−4, 9 .525 e−3, 1 .25 e+3) ;
8 }
9 }



2.2 Conditional components

In various CP problems, it is necessary to model elements whose activation
depends on the satisfaction of some conditions. For instance, consider the heat
exchanger whose properties vary depending on the temperature of the input hot
air (THotIn). This is commonly modeled by adding a set of implications that
activate the involved constraints.

1 // Within the ACS c l a s s
2 constraint Airf lowsOne {
3 (THotIn <= 600) − > ex1 . TColdOut = noz z l e . TIn ;
4 (THotIn <= 600) − > THotIn = compressor . TIn ;
5 }
6 constraint HeatEf f i c i encyOne {
7 (THotIn <= 600) − > e p s i l o n = ex1 . e p s i l o n ;
8 }
9 }

The model becomes more complicated if we need to model the activation of a
new object depending on a condition. For instance, in the second ACS topology,
an additional heat exchanger is required when the input hot temperature exceeds
600 K. One manner to state that is to include the second heat exchanger within
the class and to activate the corresponding constraints.

1 // Within the ACS c l a s s
2 HeatExchanger ex2 ; // the second exchanger
3
4 constraint AirflowsTwo {
5 (THotIn > 600) − > ex1 . TColdOut = ex2 . TColdIn ;
6 (THotIn > 600) − > ex2 . TColdOut = noz z l e . TIn ;
7 (THotIn > 600) − > THotIn = ex2 . THotIn ;
8 (THotIn > 600) − > ex2 . THotOut = compressor . TIn ;
9 }

10 constraint HeatEff ic iencyTwo {
11 (THotIn > 600) − > ep s i l o n = ( ex1 . e p s i l o n + ex2 . e p s i l o n ) /2 ;
12 }
13 }

Additionally, it is necessary to deactivate the object attributes (when the
condition is not satisfied) in order to avoid useless splitting operations during
the search. This can roughly be done by assigning to the variables its minimum
domain value. Unfortunately, the resultant model is too verbose and hard to
understand.

1 constraint deac t i va t eAt t r i bu t e s {
2 not (THotIn > 600) −> ( ex2 . THotIn = minDom( ex2 . THotIn ) ) ;
3 not (THotIn > 600) −> ( ex2 . TColdIn = minDom( ex2 . TColdIn ) ) ;
4 not (THotIn > 600) −> ( ex2 . THotOut = minDom( ex2 . THotOut ) ) ;
5 not (THotIn > 600) −> . . .
6 }

To make the definition of such a conditional formulation more concise and
understandable, we introduce a new conditional statement. This new construct
considers a name, a condition, and a sequence of elements to activate if the con-
dition is satisfied. For instance, the constraints defined within the AirflowsOne

constraint block are only activated if the OneExchanger conditional block evalu-
ates to true.

1 // Within the ACS c l a s s
2 cond OneExchanger (THotIn <= 600) {



3 constraint Airf lowsOne {
4 ex1 . TColdOut = noz z l e . TIn ;
5 THotIn = compressor . TIn ;
6 }
7 constraint HeatEf f i c i encyOne {
8 ep s i l o n = ex1 . ep s i l o n ;
9 }

10 }

The integration of conditional objects is performed in the same way. This
feature is more powerful since the set of variables and constraints embedded in
the object can be activated at once, as for instance in the second ACS topology.
The second heat exchanger is activated only if the THotIn attribute exceeds 600

K. It is also possible to include additional constraints acting over the conditional
object, for example to establish the new links between air flows, and to compute
the new heat efficiency.

1 // Within the ACS c l a s s
2 cond TwoExchangers (THotIn > 600) {
3 HeatExchanger ex2 ; // the second exchanger
4
5 constraint AirflowsTwo {
6 ex1 . TColdOut = ex2 . TColdIn ;
7 ex2 . TColdOut = noz z l e . TIn ;
8 THotIn = ex2 . THotIn ;
9 ex2 . THotOut = compressor . TIn ;

10 }
11 constraint HeatEff ic iencyTwo {
12 ep s i l o n = ( ex1 . ep s i l o n + ex2 . ep s i l o n ) /2 ;
13 }
14 }

Note that the conditional block can also be located in a higher class (consid-
ering the composition’s hierarchy), specifying that they apply on a given object.
For instance, now the conditional block is stated within the Aircraft class, but
it remains acting over the acs object.

1 class Ai r c ra f t {
2 . . .
3 cond TwoExchangers (THotIn > 600) on acs {
4 . . .

The main difference here is to modify a single object rather than the class itself.
That allows one to manipulate instances of a same class with few modifications.

2.3 Polymorphic components

Abstract or non final classes in object-oriented programming languages allow one
to uniformly manipulate instances of sub-classes. From a modeling viewpoint,
it is common to specify sub-types corresponding to families of systems differing
in some aspects. Our goal is to give users a mean for declaring some objects of
a given type and to let the solving engine dynamically refine this type, i.e., to
allow non deterministic choices of component types.

We just define the new polymorphic keyword to be used in the declaration of
a variable. As a consequence, every polymorphic object of type T occurring in a
solution may have type T or a sub-type of T. In this case, we impose that the
full type list from the inheritance hierarchy has to be explored.



This feature is illustrated by considering three main families of heat ex-
changers depending on directions of the cold and hot air flows: co-current flows,
counter-current flows, and cross-current flows as depicted in Fig. 2. Each type
from this family has its own way to compute the exchange of heat energy between
the two air flows.

Fig. 2. A simple inheritance hierarchy for heat exchangers.

The family of exchangers can be naturally represented by an inheritance
graph as shown in Fig. 2. It directly follows the following classes.

1 class HeatExchanger { . . . }
2 class COCHExchanger extends HeatExchanger { . . . }
3 class CTCHExchanger extends HeatExchanger { . . . }
4 class CRCHExchanger extends HeatExchanger { . . . }

Now let the (first) heat exchanger from the ACS to be polymorphic. Furthermore,
suppose that the second heat exchanger must be of type CRCHExchanger and that,
in this case, the first exchanger must be of the same type. The following piece
of model results.

1 // Within the ACS c l a s s
2 polymorphic HeatExchanger ex1 ; // polymorphic i n s t anc e
3
4 constraint Ai r f l ows { // shared c on s t r a i n t between
5 ex1 . THotOut = turb ine . TIn ; // the two t opo l o g i e s
6 ex1 . TColdIn = d i f f u s e r .TOut ;
7 . . .
8 }
9

10 cond TwoExchangers (THotIn > 600) {
11 CRCHExchanger HeatExchanger ex2 ; // the second exchanger
12
13 constraint TypeExchangerOne {// type r e s t r i c t i o n
14 typeOf ( ex1 ) = typeOf ( ex2 ) ; // f o r the f i r s t exchanger
15 }
16 . . .
17 }

Introducing polymorphic instances leads to the need for manipulating instance
types. In the example, the type of the first exchanger is restricted using the
typeOf keyword (lines 13 to 15). That may be compared with runtime type
checking mechanisms in computer programming languages, such as instanceof

in Java or type in Python. The main difference is the declarative nature of the
primitives in our language, which are just constraints on types.



2.4 Overriding elements

The purpose of overriding mechanisms is to allow a sub-type from a hierarchy
to provide a specific definition of an element — variable, constraint block, condi-
tional block— defined in some ascending type. To this end, it suffices to declare
an element using a naming correspondence.

In the ACS, the areas of the exchange surfaces are defined in the HeatExchanger

base type. They are valid for all the given sub-types, except for the cold exchange
surface of CRCHExchanger heat exchangers. In this case, it suffices to override the
ColdExchangeSurfaceArea constraint, as follows.

1 class HeatExchanger {
2 // l e t Lx , Ly , and Lz be the dimensions
3 // l e t Afh and Afc be the r e l a t ed areas
4
5 constraint HotExchangeSurfaceArea {
6 Afh = Lx∗Lz ;
7 }
8 constraint ColdExchangeSurfaceArea {
9 Afc = Lx∗Lz ;

10 }
11 }
12
13 class CRCHExchanger extends HeatExchanger {
14 constraint ColdExchangeSurfaceArea {
15 Afc = Ly∗Lz ; // c on s t r a i n t ove r r i d i ng
16 }
17 }

3 Architecture

s-COMMA has been implemented on a model-driven solver-independent platform.
Such an architecture allows the automatic reformulation of a s-COMMA model
into different executable solver models. A model-driven engineering approach
has been implemented to perform the necessary transformations among source,
intermediate, and target models. Although, those transformations are not de-
tailed here for space reasons, an extended presentation about them can be found
in [15, 1, 2].

Fig. 3. Reformulation process.

A general scheme of the reformulation process is depicted in Fig. 3. An s-

COMMA model is the input of the system. This model is mapped to an inter-
mediate model in order to reformulate the language constructs not supported



at the solver level. Those transformations are standard and are based on the
previous implementations of s-COMMA. For instance, objects are flattened i.e.,
every variable and constraint are just incorporated into the intermediate model.
Compatibility constraints are mapped to the corresponding set of Boolean ex-
pressions. Conditional blocks are transformed into a set of implications, and
polymorphic elements are stated as single conditional blocks. These conditional
blocks are then treated as logical formulas. Once the reformulation is finished, a
solver model is generated from the intermediate one, which is launched to obtain
the results. Finally, the solution set is analyzed according to a traceability model
to display the solutions in a correct object-oriented format.

4 Related Work

Zinc [9], MiniZinc [11] (successors of OPL [16]), and Essence [4] are the state-of-
the-art constraint modeling languages. They provide a rich semantics for mod-
eling different kinds of problems. In particular, Zinc offers the possibility of
tackling specific applications domains by means of user-defined predicates. How-
ever, a main problem is that no object-oriented features are provided. Hence, it
is difficult to naturally capture the structure of component-based problems.

Compatibility constraints can undoubtedly be represented by these languages
as Boolean formulas, and conditional blocks can be simulated by using Boolean
variables and/or implications as illustrated in Sect. 2. But, the result seems to
be a hack of the model rather than a natural problem formulation. Finally, there
is no mechanism to manage families of components through polymorphism.

COB [7] is an object-oriented constraint modeling language that can cap-
ture hierarchical problem structures. It provides a common language to post
constraint models, which can be enriched with Prolog-like predicates. But, once
again it lacks of compatibility constraints, conditional statements, and poly-
morphism. Additionally, less relevant to this paper, but not less important, the
underlying architecture of COB is solver-dependent, being not possible to launch
a model in different solving engines.

5 Conclusion

In this paper, we have presented new language constructs for modeling component-
based CSPs. These constructs allow one to define more concise and understand-
able models, that naturally represents complex hierarchical problems. For in-
stance, compatibility constraints avoids the definition of confuse Boolean expres-
sions. Conditional blocks are a mean to express variables, constraints, and even
objects whose relevance on the model depends on a given condition. Polymor-
phism is suitable for modeling families of components sharing some properties.
Such constructs have been integrated on the s-COMMA language with the spirit
of designing a full component-oriented language, an important CP challenge as
stated in [8].



We believe that an important research direction is about solving strategies
for component-based CSPs, interesting studies are pointed out in [6, 5, 14, 10].
The main problem is that the set of required techniques may not be present in
any existing solver, such as consistency techniques for mixed variables, interval
methods for continuous problems, various search strategies, decomposition algo-
rithms, and so on. Developing a new solver is a really hard task, and the solution
may be to make several tools cooperate inside a CP platform.
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