Martin Kutrib

Andreas Malcher

MEASURING COMMUNICATION IN CELLULAR AUTOMATA

Keywords: 2000 ACM Subject Classification: F.1.1, F.1.2, F.4.3 cellular automata, iterative arrays, message complexity, limited communication, decidability, formal languages. 13

Cellular automata and iterative arrays are one-dimensional arrays of interconnected interacting finite automata which work synchronously at discrete time steps. In this paper, the focus lies on the resource of communication which naturally takes place between cells. Communication is measured here with regard to qualitative and quantitative aspects. More detailed, the amount of communication in cellular automata is measured by limiting the bandwidth of the communication links between the cells, as well as limiting the number of messages allowed to be sent between cells. An overview on recent results on the computational capacity of as well as on decidability problems in such restricted cellular automata and iterative arrays is given.

Introduction

Parallel computational models are appealing and widely used in order to describe, understand, and manage parallel processes occurring in real life. One principal task in order to employ a parallel computational model in an optimal way is to understand how cooperation of several processors is organized optimally. To this end, it is essential to know which communication and which amount of communication must or should take place between several processors. From the viewpoint of energy and the costs of communication links, it would be desirable to communicate a minimal number of times with a minimum amount of information transmitted. On the other hand, it would be interesting to know how much communication is necessary in a certain parallel model to accomplish a certain task.

Here, we consider the model of cellular automata with parallel and sequential input mode. The latter model is also known as iterative array. In both models the state of each cell is communicated to its neighbors in every time step. That is, on the one hand the state is sent regardless of whether it is really required, and on the other hand, the number of different messages that may be sent is determined by the number of states. Thus, it seems to be natural to restrict this "unbounded" communication by limiting the number of possible different messages between cells. This brings us to cellular automata and iterative arrays where the bandwidth of the communication links between two cells is bounded by some fixed constant. In the most restricted setting this is one bit bandwidth. However, these automata are still powerful enough to accept unary as well as non-unary non-context-free (even non-semilinear) languages in real time. For some classes it is additionally known that almost all of the commonly investigated decidability problems are undecidable. Furthermore, we obtain proper hierarchies with regard to the resources bandwidth, dimension, and time. Finally, we get a complete picture on the relations between cellular automata and iterative arrays in the case of restricted inter-cell bandwidth.

For real-time one-way cellular automata where the communication is quantitatively measured by counting the number of uses of the communication links between cells, the total sum of all communications or the maximal number of communications that may appear between each two cells can be considered. Reducing the number of communications in such a way that each two neighboring cells may communicate constantly often only, leads to devices which also still can accept non-context-free (even non-semilinear) languages. Again, almost all of their decidability questions can be shown to be undecidable. An interesting additional restriction is to consider inputs of a certain form only. For such bounded languages it is known that in other computational models, such as certain variants of multi-head finite automata, undecidable problems become decidable. However, all commonly investigated decidability questions remain undecidable for communication-restricted real-time one-way cellular automata accepting bounded languages.

Finally, both limitations on the communication between cells are combined. It turns out that even this restriction does not lead to positive decidability results. The known undecidability results can be translated to the case of one and two message bandwidth. Thus, the resource communication makes the model in a way inherently complex since even a limitation to a very small amount of communication does not reduce the computational complexity of the model's undecidability problems.

Preliminaries and Definitions

We denote the rational numbers by Q, and the non-negative integers by N. The empty word is denoted by λ, the reversal of a word w by w R , and for the length of w we write |w|. The set of words over some alphabet A whose lengths are at most l ∈ N is denoted by A ≤l . We write ⊆ for set inclusion, and ⊂ for strict set inclusion. The cardinality of a set M is denoted by |M |.

A one-dimensional iterative array is a linear, semi-infinite array of identical deterministic finite automata, sometimes called cells. The finite automata work synchronously at discrete time steps. Except for the leftmost cell each one is connected to its both nearest neighbors (see Figure 1). For convenience we identify the cells by their coordinates, that is, by non-negative integers. The distinguished leftmost cell at the origin is connected to its right neighbor and, additionally, equipped with a one-way read-only input tape. At the outset of a computation the input is written on the input tape with an infinite number of end-of-input symbols to the right, and all cells are in the so-called quiescent state. The state transition of all cells but the input cell depends on the current state of the cell itself and the current states of its neighbors. The state transition of the input cell additionally depends on the input symbol to be read next. The head of the one-way input tape is moved at any step to the right. With an eye towards recognition problems the machines have no extra output tape but the states are partitioned into accepting and rejecting states.

In an iterative array with k-message restricted inter-cell communication, the state transition depends on the current state of each cell and on the messages that are currently sent by its neighbors, where the possible messages are formalized as a set of possible communication symbols. The messages to be sent by a cell depend on its current state and are determined by so-called communication functions. Let M be an IA k . A configuration of M at some time t ≥ 0 is a description of its global state which is a pair (w t , c t), where w t ∈ A * is the remaining input sequence and c t : N → S is a mapping that maps the single cells to their current states. The configuration (w 0 , c 0) at time 0 is defined by the input word w 0 and the mapping c 0 that assigns the quiescent state to all cells, while subsequent configurations are chosen according to the global transition function ∆: Let (w t , c t), t ≥ 0, be a configuration. Then its successor configuration (w t+1 , c t+1) = ∆(w t , c t) is as follows.

s 0 s 0 s 0 s 0 s 0 a 1 a 2 a 3 • • • a n #
c t+1 (i) = δ(b r (c t (i -1)), c t (i), b l (c t (i + 1)))
for all i ≥ 1, and c t+1 (0) = δ 0 (c t (0), a, b l (c t (1))) where a = # and w t+1 = λ if w t = λ, as well as a = a 1 and

w t+1 = a 2 • • • a n if w t = a 1 • • • a n .
Thus, the global transition function ∆ is induced by δ and δ 0 .

A two-way cellular automaton with k-message restricted inter-cell communication is similar to an iterative array. The main difference is that the cell at the origin does not fetch the input but the input is supplied in parallel to the cells. That is, an input a 1 • • • a n is fed to the cells 1, . . . , n such that initially cell i is in state a i . Cells 0 and n + 1 are initially in a permanent so-called boundary state # (see Figure 2). Cell 1 indicates acceptance or rejection, and the array is bounded to the n cells which are initially active. A one-way cellular automaton (OCA k) is a cellular automaton in which each cell receives information from its immediate neighbor to the right only. So, the flow of information is restricted to be from right to left. Formally, δ is a mapping from S × (B ∪ {⊥}) to S.

A configuration of a cellular automaton S, A, B, F, #, b l , b r , δ at time t ≥ 0 is a mapping c t : {1, . . . , n} → S, for n ≥ 1. For a given input w = a 1 • • • a n ∈ A + we set the initial configuration c 0,w (i) = a i , for 1 ≤ i ≤ n. Successor configurations are computed according to the global transition function ∆: Let c t , t ≥ 0, be a configuration. Then its successor configuration c t+1 = ∆(c t) is as follows.

c t+1 (1) = δ(b r (#), c t (1), b l (c t (2))) c t+1 (i) = δ(b r (c t (i -1)), c t (i), b l (c t (i + 1))), i ∈ {2, . . . , n -1} c t+1 (n) = δ(b r (c t (n -1)), c t (n), b l (#)) for CA k and c t+1 (i) = δ(c t (i), b l (c t (i + 1))), i ∈ {1, . . . , n -1} c t+1 (n) = δ(c t (n), b l (#))
for OCA k . An input w is accepted by an IA k ((O)CA k) M if at some time i during the course of its computation the input cell (cell 1) enters an accepting state. The language accepted by M is denoted by L(M). Let t : N → N, t(n) ≥ n + 1 (t(n) ≥ n for (O)CA k) be a mapping. If all w ∈ L(M) are accepted with at most t(|w|) time steps, then L(M) is said to be of time complexity t.

The family of all languages which are accepted by some device X with time complexity t is denoted by L t (X). If t is the function n+1, for IA k , or the function n, for (O)CA k , acceptance is said to be in real time and we write L rt (X). Since for nontrivial computations an IA k has to read at least one end-of-input symbol, real time has to be defined as (n+1)-time. The linear-time languages L lt (X) are defined according to L lt (X) = r∈Q, r≥1 L r•n (X).

What Arrays with Limited Inter-Cell Bandwidth Can Do

For iterative arrays and cellular automata where the bandwidth of the communication links between two cells is bounded by some fixed constant, the most restricted setting is one message bandwidth. However, these devices are still powerful enough to solve problems such as the firing squad synchronization problem in optimal time [START_REF] Mazoyer | A minimal time solution to the firing squad synchronization problem with only one bit of information exchanged[END_REF]. Moreover, it is known [START_REF] Umeo | A design of real-time non-regular sequence generation algorithms and their implementations on cellular automata with 1-bit inter-cell communications[END_REF][START_REF] Umeo | Real-time generation of primes by a 1-bit-communication cellular automaton[END_REF] that one-message IA 1 can accept rather complicated unary languages in real time, for example, words whose lengths are powers of two { a 2 n | n ≥ 1 }, words whose length are square numbers { a n 2 | n ≥ 1 }, words whose length are prime numbers { a p | p is prime }, or words whose lengths are Fibonacci numbers. Clearly, every deterministic finite automaton can be simulated in the input cell of an iterative array. Thus, we obtain the strict inclusion REG ⊂ L rt (IA 1) where REG denotes the regular languages.

The next lemma shows that an additive speed-up in IA k is always possible [START_REF] Kutrib | Computations and decidability of iterative arrays with restricted communication[END_REF]. The benefit of this lemma is that we do not have to care about additive constant factors which may arise in constructions. The situation is different for cellular automata where we have an infinite, strict, and tight hierarchy depending on the additive constant (see [START_REF] Worsch | Linear time language recognition on cellular automata with restricted communication[END_REF] for OCA k , and Theorem 5.1 for CA k).

Lemma 3.1. L rt+p (IA k) = L rt (IA k), for any constant number p ≥ 1.
In [START_REF] Kutrib | Computations and decidability of iterative arrays with restricted communication[END_REF] it is shown that one-message IA 1 can simulate binary counters in real time. This construction is often a useful tool for the modular design of algorithms. For example, by exploiting counters it is possible to check certain properties of distances between two designated cells, to verify that something happens at a certain time step, to implement clocks and pulses, and much else besides. In general, a specific application of a counter requires some additional mechanisms. For example, it might be of interest to recognize the time step at which a counter overflows or becomes zero, instead of knowing the real counter value. The proofs of some of the next results make extensively use of the ability of one-message IA 1 to simulate binary counters attached to the input cell, which stores the least significant bit. The counter either can be incremented or decremented, and can be tested for zero. Moreover, it is possible to use two counters and to switch from one counter to another with the minimal resources time and communication bandwidth.

The following language is known not to be regular. On the other hand, it can be accepted by pushdown automata making at most one turn.

Lemma 3.2. { a n b n | n ≥ 0 } ∈ L rt (IA 1).
The proof of the previous lemma is based on a construction that allows to switch between an increasing counter and a decreasing counter by using some signal. The switching costs four additional time steps. In general, any constant number of such switchings can be realized. The resulting device can be made real-time again by Lemma 3.1. Furthermore, we can do more complicated computations based on the same technique. For example, if there are some subroutines sharing the same communication, then the switching signals can be interpreted individually by the routines. As before, the input cell controls the time steps at which the signals are sent. This idea is applied in the construction showing the next result. The language { a n b n c n | n ≥ 0 } is not accepted by any pushdown automaton, but it is accepted by some one-message IA 1 in real time.

Lemma 3.3. { a n b n c n | n ≥ 0 } ∈ L rt (IA 1)
.

By similar constructions one can set up real-time one-message IA

1 that recog- nize languages of the form { a n b n c n d n | n ≥ 0 } or { a n b m c n d m | n, m ≥ 0 }.
The important observation is that the number of switching signals to be sent is constant. Glimpsing at the language { a n (b n) m | n, m ≥ 0 } one receives the impression that the number of switches is about m, which is no longer constant. So, the language might be too hard to be accepted by real-time one-message IA 1 . In fact, in order to show the converse we cannot use the techniques developed so far. But instead we can reuse counter values in a sense, that once a counter is decremented to zero, it restarts to count from its previous initial value. To this end, a master copy of the original counter value has to be kept in another counter. The construction is sketched in [START_REF] Kutrib | Computations and decidability of iterative arrays with restricted communication[END_REF].

Lemma 3.4. { a n (b n) m | n, m ≥ 0 } ∈ L rt (IA 1).
Next, we turn to some integer calculations, where the problem instances are suitably encoded and consider the problems of "adding" negative and positive integers as well as "multiplying" non-negative integers [START_REF] Kutrib | Computations and decidability of iterative arrays with restricted communication[END_REF].

Lemma 3.5. { a n b m c l | n, m, l ≥ 0 and -n + m = l } ∈ L rt (IA 1).
In order to construct a real-time one-message IA 1 for the next languages we have to handle counters that do not share the same communication. If we have a constant number of counters to handle, then the simulation can be time-shared, that is, the single steps of the counters are simulated cyclically one after the other. Clearly, in general this may violate the real-time constraint. But for our purposes it works fine.

Lemma 3.6. { a n ba m b(ba) n•m | n, m ≥ 0 } ∈ L rt (IA 1).
Let a 1 , a 2 , . . . , a k , $, a, b be k + 3 different symbols. Obvious generalizations of the construction (using several counters) show that, for example, the languages

{ a n 1 a m 2 $(ba) n•m | n, m ≥ 0 }, { a n 1 a m 2 a l 3 $(baa) n•m•l | n, m, l ≥ 0 }, { a α 1 1 a α 2 2 • • • a α k k $(ba k-1) α 1 •α 2 •••α k | α 1 , α 2 , . . . , α k ≥ 0 }, { a n ba m b(baaaa) n 2 •m 3 | n, m ≥ 0 }, { a n 1 a m 2 a l 3 $(baaaaaa) n 2 •m 3 •l 2 | n, m, l ≥ 0} and, given constants j 1 , j 2 , . . . , j k ≥ 0, {a α 1 1 a α 2 2 • • • a α k k $(ba j 1 +j 2 +•••+j k -1) α j 1 1 •α j 2 2 •••α j k k | α 1 , α 2 , . . . , α k ≥ 0 } are accepted by one-message IA 1 in real-time.

What Some of the Arrays with Limited Inter-Cell Bandwidth Can Do

To obtain a valuable tool to show that certain languages cannot be accepted by iterative arrays with limited inter-cell bandwidth, we define two equivalence relations and derive upper bounds on the number of equivalence classes which can be distinguished by IA k . If the number of equivalence classes induced by a certain language exceeds this upper bound, the language is not accepted by any IA k . Definition 4.1. Let L ⊆ A * be a language over an alphabet A and l ≥ 1 be a constant.

(1) Two words w ∈ A * and w ′ ∈ A * are l-right-equivalent with respect to L if for all y ∈ A ≤l : wy ∈ L ⇐⇒ w ′ y ∈ L. (2) N r (l, L) denotes the number of l-right-equivalence classes with respect to L.

(3) Two words w ∈ A ≤l and w ′ ∈ A ≤l are l-left-equivalent with respect to L if for all y ∈ A * : wy ∈ L ⇐⇒ w ′ y ∈ L. (4) N ℓ (l, L) denotes the number of l-left-equivalence classes with respect to L.

The next lemma provides upper bounds for the number of equivalence classes distinguished by IA k . Lemma 4.2. Let k ≥ 1 be a constant.

(1) If L ∈ L rt (IA k), then there exists a constant p ≥ 0 such that

N r (l, L) ≤ p (l+1) and (2) if L ∈ L t (IA k), then there exists a constant p ≥ 0 such that N ℓ (l, L) ≤ p • (k + 1) l
for all l ≥ 1 and all time complexities t : N → N. Now, we fix the time complexity to real time and consider the number of different messages. For any number of messages k ≥ 1 we define an alphabet A k = {a 0 , . . . , a k } and a language

L bit (k) = { e x $u 1 u 2 • • • u m | x ≥ 1 and m ≥ 2x -1 and u i ∈ A k , 1 ≤ i ≤ m, and u j = u j+2x-1 , 1 ≤ j ≤ m -(2x -1) }.
The languages L bit (k) are witnesses for an infinite, strict, and tight hierarchy dependent on the number of different messages [START_REF] Kutrib | Fast cellular automata with restricted inter-cell communication: Computational capacity[END_REF].

Theorem 4.3. Let k ≥ 1 be a constant. The language L bit (k + 1) belongs to the difference L rt (IA k+1) \ L rt (IA k). Therefore, L rt (IA k) ⊂ L rt (IA k+1).
The previous result can be extended to iterative arrays of any higher dimension [START_REF] Kutrib | Fast cellular automata with restricted inter-cell communication: Computational capacity[END_REF]. Without formal definition we mention that a d-dimensional iterative array IA d is an iterative array, where the cells are arranged as d-dimensional grid (N d) as extention of a line (N 1). Each cell is connected to its immediate neighbors in any dimension. Moreover, we fix the time complexity to real time, the number of different messages to constants k ≥ 1, and consider the dimension. For any dimension d ≥ 2 we define a language L dim (d) as follows. We start with a series of regular sets:

X 1 = ${a, b} + , X i+1 = $X + i , for i ≥ 1.
Due to the separator symbol $, every word u ∈ X i+1 can uniquely be decomposed into its subwords from X i . So, we can define the projection on the jth subword as usual:

Let u = $u 1 • • • u m , where u j ∈ X i , for 1 ≤ j ≤ m. Then u[j] is defined to be u j , if 1 ≤ j ≤ m, otherwise u[j] is undefined. Now define the language M (d) = { u¢e x d $ • • • $e x 1 $e 2x $v | u ∈ X d and x i ≥ 1, 1 ≤ i ≤ d,
and x = x 1 + • • • + x d and v = u[x d][x d-1] • • • [x 1] is defined }.
(IA d+1 1) \ L rt (IA d k). Therefore, L rt (IA d k) ⊂ L rt (IA d+1 k). Interestingly, L dim (d + 1) belongs to L lt (IA 1 1)
, that is, one can trade all dimensions and messages for a slow-down from real time to linear time.). From Theorem 4.4 and Theorem 4.3 we obtain a double hierarchy concerning messages and dimensions which is depicted in Figure 3.

• • • • • • • • • ⊂ ⊂ ⊂ L rt (IA d 1) ⊂ L rt (IA d 2) ⊂ • • • ⊂ L rt (IA d k) ⊂ • • • ⊂ ⊂ ⊂ • • • • • • • • • ⊂ ⊂ ⊂ L rt (IA 2 1) ⊂ L rt (IA 2 2) ⊂ • • • ⊂ L rt (IA 2 k) ⊂ • • • ⊂ ⊂ ⊂ L rt (IA 1 1) ⊂ L rt (IA 1 2) ⊂ • • • ⊂ L rt (IA 1 k) ⊂ • • •

What Arrays with Limited Inter-Cell Bandwidth Cannot Do

The main difference between cellular automata and iterative arrays is that the input is processed in parallel by the former model and processed sequentially by the latter model. An interesting variant of cellular automata is the restriction to one-way information flow. The relations between iterative arrays and cellular automata with two-way and one-way information flow are summarized in the left part of Figure 4. Here, we will clarify the relation between the discussed language classes in the case of restricted communication. It turns out that we obtain a finer hierarchy than in the unrestricted case. The results are depicted in the right part of Figure 4. The first difference between language classes with and without communication restrictions is that there are regular languages which cannot be accepted by any k-message cellular automaton CA k even if we add a constant number of time steps to real time, whereas all regular languages are accepted in the unrestricted case. Moreover, the witness languages can be accepted by a real-time CA k+1 . Thus, we obtain a strict message hierarchy for two-way real-time cellular automata. Furthermore, the witness languages are accepted by (n + r + 1)-time CA k . Thus, we obtain a very dense strict time hierarchy. If we allow just one more time step, we obtain a strictly more powerful device.

L lt (CA) = L lt (IA) L rt (CA) L rt (OCA) L rt (IA) REG L lt (CA k) L rt (CA k) L lt (IA k) L rt (OCA k) L rt (IA k) REG
Theorem 5.1. Let k ≥ 1 and p ≥ 0 be constants.

(1) There is a regular language which is not accepted by any (n + p)-time CA k .

(

) Then L rt+p (CA k) ⊂ L rt+p (CA k+1). (2
) Then L rt+p (CA k) ⊂ L rt+p+1 (CA k). 3
If the communication channels of the CA have a sufficient capacity, the regular languages are accepted. Lemma 5.2. Let k ≥ 1 be a constant. Then every regular language over a k-letter alphabet is accepted by some real-time CA k .

Together we obtain a two-dimensional infinite hierarchy for cellular automata with restricted communication concerning the number of messages communicated and the number of time steps performed, which is depicted in Figure 5. The next theorem clarifies the relation between iterative arrays and one-way cellular automata. Theorem 5.3. Let k ≥ 1 be a constant. There is a language belonging to the difference L rt (OCA 1) \ L lt (IA k).

• • • • • • • • • ⊂ ⊂ ⊂ L rt+r (CA 1) ⊂ L rt+r (CA 2) ⊂ • • • ⊂ L rt+r (CA k) ⊂ • • • ⊂ ⊂ ⊂ • • • • • • • • • ⊂ ⊂ ⊂ L rt+1 (CA 1) ⊂ L rt+1 (CA 2) ⊂ • • • ⊂ L rt+1 (CA k) ⊂ • • • ⊂ ⊂ ⊂ L rt (CA 1) ⊂ L rt (CA 2) ⊂ • • • ⊂ L rt (CA k) ⊂ • • •
Next, we show proper inclusions between language families that are related by inclusions for structural reasons. In [START_REF] Fischer | Generation of primes by a one-dimensional real-time iterative array[END_REF] an unrestricted real-time iterative array accepting prime numbers in unary has been constructed. In [START_REF] Umeo | Real-time generation of primes by a 1-bit-communication cellular automaton[END_REF] the result has been improved to a one-message iterative array. However, while in the unrestricted case any real-time iterative array can be simulated by a real-time two-way cellular automaton, here we have seen that both devices define incomparable language families. By a different witness language the next result follows.

Theorem 5.4. Let k ≥ 1 be a constant. Then L rt (OCA k) ⊂ L rt (CA k).
The next result says that for cellular automata with restricted communication a parallel processing of the input is more powerful than a sequential processing under linear time conditions. This is in contrast to the unrestricted case where both input modes imply the same computational capacity.

Theorem 5.5. Let k ≥ 1 be a constant. Then L lt (IA k) ⊂ L lt (CA k).

We complement our considerations with the following theorem.

Theorem 5.6. Let k ≥ 1 be a constant. Then the language families L rt (OCA k) and L rt (CA k) are incomparable with REG, L rt (IA k), and L lt (IA k).

It is a long-standing open problem whether linear-time cellular automata are more powerful than real-time cellular automata. Since linear-time CA k can accept all regular languages whereas real-time CA k cannot, we can answer this question in the affirmative for the case of restricted communication. On the other hand, Theorem 5.5 says that in the case of restricted communication parallel input mode implies a more powerful model than sequential input mode whereas both input modes are equally powerful in the unrestricted case.

In Figure 6 we summarize the relations between cellular automata with restricted and unrestricted communication [START_REF] Kutrib | Cellular automata with limited inter-cell bandwidth[END_REF].

L lt (CA) L lt (CA k) L lt (OCA) L lt (OCA k) L rt (CA) R L rt (CA k) R L rt (OCA) L rt (OCA k) REG

Decidability Questions

For real-time IA with unrestricted communication it is known that many decidability questions are undecidable [START_REF] Malcher | On the descriptional complexity of iterative arrays[END_REF][START_REF] Seidel | Language recognition and the synchronization of cellular automata[END_REF]. One may ask under which additional conditions undecidable questions become decidable. Since the recognizing power of real-time IA k is weaker than general real-time IA, it is a natural question whether undecidable questions for real-time IA are decidable for IA k . But this question has been answered negatively [START_REF] Kutrib | Computations and decidability of iterative arrays with restricted communication[END_REF]. In fact, several of the common decidability questions are even non-semidecidable for real-time IA 1 . A formal problem is semidecidable, if the algorithm halts on all instances for which the answer is yes. Thus, non-semidecidability results for real-time IA 1 show that even real-time IA with a minimum amount of communication are very powerful devices.

A well-known non-semidecidable problem is emptiness for Turing machines (or algorithms) [START_REF] Cudia | Degrees of unsolvability in formal grammars[END_REF][START_REF] Rogers | Theory of Recursive Functions and Effective Computability[END_REF]. The proof of the non-semidecidability results relies on a reduction of the emptiness problem for Turing machines. To this end, Turing machine computations are encoded into small grammars [START_REF] Hartmanis | Context-free languages and Turing machine computations[END_REF]. Roughly speaking, valid computations of Turing machines are histories of accepting Turing machine computations. It suffices to consider deterministic Turing machines with a single tape and a single read-write head. Without loss of generality and for technical reasons, one can assume that any accepting computation has at least three and, in general, an odd number of steps. Therefore, it is represented by an even number of configurations. Moreover, it is assumed that the Turing machine cannot print blanks, and that a configuration is halting if and only if it is accepting.

Let S be the state set of some Turing machine M, where s 0 is the initial state, T ∩ S = ∅ is the tape alphabet containing the blank symbol, A ⊂ T is the set of input symbols, and F ⊆ S is the set of accepting states. Then a configuration of M can be written as string of the form

T * ST * such that t 1 • • • t i st i+1 • • • t n is
used to express that M is in state s, scanning tape symbol t i+1 , and t 1 to t n is the nonblank part of the tape inscription. The set of valid computations VALC(M) is now defined to be the set of patterns of the form

w 1 $w 3 $ • • • $w 2k-1 ¢w R 2k $ • • • $w R 4 $w R 2
, where w i are configurations, $ and ¢ are symbols not appearing in w i , w 1 is an initial configuration of the form s 0 A * , w 2k is an accepting configuration of the form T * F T * , and w i+1 is the successor configuration of w i , for 1 ≤ i ≤ 2k. The set of invalid computations INVALC(M) is the complement of VALC(M) with respect to the coding alphabet {$, ¢} ∪ T ∪ S.

The simple but nevertheless important and fruitful observation is that the set VALC(M) is empty if and only if the set accepted by the Turing machine M is empty. The following lemma is the starting point of the reductions. It has been shown in [START_REF] Malcher | On the descriptional complexity of iterative arrays[END_REF], see also [START_REF] Kutrib | Cellular automata and language theory[END_REF]. Lemma 5.7. Given a Turing machine M, (general) real-time IA can effectively be constructed that accept VALC(M) and INVALC(M).

To establish non-semidecidability results for real-time IA 1 we need some variation of the set of valid computations which still has the property that the set is empty if and only if the corresponding Turing machine accepts the empty set. Thus, we proceed as follows. Given a set of symbols A = {a 1 , a 2 , . . . , a n }, for all k ≥ 1 we define a homomorphism h k by h k (a i) = a k i , 1 ≤ i ≤ n. Lemma 5.8. Given a Turing machine M, there exists a number k ≥ 1 such that real-time IA 1 can effectively be constructed that accept h k (VALC(M)) and

h k (INVALC(M)).
Clearly, the application of the homomorphism preserves the property mentioned before: The set h k (VALC(M)) is empty if and only if the set accepted by the Turing machine M is empty. So, we obtain the next result immediately. Theorem 5.9. Emptiness, universality, finiteness, infiniteness, equivalence, and inclusion are undecidable for real-time IA 1 .

With respect to language theory there are more relations between (in)valid computations and non-semidecidable problems. The following reasonings originate from [START_REF] Hartmanis | Context-free languages and Turing machine computations[END_REF], see also [START_REF] Kutrib | Cellular automata and language theory[END_REF][START_REF] Malcher | On the descriptional complexity of iterative arrays[END_REF].

Let M be some Turing machine, and assume that M accepts a finite set. Then VALC(M) is finite and, clearly, context free. If conversely M accepts an infinite set, then an application of the pumping lemma shows that VALC(M) is not context free. Therefore, M accepts a finite set if and only if VALC(M) is context free.

Moreover, if M accepts a finite set, then VALC(M) is finite and its complement INVALC(M) is regular. Conversely, if INVALC(M) is regular, then VALC(M) is regular since the regular languages are closed under complementation. Therefore, VALC(M) is context free which implies that M accepts a finite set. Therefore, M accepts a finite set if and only if INVALC(M) is regular.

Corollary 5.10. Regularity and context-freeness are undecidable for real-time IA 1 . Now, the previous results can be applied to show that there is no general pumping lemma and no minimization algorithm for real-time IA 1 . In general, a family of languages possesses a pumping lemma in the narrow sense if for each language L from the family there exists a constant n ≥ 1 computable from L such that each z ∈ L with |z| > n admits a factorization z = uvw, where |v| ≥ 1 and u ′ v i w ′ ∈ L, for infinitely many i ≥ 0. The prefix u ′ and the suffix w ′ depend on u, w and i.

Theorem 5.11.

(1) The family of languages accepted by real-time IA 1 does not possess a pumping lemma (in the narrow sense). (2) There is no minimization algorithm converting some real-time IA 1 to an equivalent real-time IA 1 having a minimal number of states.

Limiting the Number of Messages

In the following we turn to measure the communication in cellular automata by the number of uses of the links between cells. It is understood that whenever a communication symbol not equal to ⊥ is sent, a communication takes place. Here we do not distinguish whether either or both neighboring cells use the link. More precisely, the number of communications between cell i and cell i + 1 up to time step t is defined by

com(i, t) = |{ j | 0 ≤ j < t and (b r (c j (i)) = ⊥ or b l (c j (i + 1)) = ⊥) }| .
For computations we now distinguish the maximal number of communications between two cells and the total number of communications. Let c 0 , c 1 , . . . , c t(|w|) be the sequence of configurations computed on input w by some cellular automaton with time complexity t(n), that is, the computation on w. Then we define

mcom(w) = max{ com(i, t(|w|)) | 1 ≤ i ≤ |w| -1 } and scom(w) = |w|-1 i=1 com(i, t(|w|)).
Let f : N → N be a mapping. If all w ∈ L(M) are accepted with computations where mcom(w) ≤ f (|w|), then M is said to be max communication bounded by f . Similarly, if all w ∈ L(M) are accepted with computations where scom(w) ≤ f (|w|), then M is said to be sum communication bounded by f . In general, it is not expected to have tight bounds on the exact number of communications but tight bounds on their numbers in the order of magnitude. For the sake of readability we denote the class of CA that are max communication bounded by some function g ∈ O(f) by MC(f)-CA, where it is understood that f gives the order of magnitude. In addition, we use the notation const for functions from O(1). Corresponding notations are used for OCA and sum communication bounded CA and OCA. (SC(f)-CA and SC(f)-OCA).

Computational Capacity

In order to identify the computational power of communication bounded realtime devices we begin by describing the relationship to previous works. In [START_REF] Vollmar | On cellular automata with a finite number of state changes[END_REF][START_REF] Vollmar | Some remarks about the 'efficiency' of polyautomata[END_REF] two-way cellular automata are considered where the number of proper state changes is bounded. Similar as in the present paper the sum of all state changes or the maximal number of the state changes of single cells are bounded. By applying the technique of saving communication steps by storing the last signal received in the state and to interpret an arriving ⊥ suitably [START_REF] Kutrib | Cellular automata with sparse communication[END_REF], it is not hard to see, that such a device can be simulated by the corresponding communication bounded device. Whether or not state change bounded devices are strictly weaker than communication bounded ones is an open problem. However, we adapt some of the results shown in connection with state changes in the next theorem. Theorem 6.1 ([START_REF] Vollmar | On cellular automata with a finite number of state changes[END_REF][START_REF] Vollmar | Some remarks about the 'efficiency' of polyautomata[END_REF]).

(

) L rt (MC(const)-CA) ⊂ L rt (SC(n)-CA). (1
) REG ⊂ L rt (MC(const)-CA) ⊂ L rt (MC(√ n)-CA) ⊂ L rt (MC(n)-CA). (3) L rt (MC(const)-CA) ⊂ NL. 2
In order to clarify our notion and to show the power of the devices in question, we give some examples of languages which can be accepted by MC(const)-OCA. It has been shown in [START_REF] Kutrib | Cellular automata with sparse communication[END_REF] that the family MC(const)-OCA contains the non-contextfree languages

{ a n 1 a n 2 • • • a n k | n ≥ 1 } for k ≥ 2, { a n b m c n d m | n, m ≥ 1 }, as well as the languages { a n w | n ≥ 1 ∧ w ∈ (b * c *) k b * ∧ |w| b = n },
for all constants k ≥ 0. All of these languages are either semilinear or non-bounded. But in contrast to many other computational devices, for example certain multi-head finite automata, parallel communicating finite automata, and certain parallel communicating grammar systems, MC(const)-OCA can accept non-semilinear bounded languages. This is shown in the next example.

Example 6.2. The language L = { a n b n+⌊ √ n⌋ | n ≥ 1 } belongs to the family L rt (MC(const)-OCA).

In [START_REF] Mazoyer | Signals in one-dimensional cellular automata[END_REF] a CA is constructed such that its cell n enters a designated state exactly at time step 2n+⌊ √ n⌋, and at most n cells are used for the computation. In fact, the CA constructed is actually an OCA. Additionally, each cell performs only a finite number of communication steps. Thus, the CA constructed is an MC(const)-OCA.

An MC(const)-OCA accepting L implements the mirror of the above construction on the a-cells of the input a n b m . Thus, the leftmost cell enters the designated state q at time step 2n + ⌊ √ n⌋. Additionally, in the rightmost cell a signal s with maximum speed is sent to the left. When this signal arrives in an a-cell exactly at a time step at which the cell would enter the designated state q, the cell changes to an accepting state instead. So, if m = n + ⌊ √ n⌋, then s arrives at time 2n + ⌊ √ n⌋ at the leftmost cell and the input is accepted. In all other cases the input is rejected. Clearly, the OCA constructed is an MC(const)-OCA.

Next, we turn to an infinite strict hierarchy of real-time SC(f)-CA families [START_REF] Kutrib | Cellular automata with sparse communication[END_REF]. The top of the hierarchy is given by the next theorem. Theorem 6.3. Let f : N → N be a function. If f ∈ o(n 2 /log(n)), then language L = { wcw R | w ∈ {a, b} + } is not accepted by any real-time SC(f)-CA.

In order to define witness languages that separate the levels of the hierarchy, for all i ≥ 1, the functions ϕ i : N → N are defined by ϕ 1 (n) = 2 n , and ϕ i (n) = 2 ϕ i-1 (n) , for i ≥ 2, and we set L i = { w$ ϕ i (|w|)-2|w| w R | w ∈ {a, b} + }. Lemma 6.4. Let i ≥ 1 be an integer and f : N → N be a function.

(1) If f ∈ o((n log [i] (n))/log [i+1] (n)) then language L i is not accepted by any real-time SC(f)-CA. (2) Language L i is accepted by some real-time SC(n log [i] (n))-CA. So, we can derive the infinite hierarchy. Theorem 6.5. Let i ≥ 0 be an integer. Then L rt (SC(n log [i+1] (n))-CA) is properly included in L rt (SC(n log [i] (n))-CA).

Decidability Questions

As is the case for devices with limited inter-cell bandwidth, various problems are undecidable even for the weakest non-trivial device with limited messages, that is, for real-time MC(const)-OCA.

Two of the common techniques to show undecidability results are reductions of Post's Correspondence Problem or reductions of the emptiness and finiteness problem on Turing machines using the set of valid computations. Both techniques have been used successfully to obtain results for variants of cellular automata [START_REF] Kutrib | Fast reversible language recognition using cellular automata[END_REF][START_REF] Malcher | Descriptional complexity of cellular automata and decidability questions[END_REF][START_REF] Malcher | On the descriptional complexity of iterative arrays[END_REF][START_REF] Seidel | Language recognition and the synchronization of cellular automata[END_REF]. Taking a closer look at these known techniques, it is not clear yet whether they can be applied to MC(const)-OCA. In [START_REF] Kutrib | Cellular automata with sparse communication[END_REF] it is shown that emptiness is undecidable for real-time MC(const)-OCA by reduction of Hilbert's tenth problem which is known to be undecidable. The problem is to decide whether a given polynomial p(x 1 , . . . , x n) with integer coefficients has an integral root. That is, to decide whether there are integers α 1 , . . . , α n such that p(α 1 , . . . , α n) = 0. In [START_REF] Ibarra | Reversal-bounded multicounter machines and their decision problems[END_REF] Hilbert's tenth problem has been used to show that emptiness is undecidable for certain multi-counter machines. As is remarked in [START_REF] Ibarra | Reversal-bounded multicounter machines and their decision problems[END_REF], it is sufficient to restrict the variables x 1 , . . . , x n to take non-negative integers only.

If p(x 1 , . . . , x n) contains a constant summand, then we may assume that it has a negative sign. Otherwise, we continue with p(x 1 , . . . , x n) multiplied with -1, whose constant summand now has a negative sign and which has the same integral roots as p(x 1 , . . . , x n).

Such a polynomial then has the following form:

p(x 1 , . . . , x n) = t 1 (x 1 , . . . , x n) + • • • + t r (x 1 , . . . , x n)
where each t j (x 1 , . . . ,

x n) (1 ≤ j ≤ r) is of the form t j (x 1 , . . . , x n) = s j x i j,1 1 • • • x i j,n n with i j,1 , . . . , i j,n ≥ 0. If |s j | > 1 we replace s j x i j,1 1 • • • x i j,n
n by s j copies of

x i j,1 1 • • • x i j,n
n . So, we may assume without loss of generality that all constant factors are either 1 or -1.

Sketchy speaking, the reduction is as follows. For a polynomial p(x 1 , . . . , x n) with integer coefficients that has the above form, languages L(t j) for every term t j are defined that evaluate the terms t j . The next step is to simulate an evaluation of the given polynomial p. To this end, the evaluations of the single terms have to be put together, which is done by concatenating certain regular languages around each language L(t j) resulting in L(t j), and intersecting the reversals of all these languages. This gives a language L(p) = r j=1 L(t j) R . From L(p) another language L(p) is constructed which is empty if and only if p(x 1 , . . . , x n) has no solution in the non-negative integers. In a long proof it is shown that L(p) belongs to L rt (MC(const)-OCA). So, emptiness is undecidable for L rt (MC(const)-OCA) and we obtain the next theorem. Theorem 6.6. Emptiness, finiteness, infiniteness, equivalence, inclusion, regularity, and context-freeness are undecidable for real-time MC(const)-OCA.

Moreover, even the restrictions itself are not decidable: Theorem 6.7. It is undecidable for an arbitrary real-time OCA whether it is a real-time MC(const)-OCA.

So, even for the weakest non-trivial device with limited messages, that is, for real-time MC(const)-OCA all the mentioned properties are undecidable.

An approach often investigated and widely accepted is to consider a given type of device for special purposes only, for example, for the acceptance of languages having a certain structure or form. From this point of view it is natural to start with unary languages (for example, [START_REF] Book | Tally languages and complexity classes[END_REF][START_REF] Chrobak | Finite automata and unary languages[END_REF][START_REF] Klein | Cellular devices and unary languages[END_REF][START_REF] Mereghetti | Optimal simulations between unary automata[END_REF][START_REF] Pighizzini | Unary language operations, state complexity and Jacobsthal's function[END_REF]). For general real-time one-way cellular automata it is known that they accept only regular unary languages [START_REF] Seidel | Language recognition and the synchronization of cellular automata[END_REF]. Since the proof is constructive, we derive that the borderline between decidability and undecidability has been crossed. So, we generalize unary languages to bounded languages. For several devices it is known that they accept non-semilinear languages in general, but only semilinear bounded languages. Since for semilinear sets several properties are decidable [START_REF] Ginsburg | The Mathematical Theory of Context-Free Languages[END_REF], constructive proofs lead to decidable properties for these devices in connection with bounded languages [START_REF] Csuhaj-Varjú | Grammar Systems: A Grammatical Approach to Distribution and Cooperation[END_REF][START_REF] Ibarra | Simple matrix languages[END_REF][START_REF] Ibarra | A note on semilinear sets and bounded-reversal multihead pushdown automata[END_REF][START_REF] Ibarra | Reversal-bounded multicounter machines and their decision problems[END_REF]. Example 6.2 witnesses the following theorem. Theorem 6.8. The language family L rt (MC(const)-OCA) contains non-semilinear bounded languages.

So, it is natural to consider decidability problems for the devices under consideration accepting bounded languages. In [START_REF] Kutrib | Bounded languages meet cellular automata with sparse communication[END_REF] it has been shown that also with this additional restriction none of the problems becomes decidable as long as the number of messages allowed is not too small. Theorem 6.9. Emptiness, finiteness, infiniteness, equivalence, inclusion, regularity, and context-freeness are undecidable for arbitrary real-time SC(n)-OCA and MC(log n)-OCA accepting bounded languages.

Both Restrictions At Once

Since it turned out that neither limiting the bandwidth nor limiting the number of messages, even for bounded languages, reduces the computational capacity of the devices such that certain properties become decidable, we next combine both approaches and study real-time one-way cellular automata which are allowed to communicate only a fixed, finite number of messages per time step. Additionally, the communication links between two cells are allowed to be used constantly often only. In the most restricted case, we consider real-time one-way cellular automata which can communicate one message between two cells exactly once. The next example reveals that real-time MC(const)-OCA 1 accept non-regular context-free languages. More precisely, only two messages per cell are used.

Example 7.1. We describe the computation of an MC(const)-OCA 1 M on inputs of the form a n bc m . The acceptance of the language is governed by two signals.

During the first time step the rightmost cell receives the message 1 associated with the boundary symbol and identifies itself to be the rightmost cell. During the second time step the cell with input symbol b (b-cell) sends a message. In this way, the unique a-cell with right neighboring b-cell can identify itself. Subsequently, the a-cell sends the message 1 with speed 1/2, and the rightmost cell sends the message 1 with maximal speed to the left. So, the slow signal starts at time step 2 in the rightmost a-cell, takes 2n -2 further time steps to reach the leftmost cell, and thus stays at time steps 2n and 2n + 1 in the leftmost cell. The fast signal is set up at time step 1 and takes n + m further time steps to reach the leftmost cell. When both signals meet in a cell, that is, n + m + 1 = 2n + 1, an accepting state is entered. Therefore, the leftmost cell accepts if and only if n = m. Moreover, each cell sends at most two messages, and can be set up to send no more messages even for inputs of another form. Now assume that the language accepted by M is regular. Since regular languages are closed under intersection, so is the language L(M) ∩ a * bc * = a n bc n , which is non-regular but context free.

Turning to our key question, we present a lemma which relates languages accepted by real-time one-way cellular automata with a constant number of communications with languages accepted by real-time one-way cellular automata with a constant number of communications and one-message communication [START_REF] Kutrib | On one-way one-bit O(one)-message cellular automata[END_REF]. In this way, undecidability results can be derived from the undecidability results known. It is straightforward to generalize this construction for cellular automata with two-way communication. Furthermore, the construction increases the number of communication steps per cell only linearly. Therefore, the construction also works fine for SC(f)-CA and MC(f)-CA where f is not necessarily a constant function. Now, we can use Lemma 7.2 in order to reduce the undecidability problems for MC(const)-OCA to MC(const)-OCA 1 .

Theorem 7.3. Emptiness, finiteness, infiniteness, equivalence, inclusion, regularity, and context-freeness are undecidable for arbitrary real-time MC(const)-OCA 1 .

Clearly, the undecidability carries over to, for example, MC(const)-CA k with two-way communication and the models SC(n)-OCA k and SC(n)-CA k . The undecidability results for real-time SC(n)-OCA and MC(log n)-OCA accepting bounded languages cannot be translated directly to the corresponding automata with one communication symbol by using the construction of Lemma 7.2, since the construction does not preserve the boundedness of the languages. However, if we allow an additional communication symbol, then we obtain undecidability results also for bounded languages accepted by real-time SC(n)-OCA and MC(log n)-OCA with restricted communication alphabet of size two. It is obvious that L(M ′) is a bounded language if L(M) is. Thus, we obtain the following undecidability results. Theorem 7.5. Emptiness, finiteness, infiniteness, inclusion, equivalence, regularity, and context-freeness are undecidable for arbitrary real-time SC(n)-OCA 2 and MC(log n)-OCA 2 accepting bounded languages.

Figure 1 :

 1 Figure 1: Initial configuration of an iterative array.

Definition 2 . 2 .

 22 A cellular automaton with k-message restricted inter-cell communication (CA k) is a system S, A, B, F, #, b l , b r , δ , where (1) S is the finite, nonempty set of cell states, (2) A ⊆ S is the finite, nonempty set of input symbols, (3) B with |B| = k is the finite set of communication symbols, (4) F ⊆ S is the set of accepting states, (5) # ∈ S is the boundary state, (6) b l , b r : (S ∪ {#}) → (B ∪ {⊥}) are communication functions which determine the information to be sent to the left and right neighbors, where ⊥ means nothing to send, (7) δ : (B ∪ {⊥}) × S × (B ∪ {⊥}) → S is the local transition function.

Figure 2 :

 2 Figure 2: A two-way cellular automaton.

Finally

 , the language L dim (d) is given as homomorphic image of M (d). More precisely, L dim (d) = h(M (d)), where h : {a, b, e, $, ¢} * → {a, b} * is defined by: h(a) = ba, h(b) = bb, h(e) = b, h($) = ab, h(¢) = aa.

Theorem 4 . 4 .

 44 Let d ≥ 1 and k ≥ 1 be constants. The language L dim (d + 1) belongs to the difference L rt

Theorem 4 . 5 .

 45 Let d ≥ 1 and k ≥ 1 be constants. Then L rt (IA d k) ⊂ L lt (IA d k

Figure 3 :

 3 Figure 3: Double hierarchy of fast IA with restricted inter-cell communication.

Figure 4 :

 4 Figure 4: Relations between unrestricted (left) and restricted (right) language families. Solid arrows are strict inclusions and dotted arrows are inclusions. Families which are not connected by any path are incomparable.

Figure 5 :

 5 Figure 5: Two-dimensional infinite hierarchy of CA with restricted communication.

Figure 6 :

 6 Figure 6: Relations between unrestricted and restricted language families. Solid arrows are strict inclusions, dashed arrows are inclusions, and double lines denote equivalence.

Lemma 7 . 2 .

 72 Let M = S, F, A, B, #, b l , δ be a real-time MC(const)-OCA and $ ∈ A be a new symbol. Then a real-time MC(const)-OCA 1 M ′ accepting the language{ w$ (|B|+2)(|w|+1) v | v ∈ {$, A(A ∪ {$}) * }, w ∈ L(M) } caneffectively be constructed.

Lemma 7 . 4 .

 74 Let M = S, F, A, B, #, b l , δ be a real-time MC(const)-OCA and $ ∈ A be a new symbol. Then a real-time MC(const)-OCA 2 M ′ accepting the language {w$ (|B|+2)(|w|+1) $ | w ∈ L(M)} can effectively be constructed.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a copy of this license, visit http://creativecommons.org/ licenses/by-nd/3.0/.