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Abstract

Enhanced coal bed methane recovery (ECBM) consists in injecting
carbon dioxide in coal bed methane reservoirs in order to facilitate the
recovery of the methane. The injected carbon dioxide gets adsorbed
at the surface of the coal pores, which causes the coal to swell. This
swelling in confined conditions leads to a closure of the coal reservoir
cleat system, which hinders further injection. In this work we pro-
vide a comprehensive framework to calculate the macroscopic strains
induced by adsorption in a porous medium from the molecular level.
Using a thermodynamic approach we extend the realm of poromechan-
ics to surface energy and surface stress. We then focus on how the
surface stress is modified by adsorption and on how to estimate adsorp-
tion behavior with molecular simulations. The developed framework
is here applied to the specific case of the swelling of CO2-injected coal,
although it is relevant to any problem in which adsorption in a porous
medium causes strains.
Keywords: Porous material (B), constitutive behavior (B), adsorp-
tion, molecular simulations

Methane production from unminable coal seams -denoted as Coal Bed
Methane (CBM)- has amounted in 2008 to about 10% of the total natural
gas production in the United States, while large commercial projects also op-
erate in Australia, China and India (Jenkins and Boyer, 2008). The general
characteristics of these reservoirs vary widely with depth ranging from 0.3 to
1.3 km and bed thickness between 1 to 30 meters. Coal reservoirs typically
have low permeability, high compressibility, and production is mostly driven
by gas desorption. Gas is stored mostly in the coal material (to which we
simply refer to as ‘coal’) while most, if not all, of the permeability comes from
the set of small natural fractures (often denoted cleats) typically present at
a scale of a few centimeters (see figure 1). Such a ‘cleats driven’ permeabil-
ity is highly stress dependent. Due to the higher adsorption properties of
carbon dioxide compared to methane in coal, the technique of injecting CO2

in coal beds enhances methane production while possibly providing a way
to store CO2. It could therefore ultimately lower the level of CO2 emissions
associated with consumption of methane produced from coal beds (White et
al., 2005). Such a process known as enhanced coal bed methane recovery
(ECBM) dates back from the beginning of the eighties; its application has
been largely correlated with a higher gas price period during which CBM was
more beneficial economically. An interest within the scope of CO2 storage
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has also arisen with research projects in Europe (Van Bergen et al., 2009)
and China (Wong et al., 2007), field applications in the United States (e.g.,
the Allison project) and field application proposals in Australia (e.g., the
Fairview project).

One of the most important aspects of ECBM performance is linked with
the so-called differential swelling induced by the preferential adsorption prop-
erties of CO2 with respect to CH4 in coal (Busch et al., 2003). Such a CO2

induced swelling of coal leads to an initial decrease in permeability (see the
early stage of CO2 injection on figure 2a) via the closing of the cleat system,
which hinders further injection of CO2. After this initial decrease perme-
ability increases back (see the increase of injectivity in the late stages of
CO2 injection on figure 2a), a phenomenon known as the ‘permeability re-
bound’ and attributed to a reopening of the cleats due to an increase over
time of the fluid pressure in the cleat system. The prediction of such perme-
ability variations is of great interest in field applications in order to design
wells completion and plan mitigation methods to restore injectivity (e.g., hy-
draulic fracturing of the injection wells). A first step in that direction is to
consistently understand and describe the CO2 induced swelling of the coal
material: Our aim in this paper.

Coal seam

Coal seam

Figure 1: CBM well. A typical vertical CBM well goes through several coal
seams. A coal seam is made of coal material (in black) naturally fractured.
Fractures are called ‘cleats.’

Coal is by nature porous with pores ranging from tenths of micron to
tenths of nanometer (Gan et al., 1972). One can attempt to apply the usual
tools of poromechanics and assess whether those tools enable to capture the
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Figure 2: Experimental data on injected coal: (a) Decline in injectivity over
time in a CO2-injected coal bed at the Allison unit in the San Juan basin
(adapted from Reeves (2004)) and (b) volumetric strain versus pore pressure
in a CO2-injected coal and in a CH4-injected coal (adapted from Levine
(1996)).
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coal differential swelling consecutive to an injection of carbon dioxide. For
an isotropic porous medium the equations of poroelasticity link the mean
confining stress σ, the confining deviatoric stresses sij, and the pore pressure
p to the volumetric dilation ǫ, the deviatoric strains eij and the change ϕ of
porosity (ϕ = φ − φ0, where φ is the actual porosity and φ0 the porosity in
the state of reference) through the bulk modulus K, the shear modulus G,
the Biot coefficient b, and the Biot modulus N (Coussy, 2004):

σ = Kǫ− bp (1)

ϕ = bǫ+ p/N (2)

sij = 2Geij (3)

In the above equations K and G are the elastic moduli of the coal material
as a whole, i.e., made of the coal solid matrix (with its own bulk modulus
ks 6= K) and of its pore space.

Figure 2b readily shows the differential swelling of coal: At a given pres-
sure of the pore fluid the swelling during an unjacketed experiment (σ = −p)
depends on the nature of the pore fluid. But this experimental observation
can not be captured by usual poromechanics since equation (1) links in a
unique manner mean stress, volumetric dilation, and pore pressure, indepen-
dently of the nature of the pore fluid. This discrepancy stems from the main
assumptions on which equations (1-3) are derived. As will be discussed later
on, this derivation is performed by assuming that free energy can be stored
into the porous medium in only two ways: Elastic deformation of the solid
matrix and addition of pore fluid. It thus disregards a third way of storing
energy: At the interface between the solid matrix and the pore space. The
effect of surface energy is often disregarded in poromechanics. It is however
needed in order to properly describe the CO2-induced swelling of coal, which
is due to the adsorption of fluid at the interface between solid matrix and
pore space (Bangham and Maggs, 1944; Harpalani and Schraufnagel, 1990;
Yates, 1954). How adsorption leads to strain has been studied by several,
but the results remain mostly based on specific microstructures (e.g., Scherer
(1986) or Kowalczyk et al. (2008)) and/or on specific sorption strain models
(e.g., Pan and Connell (2007) or Palmer and Mansoori (1998) for coal and
its implication on permeability changes). The work presented herein aims
at proposing a more general framework through which to compute strains
caused by adsorption.
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In a first section the realm of poromechanics is extended in order to take
into account surface energy, which will enable to compute the strain caused
by a given surface stress for any pore structure. This extension is achieved
by using a thermodynamic approach. We also make the connection with a
micromechanical approach available in the literature. In a second section
we focus on how adsorption modifies the surface stress. A third section
deals with the estimation of the adsorption behavior; an approach based
on molecular simulations is notably presented. The results are eventually
compared with laboratory data of CO2 and CH4 injection in coal.

1 Surface energy and poromechanics

This section is devoted to the extension of poromechanics to surface energy
effects. We consider a porous solid saturated with a fluid. We aim at quan-
tifying the strain induced by surface effects.

1.1 Extension of poromechanics to surface effects

We consider a unit volume of saturated porous medium. The medium has a
porosity φ and is subject to the macroscopic stress tensor σij. The Helmholtz
free energy of this porous medium per unit volume is noted f , that of the fluid
is noted fl. By introducing fs = f − fl one can derive the following energy
balance at equilibrium (Coussy, 2004) (throughout the text an implicit sum
is to be carried out over repeated indices):

dfs = df − dfl = σdǫ+
∑

i,j

sijdeij + pdϕ (4)

From the definition of fs (i.e., fs = f−fl) the above equation is identified
as the energy balance at equilibrium for the system made of the porous
medium without its fluids. Work can be provided to this system by the
action of stresses, either volumetric (‘σdǫ’) or deviatoric (‘sijdeij’), as is the
case for ordinary solids. But work can also be provided to this system by
the action of pressure against the pore walls (‘pdϕ’). From equation (4) the
state equations of poroelasticity can then be derived:

σ =
∂fs

∂ǫ
, sij =

∂fs

∂eij

, and p =
∂fs

∂ϕ
(5)
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If the system made of the porous medium without its fluids is identified as
being the solid matrix, one can then perform the following derivation. From
equation (4) fs is a function of strains and porosity, i.e., fs = ψs(ǫ, eij, ϕ).
Within the frame of linear elasticity fs must be a quadratic function of its
arguments. If the solid matrix is isotropic, deviatoric strains are coupled
with neither change of porosity nor volumetric strain. fs can then be written
as, e.g.,:

fs = ψs(ǫ, eij, ϕ) =
1

2
(K + b2N)ǫ2 − bNǫϕ+

N

2
ϕ2 +G

∑

i,j

eijeji (6)

and equation (5) reduces to the constitutive equations (1-3) in which no effect
of surface energy is included.

If surface energy is to be included, one has to recognize that the system
made of the porous medium without its fluids does not only contain the solid
matrix but also the solid-fluid interface (i.e., the interface between the solid
matrix and the pore space). The free energy fs has therefore to be split
into the energy stored elastically within the solid matrix (the free energy ψs

introduced in equation (6)) and into the energy u stored at the solid-fluid
interface:

fs = ψs(ǫ, eij, ϕ) + u(ǫ, eij, ϕ) (7)

where fs, ψs and u are expressed per unit volume of porous medium in the
configuration of reference.

Energy can be stored at an interface as well as energy can be stored in
a membrane being stretched. Therefore, analogous to a membrane force, a
force opposes an elastic deformation of the interface. We call this force the
surface stress 1. As defined by Kramer and Weissmüller (2007), the ”surface
stress [...] measures the forces which oppose an elastic deformation of the
surface, changing the interatomic distance at constant number of atoms.”
Therefore the energy balance for the interface at equilibrium is given by:

du = σ̃sds (8)

1The surface stress σ̃
s had not to be confused with the more familiar notion of surface

tension. The difference between surface tension (which we later on name ’interface energy’
to avoid any confusion) and surface stress is explained in great detail in section 2.
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where σ̃s is the surface stress and s is the actual area of the pore walls
per unit volume of porous medium in the configuration of reference. Be-
cause of the assumed linearity of the solid matrix a small variation ds can
be expressed for infinitesimal transformations as ds = ∂s/∂ǫ|ϕ=0;eij=0 dǫ +

∂s/∂eij|ǫ=0;ϕ=0 deij + ∂s/∂ϕ|ǫ=0;eij=0 dϕ. In first order the area of a surface

remains unchanged by deviatoric strains and ∂s/∂eij|ǫ=0;ϕ=0 = 0. Equations
(7) and (8) combined with equation (4) provide the following energy balance:

dψs = (σ − σa)dǫ+
∑

i,j

sijdeij + (p− pa)dϕ (9)

where the stress σa and the pressure pa related to adsorption are:

σa = σ̃s ∂s

∂ǫ

∣

∣

∣

∣

ϕ=0

and pa = σ̃s ∂s

∂ϕ

∣

∣

∣

∣

ǫ=0

(10)

If we restrain ourselves to linear poroelasticity the potential ψs is the
quadratic function given by equation (6), and equation (9) yields:

σ − σa =
∂ψs

∂ǫ
= (K + b2N)ǫ− bNϕ (11)

p− pa =
∂ψs

∂ϕ
= −bNǫ+Nϕ (12)

sij =
∂ψs

∂eij

= 2Geij (13)

from what follow the constitutive equations:

σ − σa = Kǫ− b(p− pa) (14)

ϕ = bǫ+ (p− pa)/N (15)

sij = 2Geij (16)

With regard to the standard constitutive equations of isotropic poroelas-
ticity (1-3), equations (14-16) show that a pre-stress σa and an initial pore
pressure pa have to be applied against the effects induced by the surface
stress σ̃s in order to prevent any deformation and any porosity change with
respect to the reference configuration.
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Conversely, if we let σ = p = 0 but σ̃s 6= 0 (and therefore σa 6= 0 and
pa 6= 0), we get a non zero strain ǫa 6= 0 and a non zero change of porosity
ϕa 6= 0:

ǫa = −(σa + bpa)/K = −αǫσ̃
s (17)

ϕa = bǫa − pa/N = −αϕσ̃
s (18)

where αǫ and αϕ are constant material parameters. With the help of equation
(10) and the use of a Legendre-Fenchel transform those material parameters
can be expressed as:

αǫ =
1

K

(

∂s

∂ǫ

∣

∣

∣

∣

ϕ=0

+ b
∂s

∂ϕ

∣

∣

∣

∣

ǫ=0

)

=
1

K

∂s

∂ǫ

∣

∣

∣

∣

p=0

(19)

αϕ =
b

K

∂s

∂ǫ

∣

∣

∣

∣

ϕ=0

+
1

N

∂s

∂ϕ

∣

∣

∣

∣

ǫ=0

=

(

b2

K
+

1

N

)

∂s

∂ϕ

∣

∣

∣

∣

σ=0

(20)

and the set of constitutive equations (14-16) can thus be rewritten as:

σ = K(ǫ− ǫa) − bp (21)

ϕ− ϕa = b(ǫ− ǫa) + p/N (22)

sij = 2Geij (23)

Up to the first order for infinitesimal transformations a change in the
surface stress σ̃s only affects ǫa and ϕa.

The parameters αǫ and αϕ needed in order to compute ǫa and ϕa are a
function of the mechanical properties of the solid matrix and of the geomet-
rical arrangement of the solid matrix in the volume of the porous medium.
The evaluation of those parameters and thus of the strain induced by surface
effects is theoretically possible for any porous medium as long as the mi-
crostructure of the medium and the mechanical properties of the matrix are
fully known. Equations (19) and (20) show that these parameters can also
be measured directly at the macroscopic scale: When varying the confining
pressure while keeping the pore pressure constant, ∂s/∂ǫ|p=0 is the change of
the area of the pore walls (per unit volume of porous medium) with respect
to a change of volumetric strain; and when varying the pore pressure while
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keeping the confining stress constant, ∂s/∂ϕ|σ=0 is the change of the area of
the pore walls (per unit volume of porous medium) with respect to a change
of porosity.

In the next section the above derivations are applied to a porous medium
with a simple microstructure. Their application to a porous medium with a
general microstructure is then compared with a micromechanical approach
by Dormieux et al. (2006).

1.2 Application to a porous medium with a simple mi-

crostructure

a) b)

R

R

R0

Figure 3: (a) Porous medium with mono-sized spherical pores; and (b) its
approximate morphology: Spherical pore surrounded with solid.

In this section we consider an ideal microstructure: A porous medium
with mono-sized spherical pores (figure 3a). For this simple microstructure
the volumetric strains due to surface effects can be fully calculated with the
derivations performed in section 1.1. The morphology of such a medium can
be reasonably well captured by considering each pore as surrounded by a
crust of solid (figure 3b). The volumetric strain induced by surface energy
effects for the porous medium will therefore be estimated by that for the
approximate cell displayed in figure 3b.

The crust of solid of the approximate cell must have an outside radius R0

that verifies:

φ = R3/R3
0 (24)
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in order for the porosity of the approximate cell to be equal to that of
the initial porous medium here considered. Equation (19) shows that both
∂s/∂ǫ|ϕ=0 and ∂s/∂ϕ|ǫ=0 must be determined in order to calculate the strain
ǫa induced by surface energy effects.

The quantity ∂s/∂ǫ|ϕ=0 links a small volumetric strain dǫ applied at
constant porosity (ϕ = 0) with a small variation ds of the area of the interface
per unit volume. Both porosity and surface per unit volume are Lagrangian
variables, in the sense that they are to be calculated with respect to the
volume of reference. The constraint of constant Lagrangian porosity (dφ = 0
and therefore dR = 0) implies that for any volumetric strain applied to the
cell the volume 4πR3/3 of the pore and the area 4πR2 of the interface remain
constant. From what we infer:

∂s

∂ǫ

∣

∣

∣

∣

ϕ=0

= 0 (25)

The quantity ∂s/∂ϕ|ǫ=0 links a small variation of porosity dϕ applied at
constant volume (ǫ = 0) with a small variation ds of the area of the interface
per unit volume. The constraint of constant volume (R0 is constant) implies
with equation (24) that dϕ = 3R2dR/R3

0. The area s per unit volume is
s = 4πR2/(4πR3

0/3) = 3R2/R3
0 by definition and the constraint of constant

volume implies that ds = 6RdR/R3
0. A combination of those equations

yields:

∂s

∂ϕ

∣

∣

∣

∣

ǫ=0

=
6RdR

R3
0

/
3R2dR

R3
0

=
2

R
(26)

which enables with equation (25) to calculate the material parameters αǫ and
αϕ:

αǫ = 2b/KR; αϕ = 2/NR (27)

Therefore we can calculate the volumetric strain ǫa induced by surface
effects for the cell displayed in figure 3b and thus for a porous medium with
spherical pores of radius R:

ǫa = − σ̃
s

K

(

∂s

∂ǫ

∣

∣

∣

∣

ϕ=0

+ b
∂s

∂ϕ

∣

∣

∣

∣

ǫ=0

)

= −2σ̃sb

KR
(28)

In contrast, we can also consider another ideal structure: A granular
material made of monosized spherical grains of radius R. The mean stress pg
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that prevails in the spherical grains is given by Young-Laplace’s law (Laplace,
1843):

pg =
2σ̃s

R
(29)

If we now introduce the bulk modulus ks of the solid grains (ks 6= K),
the volumetric srain of the granular medium is given by:

ǫa = − 2σ̃s

ksR
(30)

A comparison of equation (28) with equation (30) shows that the order
of magnitude of the contraction ǫa induced by surface energy effects strongly
depends on the microstructure: If the porous medium is much softer than
its solid phase (i.e., K << ks), the contraction can be much more significant
if the porous medium is made of spherical voids (the contraction is then
proportional to 1/K) than if the porous medium is made of solid grains (the
contraction is then proportional to 1/ks).

1.3 Application to a porous medium with a general

microstructure

If we now consider a porous medium with a general microstructure, the strain
induced by surface stress can theoretically be calculated: in order to do so,
one needs to solve a poroelastic problem to calculate the material parameters
∂s/∂ǫ|p=0 and ∂s/∂ϕ|σ=0, and then αǫ and αϕ.

There exists however an alternative way of calculating the volumetric
strain induced by surface stress. Indeed the question of the link between
surface stress and deformation has already been tackled by Dormieux et al.
(2006) using a micromechanical approach distinct from the thermodynamical
approach developed in this paper. This section is devoted to showing that
both the micromechanical approach of Dormieux et al. and our thermody-
namical approach provide equivalent results for the strain induced by surface
effects.

Dormieux et al. start their micromechanical approach with choosing a
representative elementary volume of the porous medium. This representative
elementary volume has an initial volume Ω0 and is made of solid and pores
separated by an interface Isf . Surface effects are introduced as a discontinuity
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of the normal stress at the interface, the jump ∆σn in normal stress across
the interface being:

∆σn = σ̃s
(

1
T

: grad(n)
)

(31)

where 1
T

is the second-order unit tensor tangential to the solid surface. Con-
sidering that the surface stress creates a pre-stress in the material, and mak-
ing use of the Levin’s theorem, Dormieux et al. provide a general expression
for the second-order strain tensor εa induced by surface energy effects:

εa = −σ̃s
S

hom :

(

1

Ω0

∫

Isf

1
T

: A(x) dS

)

(32)

where Shom is the fourth-order compliance tensor, and A(x) is the fourth-
order so-called strain localization tensor. This strain localization tensor, well
known in micromechanics, links the microscopic strain tensor εmicro(x) at the
scale of the microstructure with the macroscopic strain tensor ε at the scale
of the porous medium:

εmicro(x) = A(x) : ε (33)

We note Ssf the area of the interface within the volume Ω0. A small
strain dε is applied to the volume. By definition the local strain dεmicro(x)

is dεmicro(x) = A(x) : dε.
By definition again the change of area dSsf of the interface due to the

local strain dεmicro(x) is:

dSsf =

∫

Isf

1
T

: dεmicro(x) dS =

∫

Isf

1
T

: A(x) : dε dS (34)

=

(

∫

Isf

1
T

: A(x) dS

)

: dε (35)

which, since s = Ssf/Ω0, can be rewritten as:

∂s

∂ε

∣

∣

∣

∣

∣

p=0

=
1

Ω0

(

∫

Isf

1
T

: A(x) dS

)

(36)

from what follows, with the help of equation (32):
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εa = −σ̃s
S

hom :
∂s

∂ε

∣

∣

∣

∣

∣

p=0

(37)

By assuming that the material is isotropic at the scale of the porous
medium the macroscopic compliance tensor can be expressed as Shom =
(1/3K)J + (1/2G)K where K and J are the volumetric and deviatoric parts
of the fourth-order unity tensor, respectively; and where K and G are the
macroscopic bulk and shear moduli of the porous medium, respectively. In
first order, since the porous medium is assumed isotropic, the area Ssf

of the interface is not modified by deviatoric strains so that ∂s/∂ε
∣

∣

p=0
=

∂s/∂ǫ|p=0 K. Equation (37) reduces to:

ǫa = − σ̃
s

K

∂s

∂ǫ

∣

∣

∣

∣

p=0

(38)

which we also obtained with our thermodynamical approach by combining
equations (17) and (19): The micromechanical approach and the approach
developed in section 1.1 provide equivalent results.

For materials whose inhomogeneities are ellipsoidal (which accounts for
a large variety of materials), based on the Eshelby inclusion problem, mi-
cromechanics can provide estimates of the strain localization tensor A(x),
which makes it very convenient to use equation (32). On the other hand, our
thermodynamical approach provides the physical meaning of equation (32).

For the simple porous medium considered in section 1.2 with mono-sized
spherical pores, assuming that the mechanical interaction between pores is
negligible, the strain localization tensor A(x) can be estimated by a constant
fourth-order tensor Ap which verifies (Dormieux et al., 2006):

1 : A
p =

b

φ
1 (39)

where φ is the porosity of the medium and b its Biot coefficient. Noting that
∫

Isf
1

T
dS = 8πR21 and with the help of the above equation, equation (32)

becomes:

εa = −σ̃s 8πR2b

Ω0φ
S

hom : 1 = −σ̃s 8πR2b

Ω0φ

1

9K
1 (40)

from which, since Ω0φ = 4πR3/3, the volumetric strain induced by a surface
stress is estimated to:
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ǫa = tr
(

εa

)

= −2σ̃sb

KR
(41)

A comparison of the above equation with equation (28) readily shows
that, as expected, the micromechanical approach and our thermodynamical
approach yield the same results on the simple porous medium considered.

As long as the microstructure is well enough characterized, the volumetric
strain induced by surface energy effects can therefore precisely be calculated
theoretically. This calculation will be possible however only if the surface
stress σ̃s which prevails at the interface between the solid matrix and the
pore fluid is known. How to estimate a change of surface stress induced by
a modification of the pore fluid is the topic of the next section.

2 Surface stress and adsorption

In order to compute the strain of the porous medium the surface stress σ̃s

at the interface between solid matrix and pore fluid needs to be known.
This surface stress depends on the nature and on the state of the pore fluid:
Modifying the chemical potential of the pore fluid will modify the surface
stress as a consequence of the adsorption of fluid molecules at the interface.

An interface is characterized by its surface energy γ, more commonly
named surface tension. Surface energy (or surface tension) must not be
confused with surface stress: As defined by Kramer and Weissmüller (2007),
”by surface tension [...] one understands the work per area of forming new
surface reversibly at constant structure, for instance by adding atoms to the
surface or by cleavage.” If the interface is made of solid on one side and of
fluid on the other side, its surface energy γ can be decomposed as follows:

γ = γS + γF + 2WSF (42)

where γS is the surface energy of the solid, γF is the surface energy of the
fluid, and 2WSF is the interaction energy required in order to bring a unit
area of solid in contact with a unit area of fluid.

When bringing together fluid and solid surface, adsorption -an accumula-
tion of molecules of fluid at the interface- will occur (see figure 4). How the
surface energy γ of the interface is modified when the chemical potential µ of
the fluid is modified at constant temperature T is governed by the celebrated
Gibbs’ adsorption isotherm (Gibbs, 1928):
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Figure 4: Adsorption of fluid molecules at an interface between solid and
pore space.

dγ = −Γ(µ, T )dµ (43)

where Γ is the number of moles of fluid molecules adsorbed, in excess of the
bulk density, per unit area of the interface.

Equation (43) enables to calculate a change of surface energy from a
reference state, as long as the function Γ(µ, T ), the adsorption isotherm, is
known for the pore fluid considered. But what is needed in order to compute
strains is the surface stress σ̃s.

In this section we focus first on the link between surface energy γ and
surface stress σ̃s for a solid-vacuum interface or for a fluid-vacuum interface.
Then, we will consider a solid-fluid or a fluid-fluid interface and assess how
adsorption modifies the surface stress σ̃s.

2.1 Link between surface energy and surface stress in

vacuum

In this section we consider an interface between solid or fluid and vacuum.
Therefore no adsorption occurs. By definition the free energy F surf of an
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interface of area A can be increased by providing work against the surface
stress σ̃s:

dF surf = σ̃sdA (44)

The surface energy γ of an interface is usually measured with respect to
the deformed state, i.e., in Eulerian coordinates. The very definition of this
(eulerian) surface energy γ yields the following relation:

F surf = γA (45)

For a liquid surface at a given chemical potential no deformation of the
surface can occur at fixed number of atoms: The area of a liquid surface can
only be increased by bringing new liquid molecules to the surface. The surface
energy remains constant, therefore dF surf = γdA, which after comparison
with equation (44) yields:

σ̃s = γ (46)

from what we conclude that surface energy and surface stress are the same
for a liquid surface.

A solid surface however can be strained while keeping a constant number
of atoms at the surface. In order to characterize the deformation of the
surface we introduce the true strain εT :

εT = ln
A

A0

(47)

where A0 is the area of the undeformed surface. A differentiation of equation
(45) yields:

dF surf = γdA+ Adγ = γdA+ A
dγ

dεT

dεT =

(

γ +
dγ

dεT

)

dA (48)

from what follows after comparison with equation (44):

σ̃s = γ +
dγ

dεT

(49)

known as Shuttleworth’s equation (Shuttleworth, 1950). For a solid surface,
surface energy and surface stress are therefore different.
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Instead of using Eulerian coordinates however, one can work with La-
grangian coordinates and define a Lagrangian surface energy γL with respect
to the undeformed surface:

F surf = γLA0 (50)

A comparison of the above equation with equation (45) shows that γ =
γLA0/A, which yields after replacement in equation (49):

πL =
dγL

dεT

, where πL =
A

A0

σ̃s (51)

This equation, already derived by Cahn (1978), is the analogous of Shut-
tleworth’s equation (49) in Lagrangian coordinates. σ̃s and πL are for an
interface the analogues of a Cauchy stress and of a Piola-Kirchhoff stress,
respectively.

The Lagrangian expression (51) shows that surface stress and surface
energy (or surface tension) have distinct physical meanings. Although their
values are equal for a liquid surface, both experiment and theory show that
their value can significantly differ from each other for a solid surface (Andrieu
and Müller, 2005).

2.2 Modification of surface stress by adsorption

Instead of considering an interface with vacuum, we now consider a fluid-
fluid or a fluid-solid interface. This section is devoted to determining how
adsorption modifies the surface stress.

By definition of the surface energy γ the free energy F surf of an interface
of area A is given by:

F surf = γA+ µN surf (52)

where N surf is the number of moles of adsorbed molecules of fluid in excess of
the bulk density and where µ is the molar chemical potential of the adsorbed
molecules. Work can be provided to the interface either by increasing its
area or by adding more adsorbed molecules. For a fluid-fluid interface the
area of the interface can only be increased by adding new molecules so that
the energy balance for the interface is:

dF surf = γdA+ µdN surf (53)
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A combination of the two equations above yields Gibbs’ adsorption iso–
therm (43).

In contrast, if we consider a solid-fluid interface for which the solid surface
can not be increased by adding new molecules, the energy balance for the
interface becomes:

dF surf = σ̃sdA+ µdN surf (54)

A combination of the above equation with equation (52) yields:

σ̃sdA = γdA+ Adγ +N surfdµ (55)

⇓
(

σ̃s − γ − ∂γ

∂εT

∣

∣

∣

∣

µ

)

dεT =

(

Γ +
∂γ

∂µ

∣

∣

∣

∣

εT

)

dµ (56)

where Γ = N surf/A is the Eulerian amount of adsorbed molecules in excess of
the bulk density per unit area. Since µ and εT are two independent variables,
the two terms in-between parentheses must be equal to zero. The left-hand
side term yields:

σ̃s = γ +
∂γ

∂εT

∣

∣

∣

∣

µ

(57)

which is a direct extension of Shuttleworth’s equation (49) to solid-fluid in-
terfaces. In contrast, the right-hand side term governs how surface energy
evolves with adsorption at fixed deformation:

∂γ

∂µ

∣

∣

∣

∣

εT

= −Γ (58)

and is the analogue of Gibbs’ adsorption isotherm (43).
From equation (42) the surface energy can be expressed as:

γ = γS + γF + 2WSF (59)

where γS = γS(εT ) is the surface energy of the solid, where γF = γF (µ) is
the surface energy of the fluid, and where 2WSF = 2WSF (εT , µ) is the work
needed to bring a unit area of solid interface into contact with a unit area of
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fluid interface. Assuming that the adsorbed density Γ does not depend on
the deformation of the surface, equation (58) can be integrated as:

γF + 2WSF = −
∫ µ

µ=−∞

Γ(µ̄)dµ̄ (60)

from what follows WSF (εT , µ) = WSF (µ). Combining equations (57), (59)
and (60) yields:

σ̃s =

(

γS +
∂γS

∂εT

∣

∣

∣

∣

µ

)

+(γF +2WSF ) =

(

γS +
∂γS

∂εT

∣

∣

∣

∣

µ

)

−
∫ µ

µ=−∞

Γ(µ̄)dµ̄ (61)

in which equation the left term is recognized as the surface stress σ̃s
a =

σ̃s(N → 0) that prevails on the solid side when no fluid molecule is adsorbed
on the interface:

σ̃s = σ̃s
a −

∫ µ

µ=−∞

Γ(µ̄)dµ̄ (62)

In the above equation the first term takes into account the surface stress
that exists on the solid side in the absence of any adsorption process while
the second term captures both the surface stress that exists on the fluid side
and the effect of adsorption. From a reference state in which no adsorption
occurs, the change ∆σ̃s of surface stress due to adsorption is thus given by:

∆σ̃s = −
∫ µ

µ̄=−∞

Γ(µ̄) dµ̄ (63)

3 Application to swelling of coal

We now come back to the problem of the volumetric deformation of coal
consecutive to an injection of methane or carbon dioxide. Coal is a fossil fuel.
It is a combustible, sedimentary, organic rock, which is composed mainly of
carbon, hydrogen, and oxygen. Coal samples are classified with respect to
their degree of maturity (or rank), ranging from peat (low rank) to anthracite
(high rank). The more altered coal has been over the years, the more mature
it is. Low rank coal has a low carbon and energy content whereas high
rank coal has a high one. Coal is known to exhibit an extremely complex
pore network (Bae and Bhatia, 2006; White et al., 2005), made of both
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nanopores (radius smaller than 10 Å) and mesopores (radius greater than 10
Å), schematically displayed in figure 5.

Mesopore

Nanopores

Figure 5: Schematic representation of the hierarchical pore size distribution
in coal.

If the adsorbed amount of fluid is known the work performed in section
2 enables to calculate the induced surface stress. The work performed in
section 1 then enables to calculate the corresponding volumetric strain at
this given surface stress. For an unjacketed experiment (σ = −p) such as the
one displayed in figure 2b the volumetric strain ǫ is given by equation (21):

ǫ = ǫa −
1 − b

K
p = −αǫσ̃

s − 1 − b

K
p (64)

In such an unjacketed experiment strains are measured from the reference
state in which p = 0. We note that b = 1−K/ks, where ks is the bulk modulus
of the solid matrix (Coussy, 2004). For infinitesimal transformations we can
neglect the effect of strain on the surface stress, and equation (63) enables
to express the change ∆ǫ in volumetric strain measured from the reference
state as:

∆ǫ = − p

ks

+ αǫ

∫ µF (p)

µ̄=−∞

ΓF (µ̄) dµ̄ (65)

where F stands for CO2 or CH4 and where ΓF is the adsorption isotherm of
the pore fluid considered. Since methane has a critical temperature T c

CH4
=
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190.6 K= −82.6oC and a critical pressure P c
CH4

= 4.60 MPa, while carbon
dioxide has a critical temperature T c

CO2
= 304.1 K= 31.0oC and a critical

pressure P c
CO2

= 7.38 MPa (Cengel and Boles, 2008), both methane and
carbon dioxide may be in supercritical conditions in the field.

The computation of the strain induced by an injection of pore fluid there-
fore requires the determination of the adsorption isotherm (i.e., the amount
of fluid adsorbed at a given chemical potential), possibly in supercritical
conditions. In this section we focus on how to estimate adsorption isotherms
and whether adsorption isotherms enable to correctly predict the swelling ob-
served experimentally for both carbon dioxide and methane. The estimation
of adsorption isotherm is performed with the Langmuir adsorption model
and with molecular simulations.

3.1 Use of Langmuir isotherm

In this section we focus on the Langmuir adsorption model and on whether
this model enables to correctly predict the swelling behavior observed exper-
imentally. The Langmuir adsorption model (Langmuir, 1916) is the simplest
model for adsorption. In this model a surface of finite extent contains a finite
number of adsorption sites, all sites being equivalent to each other. More-
over, each adsorption site can only accommodate one molecule. The classical
Langmuir adsorption isotherm links the fraction θ of occupied sites with the
pressure p of the pore fluid:

θ =
p

p+ cF(T )
(66)

where cF(T ) depends on the temperature and on the nature of the adsorbed
fluid (F stands for CO2 or CH4). The adsorption isotherm (66) holds for ideal
gases. In an underground coal bed however both methane and carbon dioxide
may be in supercritical conditions and the Langmuir adsorption model must
therefore be extended to supercritical conditions. For the general case of
equivalent sites of adsorption, the molar chemical potential µa of the adsorbed
molecules of fluid is given by (Fowler, 1935):

µa = RT ln

(

θ

1 − θ

)

+ fF(T ) (67)

where fF (T ) is a function of temperature and of the nature of the adsorbed
fluid. At equilibrium the chemical potential of the adsorbed molecules must
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equal that of the pore fluid, which enables to express the fraction of occupied
sites as a function of the chemical potential µF of the pore fluid:

θ =
1

1 + fF(T )e−µF/(RT )
(68)

where F stands again for CO2 or CH4. For the specific case of an ideal gas,
for which µF = µ0

F + RT ln(p/p0), the above formula reduces as expected to
the usual Langmuir isotherm (66).

Equation (68) then enables to calculate the number Γ of molecules per
unit area adsorbed in excess of the bulk density:

Γ = Γmax
F θF =

Γmax
F

1 + fFe
−µF/(RT )

(69)

where Γmax
F and fF are two parameters which determine the shape of the

adsorption isotherm for each pore fluid. A combination of equations (65) and
(69) eventually enables to express the volumetric strain due to an injection
of fluid:

∆ǫ = − p

ks

+ αǫΓ
max
F

∫ µF(p)

µ̄F=−∞

1

1 + fFe
−µ̄F/(RT )

dµ̄F (70)
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Figure 6: Volumetric strain predicted with the Langmuir adsorption iso-
therms (with experimental data from Levine (1996)).
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After a tremendous work having consisted in fitting equations of state to
very large experimental datasets, Span and Wagner (2003a, 2003b) made the
equations of state for methane and carbon dioxide available even in super-
critical conditions. In figure 6 we display the best fit obtained with equation
(70) and the equations of state of Span and Wagner. The model fits very
well the experimental data. The best fits were for αǫΓ

max
CH4

= 1.76 × 10−6

mol.N−1.m−1, fCH4
= 20.3, αǫΓ

max
CO2

= 3.88× 10−6 mol.N−1.m−1, fCO2
= 10.4,

and ks = 94.4GPa.
The very high value for ks shows that the compressibility of the coal solid

matrix itself has here little effect on the overall deformation. Interestingly,
the bulk modulus K of coal as a porous medium is only of 1 to 3 GPa (Wang
et al., 2009), i.e., much lower than that of the solid matrix and thus of a
coal in which there would be neither nanopores nor mesopores: The overall
porosity of coal, which goes down to the Angstrom scale, has a tremendous
effect on its mechanical properties.

The fitted parameters yielded Γmax
CO2

/Γmax
CH4

≈ 2. The fact that a given mass
of coal can adsorb much more carbon dioxide than methane has already been
observed experimentally (Stanton et al., 2001).

The molecular volumes of methane and carbon dioxide are almost identi-
cal, approximately 30 Å

3
(Webster et al., 1998). If a single layer of molecules

could get adsorbed, the maximum density of adsorbed molecules (full mono-
layer) would be Γ = 1.7 × 10−5 mol.m−2 and therefore we would have
αǫ ≈ 0.1 − 0.2 N−1.m. If we assume that the coal pore system is made of
spherical mono-sized pores, equation (28) would then yield KR ≈ 10 N.m−1.
The bulk modulus of coal being on the order of 1 GPa to 3 GPa (Wang et al.,
2009), the model we developed would provide the right magnitude of strain
if the coal pores have a radius on the order of 3 to 10 nm, i.e., would fall in
the range of mesopores.

The fact that the Langmuir adsorption model, which is the simplest model
for adsorption, provides such a good fit of the experimental swelling data is
intriguing. For instance, the Langmuir adsorption model assumes that a
unique layer of molecules can get adsorbed, which is unlikely to happen in
mesopores since the radius of a mesopore is much greater than the size of
a fluid molecule. In order to gain a better insight in the physics of the ad-
sorption process and in order to understand why the Langmuir model works
so well in our case, we perform in the next section molecular simulations of
adsorption of carbon dioxide and methane in coal. The adsorption isotherms
obtained from the simulations (in both mesopores and nanopores) are then
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used for calculation of swelling.

3.2 Implementation of molecular simulations

We performed Monte Carlo molecular simulations of adsorption in the Grand
Canonical statistical ensemble (Frenkel and Smit, 2001): The temperature
T of the system, the volume V of the box of simulation, and the chemical
potentials µ of the adsorbed species (carbon dioxide or methane, depend-
ing on the simulation run) were held constant. We used periodic boundary
conditions and the Metropolis algorithm (Metropolis et al., 1953).

Many varieties of coal exist, and a molecular model that reflects all types
of coal is unrealistic. However, a satisfactory model should possess some
average characteristics (e.g., density, pore size distribution, chemical com-
position) that are in accordance with the characteristics of an intermediary
rank coal. A good candidate for that purpose is the CS1000 model (Jain et
al., 2006), which we therefore used for our simulations (see figure 7a). The
CS1000 model is the molecular representation of a high density porous sac-
charose coke obtained by pyrolyzing pure saccharose at 1000◦C in a nitrogen
flow. CS1000 is a cube with a side length of 25 Å: The CS1000 structure
is therefore unable to exhibit features with a characteristic size greater than
12.5 Å.

Interaction potentials involving CH4, CO2, and coal were defined with
models available in the literature. The chosen models were selected because
of their representativeness of the underlying physical interactions between
molecules. A sumary of these interaction potentials is presented in table
1. Molecules were interacting according to the minimum image convention
(Frenkel and Smit, 2001).

Methane-methane interactions were modeled with a Lennard-Jones po-
tential:

UCH4−CH4
(r) = 4εCH4

(

(σCH4

r

)12

−
(σCH4

r

)6
)

(71)

where σCH4
(Van der Waals radius) and εCH4

are the Lennard-Jones param-
eters and r is the distance between the centers of the carbon atoms. The
values for the parameters are from Kurniawan et al. (2006), who simulated
supercritical methane, and are given in table 1. The potential was truncated
at a distance of 23 Å, which is reasonable regarding the value of σCH4

.
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a) b)

Figure 7: Box of simulation used for (a) nanopores and (b) mesopores. The
box of simulation for nanopores is an unaltered CS1000 sample: Carbon
atoms are gray, hydrogen atoms are white. The box of simulation for meso-
pores is made of eight CS1000 samples: Carbon atoms are pink, hydrogen
atoms are green.

In order to capture CO2-CO2 interactions, the CO2 molecule was modeled
with the EPM model (Harris and Yung, 1995), in which the molecule is rep-
resented by three Lennard-Jones centers (one for each atom) and three point
charges at the same centers. The point charges represent the experimentally
known quadrupole moment of CO2. The energy interaction is:

UCO2−CO2
=

3
∑

a=1

3
∑

b=1

(

4εab

[

(

σab

rab

)12

−
(

σab

rab

)6
]

+
1

4πǫ0

qaqb
rab

)

(72)

where (rab)a,b={1,2,3} is the distance between the Lennard-Jones centers of the
molecules; σab and εab are the Lennard-Jones parameters for the interaction
between atom a and atom b; qa and qb are the charges at the Lennard-Jones
centers. The value of the parameters are from Harris and Yung (1995) and
are given in table 1. The EPM model includes electrostatic interactions with
a larger range of interaction than those of the Lennard-Jones potential. How-
ever, even if electrostatic interactions evolve as r−1, at large distances the two
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negative charges of the oxygen atoms cancel the positive charge of the carbon.
For large r the first order approximation of electrostatic interaction behaves
like a quadrupole-quadrupole interaction (Allen and Tildesley, 1989). The
long range contribution of the electrostatic interactions decreases proportion-
ally to r−5 whereas the Lennard-Jones potential decreases proportionally to
r−6. Here, however, the range of quadrupole-quadrupole interactions is lim-
ited and can be neglected for distances larger than 23 Å; so we truncated the
interaction potential at the same radius as for the methane Lennard-Jones
model.

For the interaction of methane with coal we used a Lennard-Jones model:

UCH4−i = 4εCH4−i

(

(σCH4−i

r

)12

−
(σCH4−i

r

)6
)

(73)

where i = C or H is an atom of the CS1000 model. The Lennard-Jones
parameters σCH4−i and εCH4−i were obtained following the Lorentz-Berthelot
rules : σij = (σi + σj)/2 and εij =

√
εiεj where i stands for CH4, and j for

C or H. σCH4
and εCH4

were those of the model of methane. The parameters
for the carbon and hydrogen atoms of CS1000 are from Jain et al. (2006),
who simulated argon adsorption in CS1000, and are given in table 1. Akin to
methane, argon is a spherical non-polar molecule which can be represented
with a Lennard-Jones model.

Regarding the CO2-coal interactions we had to account for the electro-
static interaction in addition to the Lennard-Jones interaction. The electrons
in CS1000 have a distribution probability determined by their quantum wave
functions. Because of the difference in electronegativity between atoms in
CS1000, these wave functions are not centered on the nuclei but are displaced
toward the most electronegative atom. A molecule of gas approaching the
solid feels an electrical field which can be represented by point charges at the
center of each atom of the CS1000 model. We used the ‘partial equalization
of orbital electronegativity’ method in order to estimate those point charges
(Gasteiger and Marsili, 1980).

We want to estimate the adsorption behavior in both nanopores and meso-
pores. The nanopores are accounted for in the CS1000 model; so simulations
on a CS1000 sample directly provided an estimation of the adsorption behav-
ior in nanopores. In order to estimate the adsorption behavior in mesopores,
for which curvature is negligible, we simulated adsorption on a flat surface.
The flat surface was created by juxtaposing several CS1000 samples (see fig-
ure 7b). In this process most of the carbon atoms at the surface lost covalent
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Interacting Interaction
elements potential

CH4 - CH4 UCH4−CH4
(r) = 4εCH4

(

(σCH4

r

)12 −
(σCH4

r

)6
)

σCH4
= 3.751 Å; εCH4

= 148 × kB

UCO2−CO2
=
∑3

a=1

∑3
b=1

(

4εab

[

(

σab

rab

)12

−
(

σab

rab

)6
]

+ 1
4πǫ0

qaqb

rab

)

with a, b = C or O of CO2

CO2 - CO2 ǫC-C = 28.129 × kB; σC-C = 2.757 Å; ǫO-O = 80.507 × kB

σO-O = 3.033 Å; ǫC-O = 47.588 × kB; σC-O = 2.892 Å
Distance C-O = 1.149 Å; qC = −2qO = 0.6512e

UCH4−i = 4εCH4−i

(

(σCH4−i

r

)12 −
(σCH4−i

r

)6
)

with i = C or H of CS1000
CH4 - Coal σCH4−i = (σCH4

+ σi)/2 and εCH4−i =
√
εCH4

εi

σCH4
= 3.751 Å; εCH4

= 148 × kB; σH = 2.42 Å
εH = 15.08 × kB; σC = 3.36 Å; εC = 28 × kB

UCO2−i =
∑3

a=1

(

4εa−i

(

(

σa−i

rai

)12

−
(

σa−i

rai

)6
)

+ 1
4πǫ0

qaqi

rai

)

with a = C or O of CO2 and i = C or H of CS1000
CO2 - Coal σa−i = (σa + σi)/2 and εa−i =

√
εaεi

σ and ε parameters for CO2 : those of CO2 - CO2

σ and ε parameters for C and H of CS1000 : those of CH4 - Coal
Charges qi in CS1000 :

obtained with the PEOE method (Gasteiger and Marsili, 1980)

Table 1: Summary of interaction potentials. kB is the Boltzmann constant.

bonds. In order to ensure the electroneutrality of the sample, similarly to
what was done by Pellenq and Levitz (2001), for each covalent bond lost we
positioned supplementary hydrogen atoms at a distance of 1.09 Å (optimum
bond length for the C-H bond (Jain et al., 2006)) from the carbon atom in
the direction of the former covalent bond. The atoms of the solid matrix
remained fixed during the simulations.
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3.3 Calculations and results of molecular simulations

The adsorption isotherms were calculated at 310 K for pressures up to 20
MPa for both methane and carbon dioxide. An example of state is displayed
in figure 8. Both nanopores and mesopores (flat interface) were considered.

The calculation of an adsorption isotherm requires to express amounts
of fluid molecules adsorbed in excess of the bulk density by unit area of the
interface. This calculation was straightforward for the adsorption in meso-
pores. For the adsorption in nanopores we had to determine the volume of
those few-Angstrom-large pores as well as an equivalent area of the inter-
face. The volume of nanopores was estimated with the maximum amount
of CO2 molecules at 20 MPa (this amount was nearly constant for larger
pressures). Those molecules were assumed to be at a liquid-like density

(≈ 1.45 × 10−2 molecule.Å
−3

) which yielded a volume of nanopores in the

CS1000 of 1.13 × 104Å
3
. The same calculation with the maximum amount

of methane yielded a volume of 1.09 × 104Å
3
. Each of those molecules of

carbon dioxide was then considered to cover a surface of 16.9 Å
2

(liquid den-
sity) which corresponded to a total surface of nanopores of 27.4 nm2 in the
CS1000. The same calculation with the methane molecules yielded a total
surface of nanopores of 25.3 nm2.

The results for both nanopores and mesopores are displayed in figure 9.
Note that the isotherms are excess amounts of molecules, i.e., molecules in
excess of the bulk density. In both nanopores and mesopores the adsorbed
amount of methane increases with pressure and saturates at high pressures.
For carbon dioxide however the adsorption isotherms are not monotonic func-
tions: Around 8 MPa the critical pressure is reached, which results in a
significant increase in bulk density and thus in a significant decrease of the
amount adsorbed in excess. At subcritical pressures the size of the pores
significantly modifies the adsorption behavior of carbon dioxide in coal: In
a nanopore the adsorption behavior is a convex function of pressure while
in a mesopore the adsorbed amount is a concave function of pressure. For
any type of pore, at pressures below 8 MPa, carbon dioxide is adsorbed in
greater amounts than methane.

3.4 Discussion

The calculated isotherms and equation (65) enable to calculate the volumet-
ric strain induced by the pore fluid. Based on the adsorption isotherm in
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Figure 8: Examples of states obtained from molecular simulations: Adsorp-
tion of carbon dioxide (a) in a mesopore and (b) in nanopores. Oxygen atoms
are yellow. Carbon atoms of the CS1000 are pink.

mesopores, the best fit for the volumetric strain is obtained for an incom-
pressible solid matrix (ks → +∞) and αǫ = 1.67 N−1.m (figure 10a); while
with the adsorption isotherm in nanopores the best fit is obtained for an
incompressible matrix (ks → +∞) and αǫ = 1.71× 10−1 N−1.m (figure 10b).

The swelling predicted with adsorption isotherms in mesopores fits the
experimental data very poorly: At low pressures the model predicts a swelling
that does not depend on the adsorbed fluid (methane or carbon dioxide).
This stems from the fact that at the lowest pressures methane and carbon
dioxide get adsorbed in equivalent amounts on a flat surface (figure 9). The
differential swelling of coal (why coal swells more with carbon dioxide than
with methane at a given pore pressure) can therefore not be explained by
adsorption in mesopores.

In contrast, the swelling predicted with adsorption isotherms in nanopores
(figure 10b) is in better agreement with experimental data, since it captures
that an adsorption of carbon dioxide yields a greater strain than an ad-
sorption of methane, especially at low pressures. This comparison shows
that nanopores play a primordial role in the adsorption behavior of coal.
Nanopores are so small that they can only welcome a couple of fluid molecules,
thus behaving as well-defined adsorption sites that get saturated above a
given pressure, which can explain why the Langmuir adsorption model pro-
vides such a good fit of the experimental swelling data and why the ma-
terial parameter αǫ obtained with the adsorption isotherm in nanopores
(αǫ = 1.71 × 10−1 N−1.m) falls in the range obtained with the Langmuir
isotherm (αǫ ≈ 0.1 − 0.2 N−1.m, see section 3.1).
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Figure 9: Excess amounts of methane and carbon dioxide adsorbed in coal
in a mesopore (flat surface) and in nanopores.

Like for Gibbs’ theory the relevant parameter is the amount of adsorbed
molecules in excess per unit area of the interface. The use of such a ther-
modynamics therefore requires to determine the area of the interface. For a
flat surface such a determination is straightforward. In contrast, determining
the surface area of a nanopore is a much more complex question, and differ-
ent methods will yield different results. But, for the smallest pores, which
can only welcome one or two fluid molecules, the concept of surface may
even become irrelevant. In nanopores adsorption occurs by pore filling more
than by surface covering (Dubinin, 1966), which can explain why the charac-
teristic pore size back-calculated with the Langmuir isotherm was wrong in
suggesting that adsorption mainly happens in mesopores (see section 3.1).

An issue with Monte Carlo molecular simulations is that they give access
to equilibrium states only. No information about kinetics or pore accessibility
is obtained, which may be unfortunate for the practical case of coal. As men-
tioned in section 2, a given mass of coal can adsorb at least twice as much (in
moles per unit mass of coal) carbon dioxide as methane. This experimental
observation is tentatively explained by activated diffusion (Anderson et al.,
1965, Walker and Geller, 1956): Carbon dioxide molecules would be able to
penetrate within the coal matrix (by elastically deforming it locally?) and
thus reach pores that remain closed for methane molecules. In the molecular
simulations here performed both carbon dioxide and methane fluid molecules
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Figure 10: Volumetric strain predicted with the adsorption isotherms ob-
tained by molecular simulation of adsorption in coal (a) in a mesopore, i.e.,
on a flat surface, and (b) in nanopores.

had access to all nanopores. In order to gain insight into the issue of acti-
vated diffusion, more information is required about the energy barrier a fluid
molecule needs to overcome in order to access a remote nanopore. The sim-
ulations here performed provide no such information.

The coefficient αǫ (or αϕ) was obtained by linearization under the assump-
tion of infinitesimal transformations. The fact that the developed framework,
combined with the Langmuir adsorption model, captured very well the ex-
perimental data suggests that the linearization was valid, meaning that the
pore surface is only infinitesimally deformed by adsorption effects.

4 Conclusions

In this work we developed a framework that enables to calculate a macro-
scopic strain caused by an adsorption of fluid at the pore surface of a porous
medium. The calculation of the macroscopic strain requires the knowledge
of the adsorption isotherm for the fluid considered. The adsorption isotherm
can be either determined experimentally or directly estimated from molecular
simulations thus bypassing the usual experimental difficulties. The frame-
work developed herein therefore provides a way of calculating macroscopic
strains from results obtained at the molecular scale directly. Molecular sim-
ulations also provided an interesting insight into the physics of adsorption:
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They showed that nanopores play a primordial role in the adsorption behav-
ior of coal.

The thermodynamics of interfaces enabled to make the link between ad-
sorption behavior and macroscopic deformations. We assumed that the ther-
modynamics of interfaces remained a valid tool even at the smallest scales,
but this is likely not to be the case: in nanopores, which can only welcome a
few molecules, do the notions of interface surface stress, or even of pressure,
still hold? How nanopore filling leads to deformation may require a new
thermodynamics to be developed.

How surface stress and macroscopic deformation are linked was derived
by extending the realm of poromechanics to surface energy. The derivation
is valid for any microstructure. The parameters needed in order to compute
the adsorption strain can be measured by macroscopic testing. Their cal-
culation is also theoretically possible as soon as the microstructure is fully
characterized in terms of spatial organization and elastic properties. In order
to do so, micromechanics can be of great help.

The developments performed in this work were compared with laboratory
experimental data on the swelling of a coal sample injected with a pore fluid.
They should ultimately be compared with field measurements of injectivity
over time during injection in coal bed reservoirs. This latter comparison
requires an extension of our work from the scale of the material up to the
scale of the reservoir by introducing the cleat system and determining the
impact of coal swelling on the cleats permeability.
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