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SUMMARY

We introduce a new numerical method to model the fluid–structure interaction between a microcapsule 
and an external flow. An explicit finite element method is used to model the large deformation of the 
capsule wall, which is treated as a bidimensional hyperelastic membrane. It is coupled with a boundary 
integral method to solve for the internal and external Stokes flows. Our results are compared with previous 
studies in two classical test cases: a capsule in a simple shear flow and in a planar hyperbolic flow. The 
method is found to be numerically stable, even when the membrane undergoes in-plane compression, 
which had been shown to be a destabilizing factor for other methods. The results are in very good 
agreement with the literature. When the viscous forces are increased with respect to the membrane elastic 
forces, three regimes are found for both flow cases. Our method allows a precise characterization of the 
critical parameters governing the transitions. 

KEY WORDS: fluid–structure interaction; finite element method; boundary integral method; membrane
model

1. INTRODUCTION

Synthetic capsules are liquid drops or gels protected by a thin elastic membrane and have a
very wide range of applications in cosmetic, food, and pharmaceutical industries. They are used
to protect fragile, volatile, or active substances and to control the release rate as desired. Other
instances are found in biomedical engineering, where microcapsules are used for cell encapsulation
or artificial blood manufacturing [1, 2]. In many applications, what is at stake is the characterization
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of the complex behavior of a deformable capsule in an external liquid flow, to control or prevent the
breakup of the capsule and the liberation of its contents. Numerical models of the fluid–structure
interactions are thus necessary to predict the capsule deformation in flow conditions and compute
the stress level in the membrane.

In many respects, the fluid–structure interaction of microcapsules suspended in an external
flow is unconventional. (1) The capsules are closed surfaces freely suspended in a fluid. They
are, therefore, not subjected to any boundary condition on the displacement apart from spatial
periodicity. (2) At the small scale of the capsule, the inertia forces of the internal and external flows
are negligible compared with the viscous forces. The fluid flows can, therefore, be modeled using
the Stokes equations (balance between viscous and pressure forces). The load on the membrane is
then due to pressure forces and viscous tractions with normal and in-plane components. (3) The
inertia force of the capsule wall can be equally neglected. Consequently, the problem does not
contain any dynamics and can be seen as a succession of equilibrium states. The drawback is that
the stability of the equilibrium is not necessarily satisfied. (4) The capsule wall is subjected to not
only large displacements but also large deformations. For instance, average stretch ratios of up to
1.2 are reported in experimental studies of capsules flowing in a pore [3, 4]. The non-linear effects
due to these large deformations must be taken into account in the membrane mechanics model.

An analytical solution can only be found in the approximation of small deformations, using
perturbation methods [5]. In the case of large deformations, a numerical simulation is needed to
solve the fully coupled equations governing the fluid and membrane mechanics. This problem has
been studied for the past three decades and different techniques have been considered to derive
numerical solutions (as summarized in Table I). Many studies have used a coupling strategy based
on the boundary integral method to solve the Stokes flow and the membrane elasticity equations
on the same mesh [6–9]. The velocity field at any position within the fluid domain is given by
surface integrals calculated on the geometric boundaries. This method, therefore, has the advantage
of reducing the geometric dimension of the problem by one, which largely decreases the total
number of nodes. It also does not involve discretizing spatial derivatives (using for example finite
differences) and is very accurate. In particular, it has been shown to be efficient, precise, and
stable when modeling the deformation of capsules subjected to shear flows. Another coupling
method used for capsule simulation is the immersed boundary method [10–12]. Two grids are
used in the method: a stationary 3D grid for the fluid flow and a moving 2D boundary grid for
the interface. The forces exerted by the membrane on the fluid and the flow velocity convecting
the membrane are applied locally from one grid to the other using approximate Dirac functions
[13, 14]. The Navier–Stokes equations are generally solved using finite difference schemes. The
immersed boundary method has the advantage over the boundary integral method to be applicable
to non-zero Reynolds numbers and non-Newtonian fluids. However, the method does not treat the
membrane as a physical boundary of the fluid domain, which can result in a lack of precision in
the Lagrangian tracking of the interface.

The most frequently used model for the capsule wall is that of a 2D hyperelastic surface: the wall
is considered to be infinitely thin and to have a negligible bending stiffness. Two approaches may
be considered to model the capsule membrane mechanics: the equations of the force equilibrium
on the capsule wall may either be written locally at each point (strong form) or multiplied by a test
function and integrated over the capsule surface to define a variational problem (weak form). Most
capsule studies have used the strong form of the equations. Numerical simulations of such models
were first performed in axisymmetric configurations with a collocation technique to determine
the unknown forces and velocities at discrete locations in elongational flows [6, 15] and in pore
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Table I. Summary of the previous work, classified according to the solid
(rows) and fluid (columns) methods used to model the fluid–structure

interaction of a capsule in a flow.

Boundary element Immersed boundary
method method

Local equilibrium
3D axisymmetric [6, 15–17]
3D with piecewise constant loads [7, 18] [12]
3D with B-spline discretization [8, 19]
3D with spectral discretization [9]

Variational method
3D with finite elements [10, 11, 20]

The capsule wall was each time modeled as a 2D membrane.

flows [16, 17]. The full 3D problem was then solved for infinite flow configurations. Capsules in
simple shear flows have been considered by Pozrikidis [18], Ramanujan and Pozrikidis [7] and more
recently by Li and Sarkar [12], who computed the membrane load as a piecewise constant function.
Lac et al. [8] and Lac and Barthès-Biesel [19] used bi-cubic B-splines instead as interpolation
functions to compute the loads with high accuracy, whereas Dodson and Dimitrakopoulos [9]
opted for a spectral discretization of the problem. An alternative option is to write the equilibrium
equations in their weak form and to use a finite element method. The local equilibrium equations
are converted into a variational problem. Only two groups [10, 11, 20] have implemented a finite
element method that was each time coupled with an immersed boundary method to compute the
motion of a capsule in shear flows. However, their method [21] is based on the use of linear
interpolation functions and lacks generality in the implementation.

Previous studies have shown that, for certain ranges of the governing parameters, the capsule
wall undergoes in-plane compression and tends to buckle [8, 12]. Thus, bending effects must
be taken into account to properly model the wall mechanics. However, no satisfying model for
the bending stiffness of a capsule has been implemented yet. The finite element method has the
advantage of offering a framework suitable for the modeling of thin shells. In any case, finite
element models seem to be the right option if one wishes to have a general and versatile model
involving realistic constitutive laws and post-buckling effects.

Our purpose in the present paper is to develop a strategy which combines an integral formulation
for the fluid flow and a full finite element membrane model for the capsule wall. However, the
integral form of the Stokes equations gives the flow velocity as a function of the force distribution
on the domain boundary. Obtaining the force distribution as a function of velocity would require
the inversion of a dense matrix. We thus consider that the fluids impose the membrane displacement
and that the reaction forces of the membrane govern the fluid flow. This means that the finite
element method is not used in its classical formulation and that it is impractical to use commercial
or classical finite element programs. In this paper, we propose an explicit finite element formulation
to model the large deformation of a capsule and couple it with a boundary integral formulation of
the Stokes flow equations.

In Section 2, we detail the formulation of the coupling problem and, in Section 3, the numerical
method used to solve it. In Section 4, we assess the non-linear behavior of the finite element method
and show the convergence of the coupling procedure. We then study two complex test cases: a

3



capsule in a simple shear flow and in a plane hyperbolic flow. First, we validate our results against
previous studies. Second, we use the new numerical method to further the understanding of these
two cases, as no consensus was yet reached between previous studies regarding the mechanical
behavior of a capsule in these two flows. We determine whether some effects observed in previous
studies are physical or byproducts of the numerical methods used. We conclude with a discussion
of the advantages of the new coupling procedure and of possible ways to extend it.

2. PROBLEM STATEMENT

We consider an initially spherical capsule (radius a) consisting of a liquid droplet enclosed by an
infinitely thin membrane characterized by a surface shear modulus Gs. The capsule is suspended
in a viscous liquid undergoing an unbounded shear flow. The frame of reference with Cartesian
basis (e1,e2,e3) is centered on the center of mass of the capsule (Figure 1). The velocity of the
unperturbed flow is denoted v∞ with characteristic shear rate �̇. Both fluids are assumed to be
incompressible, Newtonian and to have the same viscosity � and density �. Dimensional analysis
shows that an important non-dimensional parameter is the capillary number

Ca= ��̇a

Gs
, (1)

which compares the viscous stresses exerted by the fluids to the elastic stiffness of the membrane.

2.1. Internal and external flows

The particle Reynolds number Re=�a2�̇/� is assumed to be small compared to unity, so that both
the internal and external flows follow the Stokes equations:

∇ ·v=0, ∇ ·r=0, (2)

where v is the Eulerian velocity field and r is the Cauchy stress tensor in the fluids.
The velocity of the points of the capsule can then be related to the tractions on the membrane

through an integral equation over the deformed surface S [22, 23]:

∀x∈ S, v(x)=v∞(x)− 1

8��

∫
S

J(x,y) ·[r]·n(y)dSy, (3)

Figure 1. Capsule freely suspended in a Stokes flow.
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where [r]·n=(rext−rint) ·n is the traction jump across the interface (n is the unit normal vector
pointing outwards and the superscripts indicate the internal and external flows), and

J(x,y)= 1

r
1+ 1

r3
r⊗r (4)

is Green’s single layer kernel, with r=x−y and r =‖r‖.

2.2. Membrane mechanics

Following Skalak et al. [24], we treat the membrane as a purely bidimensional sheet of hyperelastic
material without bending moments. This is equivalent to considering a membrane with a finite
thickness ϑ and supposing that the strains are constant across the thickness and that the external
forces are exerted by the two flows on the midsurface S. Each material point of S is characterized by
two curvilinear coordinates (�1,�2). The position of a given material point is thus given as X(�1,�2)

in the reference state and x(�1,�2, t) in the deformed state. The displacement U(X, t)=x(X, t)−X
is related to the velocity of the membrane through the kinematic condition:

�
�t

U(X, t)=v(x, t). (5)

Dimensional analysis shows that the ratio of the inertial effects in the membrane to the viscous
stresses exerted by the flow is of order

membrane inertia

viscosity
∼ �mb

�

ϑ

a
Re, (6)

where �mb is the density of the membrane material. Thus, with the density ratio of order 1 for
an organic membrane suspended in water, a membrane of negligible thickness and a vanishing
Reynolds number, the inertia of the membrane can be neglected. The motion of the membrane,
therefore, follows the local equilibrium equation:

∇s ·T+q=0, (7)

where T are the bidimensional Cauchy tensions in the membrane and ∇s · is the surface divergence
operator on the deformed configuration. The load q on the membrane is equal to the traction jump:

q=[r]·n. (8)

Equation (7) can be rewritten as a variational problem, where the load q is unknown. Let V
be the Sobolev space H1(S), and û∈V a virtual displacement field. The variational problem
corresponding to Equation (7) is thus:∫

S
û·qdS =

∫
S
ê(û) :T(U)dS, ∀û∈V, (9)

where ê(û)= 1
2 (∇sû+∇sû

T
).

The test function û must be in H1(S) to allow for a direct calculation and integration of the strain
tensor ê(û). Note that neither the virtual work principle nor the boundary integral (Equation (3))
requires that the load q be in H1(S). In the virtual work principle, the load must only be in the
dual space V ′. However, in the boundary integral equation, it is convenient to choose q∈ L2(S)
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allowing for an explicit calculation of the integral. A less regular load would require to integrate
Equation (3) by part, which is very delicate as the gradient of the kernel J is highly singular for
x=y.

2.3. Stress–strain relations

To close the problem, we need the (non-linear) relation between the displacement U and the
tensions T. Since we study the large deformation of a curved surface, it is convenient to use the
local covariant (a1,a2,a3) and contravariant (a1,a2,a3) bases constructed from the curvilinear
coordinates �1 and �2 [25, 26]. The vector a3 =a3 =n is the unit normal vector (pointing outward)
and the tangent vectors are defined by a� =x,�, where .,� denotes derivation with respect to ��.
Throughout the paper, Greek indices are equal to 1 or 2, while Latin indices are equal to 1, 2, or
3, and summation is performed over repeated indices. A vector v can thus be written as:

v=viai =vi ai =vXi ei , (10)

where the subscript X indicates Cartesian components. The representations of the metric tensor
are defined as a�� =a� ·a� and a�� =a� ·a�. The same quantities are defined in the reference state,
using capital letters: the local bases are denoted (A1,A2,A3) and (A1,A2,A3), and the covariant
and contravariant representations of the metric tensor are A�� and A��, respectively.

The gradient of the transformation F=a�⊗A� is introduced such that dx=F ·dX. The Green–
Lagrange strain tensor is e= 1

2 (FT ·F−1). Invariants of the transformation can then be defined
as:

I1 = tr(FT ·F)−2= A��a��−2, I2 =det(FT ·F)−1=|A��||a��|−1. (11)

Assuming the membrane to be 2D isotropic, the Cauchy tensions are related to a strain energy
function ws(I1, I2) per unit undeformed surface area by:

T= 1

Js
F · �ws

�e
·FT , (12)

where the Jacobian Js =detF represents the ratio between the deformed and undeformed surface
areas. Using the chain rule, one obtains the following expression for the contravariant representation
of T [25]:

T �� = 2

Js

�ws

�I1
A��+2Js

�ws

�I2
a��. (13)

Several laws have been proposed to model the behavior of hyperelastic membranes [27].
A classical 3D law used to describe volume-incompressible, rubber-like materials is the
neo-Hookean (NH) law, with a 2D form given by:

wNH
s = GNH

s

2

(
I1−1+ 1

I2+1

)
. (14)

Skalak et al. [24] proposed a law (Sk) with independent surface shear and area dilation moduli:

wSk
s = GSk

s

4
(I 2

1 +2I1−2I2+C I 2
2 ), C >−1/2, (15)
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where the parameter C is such that the ratio of the area dilation modulus to the surface shear
modulus is 1+2C . For large values of C , the Sk law describes an almost area-incompressible
material, which is appropriate for biological membranes. It has also been shown to model effectively
the behavior of alginate artificial capsules when using C =0 [28]. Note that this law was developed
directly from the perspective of 2D elasticity and only assumes in-plane isotropy. From a 3D
perspective, it could describe a material either fully isotropic or transversely isotropic.

In the domain of small deformation, both laws are equivalent to the 2D formulation of
Hooke’s law

wH
s =Gs

(
tr(e2)+ 	s

1−	s
(tre)2

)
, (16)

where e is the 2D linearized Green–Lagrange strain tensor and 	s ∈]−1,1[ is the 2D Poisson ratio.
The equivalence between the laws is obtained with

Gs =GNH
s , 	s =1/2, (17)

for the NH law and

Gs =GSk
s , 	s = C

1+C
, (18)

for Sk law.
For large deformations, however, the two laws behave very differently, the NH law being strain-

softening whereas the Sk law is strain-hardening [24]. Such large deformations can be expected
to occur when dealing with thin capsules since the surface shear modulus Gs decreases with the
membrane thickness.

3. NUMERICAL METHOD

We present the numerical procedure we use to solve the coupled problem described in the previous
section. The undeformed capsule is put in its initial position and the flow is started. At each time
step, the load on the membrane is determined from the deformation by a finite element method.
From the load, the velocity of the membrane points can then be computed explicitly using a
boundary integral method. Finally, the velocity is integrated to obtain the new displacement and
deformation. These steps will now be detailed.

3.1. Discretization of the interface

The surface of the capsule is discretized using triangular elements. Two types of elements are
implemented: flat P1 elements with three nodes (one at each vertex) and linear shape functions or
curved P2 elements with six nodes (one at each vertex and at the middle of each side) and quadratic
shape functions. The total number of elements and nodes are denoted NE and NN, respectively.
The characteristic mesh size is denoted �x , or h =�x/a in non-dimensional form.

The sphere at rest is meshed by first inscribing an icosahedron (regular polyhedron with 20
triangular faces) in the sphere. The mesh is constructed by placing a new node at the middle of
each edge and dividing each element into four new elements; the new nodes are then projected
onto the sphere. The procedure is repeated until the desired number of elements is attained [7].
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Figure 2. Typical capsule shape meshed with flat triangles (P1 elements, NE =5120,
NN =2562): (a) at rest and (b) after deformation.

The mesh is shown in Figure 2 for P1 elements. The P2 elements are obtained from the P1 elements
by cutting the edges in half in a last step and projecting the new nodes onto the sphere.

For the purpose of stability and convergence studies, we shall use two mesh size definitions

h1 = 1

a

√
4�a2

NE
and h2 = 1

2a

√
4�a2

NE
, (19)

for P1 and P2 elements, respectively. These definitions ensure that the value of h is the same for
both element types when the number of nodes of the discretized interface is the same.

3.2. Coupling procedure

The whole problem can be viewed as a first-order differential equation in time (Equation (5))
with the displacement field U unknown. It describes the kinematic evolution of the membrane and
hence of the finite element mesh. Equation (5) can be rewritten as:

�U

�t
=F(U), (20)

where F is a known function of U given by the fluid equation (3), in which the traction jump
[r]·n=q is obtained by solving the membrane problem (9).

We use an explicit second-order Runge–Kutta method to solve this problem. Thus, time conver-
gence can only be expected when the time step �t is such that :

�t <
3

2L
, (21)

where L is the Lipschitz constant of F [29].
From Equations (3), (7), and (12), we observe that L varies approximately as:

L ∼ �x

�
× 1

�x
× Gs

�x
= a

�x

�̇

Ca
. (22)
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(Note that in Equation (3), J decreases as 1/r and the dominant terms in the integral correspond,
therefore, to y close to x. The relevant length scale is then �x rather than a). Using the order
of magnitude of L found in Equation (22), the stability condition (21) can be rewritten in non-
dimensional form as

�̇�t<O(hCa). (23)

It follows that an explicit scheme can be used to study the motion of deformable particles
in a Stokes flow, because viscous forces are comparable to elastic ones, i.e. Ca = O(1). Thus
the restriction on the time step is governed by the spatial discretization and allows to carry out
computations in a reasonable time. Conversely, for very rigid structures, where Ca �1, condition
(23) leads to very small time steps and unbearably long computation times. This is why explicit
schemes are not used in such situations.

Such an explicit coupling strategy, which is only conditionally stable in time, is unusual in
fluid–structure interaction. The classical reverse strategy, where the displacement is transferred
from the structure to the fluid, involves two time differentiation steps: first to obtain the interface
fluid velocity as a function of the structural displacement and second to compute the force as a
function of the interface velocity. The present strategy, made simpler by the absence of inertia
forces, can split the fluid and the structure problems, because the structure acts directly on the
fluid displacement to yield a surface traction without time differentiation.

3.3. Finite element procedure

For a given deformed state of the capsule, we first solve the solid problem (Equation (9)), where
V is discretized as a finite element space Vh , using the mesh described above. This finite element
discretization, used for the displacement fields U and û, is a convenient choice to approximate
the unknown load q∈ L2 as well. This choice of a common finite element space also has the
advantage of coupling neighboring nodes, which provides regularizing properties when solving
linear systems.

For a given element, the shape function associated with node p (p∈{1 . . .3} for P1 elements,
p∈{1 . . .6} for P2 elements) is denoted N (p)(�1,�2), and the value at node p of the j th Cartesian
component of v∈Vh is noted as v

(p)
X j .

The discretized problem leads to the following matrix system:

[M]{q}={R}, (24)

where {q} corresponds to the Cartesian components of the nodal values of the discretized load.
The left-hand side of Equation (9) can be discretized element-wise as

∑
el

û(p)
X j

(∫
Sel

N (p)N (q) dS

)
q(q)

X j , (25)

where the integration is performed on the deformed state. The matrix [M], therefore, has the
structure of a mass matrix.

The vector {R} corresponds to the right-hand side of Equation (9) and depends non-linearly on
the displacement U. The tensions T �� are computed directly using Equation (13), after computing
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the metric tensor on the deformed geometry of the elements. The virtual strain tensor ε̂�� is related
to the covariant representation ûi of û by

ε̂�� = 1

2
(û�,�+ û�,�−2�i

��ûi ), (26)

where �i
�� =a�,� ·ai are the Christoffel symbols (the curvature tensor b�� =a�,� ·n is denoted �3

��
for the sake of brevity). The covariant and Cartesian representations of û are related through:

ûi =aX j
i û X j , (27)

where aX j
i are the Cartesian components of ai . The virtual strain tensor can, therefore, be related

to the nodal Cartesian components of the virtual displacement by

ε̂�� =( 1
2 N (p)

,� aX j
� + 1

2 N (p)
,� aX j

� +N (p)aX j
�,�−�i

��N (p)aX j
i )û(p)

X j . (28)

To solve the solid problem, we first assemble {R} and [M] on the deformed state. In our
numerical procedure, the deformed state is known when solving the structural problem and thus
the integration on the deformed state is much easier than when using a more standard approach
such as in [30]. Surface integration is performed using 6 Hammer points [31] on the elements.
Equation (24) is then solved using the sparse solver Pardiso [32, 33].

3.4. Fluid solver

Once the load q is known, the velocity field at the nodes is obtained explicitly from the boundary
integral Equation (3), which is discretized on the same mesh as for the solid problem. We use
12 Hammer points for the integration. Note that the kernel J(x,y) varies as 1/r and becomes
very large when y→x, which can lead to numerical errors. Following [8], we switch to polar
coordinates centered on x when y and x belong to the same element. This change of coordinates
introduces a Jacobian which goes to 0 as fast as r , thereby eliminating the singularity in J. In this
case, 6 Gauss points are used for integration along each of the polar coordinates.

4. VALIDATION

4.1. Large isotropic deformation

Before coupling the finite element method to the fluid solver, we first test it when the membrane
of the capsule undergoes large static deformations. We consider a spherical capsule inflated from
radius a to radius ap =(1+�)a by an internal pressure p. The membrane undergoes an isotropic
traction characterized by a stretch ratio 
=1+�. The isotropic principal tensions can be related
to 
 through the membrane strain energy function [34]. The analytical solution is:

T =Gs

(
1− 1


6

)
, (29)

for the NH law and

T =Gs(

2−1+C
2(
4−1)), (30)
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Figure 3. Non-dimensional pressure as a function of the inflation factor for the NH and Sk (C =1) laws.
NN =2562 for both types of elements.

for the Sk law. The analytical expression of the pressure can be deduced using Laplace’s law:

p= 2T

ap
= 2T

(1+�)a
. (31)

In order to check the non-linear behavior of the finite element method, we impose a normal
displacement field given by

U(X)=�X. (32)

In Figure 3, we plot the computed non-dimensional pressure ap/Gs as a function of the inflation
factor �. The results are shown for both laws, using P1 and P2 triangular elements. For � between
0 and 0.5, we find a maximum relative error with respect to the analytical solution of 0.3% with
P1 elements and 0.09% with P2 elements. This shows that both element types behave well when
submitted to large isotropic deformation.

4.2. Convergence

The first question that arises is whether the coupling procedure is numerically stable and whether
time and space convergence is achieved. To verify these points, we consider a classical test case:
the motion of an initially spherical capsule in a simple shear flow. We focus on the case of a
membrane following the NH law, at a capillary number of Ca =0.6 and study the influence of the
time step and of the mesh size. A full study of the motion of a capsule in a simple shear flow will
be performed in Section 4.3.

The undisturbed velocity field is given by:

v∞(x)= �̇x2e1. (33)
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In such a flow field, the capsule elongates along a direction contained in the shear plane. The
deformed shape of the capsule is almost ellipsoidal and can be approximated by its ellipsoid of
inertia. The deformation is then characterized by the Taylor parameter Dij:

Dij = |Li −L j |
Li +L j

(i, j =1,2,3), (34)

where Li are the lengths of the principal axes of the ellipsoid of inertia (due to flow symmetry,
L1 and L2 are in the shear plane). At Ca=0.6 using the NH law, a steady state can be reached.
The coefficient D∞

12 represents the Taylor parameter D12 in the shear plane at steady state.
We first study the effect of the dimensionless time step �̇�t on the stability of the numerical

procedure with a very fine mesh (NN =10242 nodes, mesh size: h =2.5×10−2). This mesh size
corresponds to NE =20480 P1 elements and to NE =5120 P2 elements. As predicted by Equation
(23), the procedure is conditionally stable. The time step stability condition in this particular case is
found to be �̇�t�6×10−3 for P1 elements and �̇�t�5×10−3 for P2 elements. Below this critical
time step, a steady state is reached.

The theoretical value of the deformation is not known, as there is no analytical solution to this
problem. We use as a reference value for each element type Pi (i =1,2) the value of D∞

12 , denoted
Dref

i , obtained with this mesh size for a small time step �̇�t =1×10−4.
We first increase the time step and compute the error �i =|D∞

12 − Dref
i |/Dref

i relative to the
reference value, for each element type. As shown in Figure 4, the numerical procedure converges
linearly in time for both P1 and P2 elements. It should be noted that the error remains small
(�i<2×10−4) for all values of the time step small enough to satisfy Equation (23).

We then study the influence of the mesh size by increasing h with a small time step �̇�t =
1×10−4. As shown in Figure 5, the numerical procedure converges with respect to h, approximately
as h4, and the precision of the results remains good even for cruder meshes (�i<2×10−2). Figure 5
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10-3 10-2

elements
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linear rate

Figure 4. Relative error �i on Taylor’s parameter D∞
12 as a function of the time step for P1 and P2 elements

at Ca=0.6. In all cases, NN =10242, h =2.5×10−2 (i.e. 20 480 P1 elements, 5120 P2 elements). The
reference value Dref

i for each element type is taken for �̇�t =1×10−4.
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Figure 5. Relative error �i on Taylor’s parameter D∞
12 as a function of the mesh size for

P1 and P2 elements at Ca=0.6, and relative difference � between the P1 and P2 values.
In all cases, �̇�t =1×10−4. The reference value Dref

i for each element type is taken for
h =2.5×10−2 (i.e. 20 480 P1 elements, 5120 P2 elements).

also shows that the relative difference �=|D2− D1|/D2 between the values obtained with P1 and
P2 elements decreases when h is reduced. The results given by the two types of elements thus
converge toward a common solution.

The numerical procedure is thus found to be conditionally stable and to converge with respect
to the time step and mesh size. In view of the convergence results, all following computations
are based on P2 elements with NN =2562 nodes and NE =1280 elements (h =5×10−2). For
Ca�0.5, we use a time step of �̇�t =5×10−3; following Equation (23), the time step is reduced
proportionally to Ca for lower values of the capillary number.

4.3. Simple shear flow

We study the behavior of an initially spherical capsule in a simple shear flow with our new coupling
method. In order to validate the method and the non-classical explicit use of finite elements, the
results are compared with three previous studies:

• the work of Lac et al. [8], who used the same method for the fluid problem (boundary
elements), but a local approach for the solid problem, based on a discretization of the interface
by bi-cubic B-splines;

• the work of Li and Sarkar [12], who used the immersed boundary method for the flow and a
local approach with a piecewise-constant load for the solid problem;

• the work of Doddi and Bagchi [20], who also used the immersed boundary method for the
fluid but finite elements to model the membrane, albeit with a method somewhat different
from ours, as noted in the Introduction.

For the external fluid flow, the undisturbed velocity field is given by Equation (33). The membrane
behavior is simulated using either the NH law or Sk law (C =1).
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Figure 6. Steady deformed shape of a capsule, following the NH law, for different values of Ca: Ca=0.3
(a), 0.6 (b), and 1.2 (c). The color scale corresponds to the normal component of the load, q ·n.

As the flow is started, the capsule elongates while the membrane rotates along the deformed
shape (tank treading motion). During the first stages of deformation, folding occurs in the vicinity
of the plane orthogonal to the main extension direction (hereafter called the equatorial plane).
This is due to the presence of compression tensions in the membrane. Depending on the value of
the capillary number Ca, three steady regimes are found, as first described by Lac et al. [8]. For
Ca<CaL, the membrane is still subjected to compression in the equatorial area and the folds persist
at steady state (Figure 6(a)). For larger values of the capillary number, the capsule becomes more
elongated by the shear flow; the value of the isotropic part of the tensions (related to the area dilation
modulus) increases, which leads to positive tensions at the equator, and the disappearance of the
folds (Figure 6(b)). For Ca>CaH, the elongated capsule behaves like a slender body submitted to
a torque (due to the flow vorticity); negative tensions are again present at steady state and buckling
occurs at the tips (Figure 6(c)).

We compare the steady values of D∞
12 with the previous studies for the NH law (Figure 7)

and the Sk law (Figure 8). We find a good agreement for all values of the capillary number. In
particular, our results are always well within 1% of those of Lac et al. [8] for both the NH and
Sk laws, which validates the new method. A 5% difference is, however, found with Li and Sarkar
[12] for both laws. It is probably related to the crude description of the load used by these authors.
The results of Doddi and Bagchi [20] are close to our results at low values of the capillary number
but seem to diverge as Ca increases. This is somewhat surprising, as they also use finite elements
to model the membrane.

The critical values CaL and CaH separating the three regimes is an unresolved question, about
which no consensus was reached in previous studies. Those critical capillary numbers are defined
as the values between which the capsule takes a steady shape, free of negative tensions. The values
found with our coupling method are

CaL =0.45, CaH =0.63, (35)

for the NH law and

CaL =0.4, CaH =2.4, (36)

for the Sk law (C =1). They are equal to those found by Lac et al. [8]. Doddi and Bagchi [20] also
found negative tensions at low Ca, but did not quantify the limiting capillary number CaL. They
did not consider large values of Ca and therefore, did not comment on the existence of CaH. The
three regimes were observed by Li and Sarkar [12]. They were, however, unable to characterize
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Figure 7. Values of D∞
12 as a function of Ca for a capsule membrane following

the NH law in a simple shear flow. Results are compared with [8, 12, 20]. Vertical
lines indicate the critical capillary numbers CaL and CaH.
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Figure 8. Values of D∞
12 as a function of Ca for a capsule membrane following the Sk (C =1) law in

a simple shear flow. Results are compared with [8, 12]; this case was not studied in [20]. Vertical lines
indicate the critical capillary numbers CaL and CaH.

CaL and CaH, as they found negative tensions for all values of Ca, a phenomenon they ascribe to
the lack of precision of their numerical method. Hence, our work is the only one beside [8] that
determines CaL and CaH; despite using different numerical techniques, we find the same values
as previously.

It should be noted that Lac et al. [8] report that their numerical method becomes unstable and
eventually fails when negative tensions appear: in the compression zones, the distance between
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nodes tends to become so small that it leads to oscillation of the interpolating B-spline polynomials
and failure of the numerical computation. Using our coupling method, we also encounter folds
for Ca<CaL; however, they do not alter the numerical stability of the computation. Similarly,
Li and Sarkar [12] reported stability problems for Ca>CaH. We encounter no such problems
with our method, which gives numerically stable results for all the values of Ca that we
tried, even far above CaH (values of Ca up to 1.2 were tested for the NH law and 3.0 for
the Sk law). Our method, therefore, presents the advantage of allowing a complete study of
the capsule deformation, including at supercritical capillary numbers. We also find that the
procedure remains stable even after long computation times. This feature makes it possible to
study the tank-treading motion of a capsule, which is a very slow phenomenon: for instance,
for a capsule following the NH law at Ca =0.6, the steady deformed state is reached at
�̇t =7 but the tank treading period is �̇T =22. We were able to run computations over two
full tank-treading periods without encountering any stability problem (this corresponds to 8800
iterations).

4.4. Planar hyperbolic flow

We now consider the behavior of a capsule in a planar hyperbolic flow. The undisturbed velocity
field is given by

v∞(x)= �̇(x1e1−x2e2). (37)

Two numerical studies of the deformation of a capsule in such a flow exist:

• the previously described work of Lac et al. [8];
• the very recent work of Dodson and Dimitrakopoulos [9], who discretize the interface using

spectral elements, on which they solve the local equilibrium equation for the membrane and
who compute the velocity using the boundary integral technique.

Since Dodson and Dimitrakopoulos have not yet published the full results of their study, the work
of Lac et al. shall be our main reference in this section.

We simulate the membrane behavior using the NH and Sk (C =1) laws. Placed in a planar
hyperbolic flow, the capsule elongates in the e1 direction. As in a simple shear flow, compressive
tensions and folds appear in the plane orthogonal to the direction of elongation during the transient
phase. For values of the capillary number below a critical value CaL, these folds remain at steady
state. For higher values, a steady state free of compressive tensions can be reached. Similarly to
the case of the simple shear flow, CaL is defined as the value below which negative tensions exist
at steady state. As Ca is further increased, we find that the capsule deformation depends on the
law used to model the membrane. With the strain-softening NH law, a critical capillary number
Ca∞ exists above which the capsule keeps on extending without reaching a steady state. However,
this critical capillary number Ca∞ does not exist with the strain-hardening Sk law, for which we
always find a stationary deformed shape.

We compare the values we obtain for D∞
12 to those of Lac et al. [8] in Figure 9 (NH law)

and Figure 10 (Sk law). In the range where they were able to obtain results, we find very good
agreement with their values (again well within 1%). Note that the slight discrepancy at low Ca for
the NH law is due to the presence of strong folds in the shape that makes it impossible to define
D∞

12 accurately.
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Figure 9. Values of D∞
12 as a function of Ca for a capsule membrane following

the NH law in a planar hyperbolic flow. Results are compared with [8]. Vertical
lines indicate the critical capillary numbers CaL and Ca∞.
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Figure 10. Values of D∞
12 as a function of Ca for a capsule membrane following

the Sk (C =1) law in a planar hyperbolic flow. Results are compared with [8].
The vertical line indicates the critical capillary number CaL.

As in the case of the simple shear flow, the critical capillary numbers between the three regimes
remain an open problem. With our numerical method, the critical values that we find for the NH
law are

CaL =0.14, Ca∞ =0.35, (38)
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Figure 11. Transient (�̇t =1.5) and stationary (�̇t =10) profiles in the (x1, x2) plane of a capsule in a
hyperbolic flow at Ca=1.0. The capsule membrane follows the Sk law (C =1). The curvature at the tips

is higher during the transient phase than at steady state.

and for the Sk law (C =1)

CaL =0.15, Ca∞ =+∞. (39)

We find the same values for CaL as Lac et al. [8]. However, the results differ for Ca∞: Lac et al.
found a lower critical value for the NH law (Ca∞ =0.22) and a finite value (Ca∞ =0.7) for the Sk
law. An explanation for this discrepancy can be found in the work of Dodson and Dimitrakopoulos
[9], who have shown that capsules in a hyperbolic flow exhibit very high curvatures at the tips
during the transient phase, before returning to smaller tip curvatures at steady state. We observe
this phenomenon (as shown in Figure 11), although our discretization does not allow a precise
quantification of the curvature at the tips. We believe that Lac et al. numerical method became
unstable because of the high curvatures and that they misinterpreted the numerical failure as a sign
of unbounded extension, which indeed occurs at higher Ca with certain strain-softening materials,
but not with strain-hardening ones.

The results found in a simple shear flow and in a hyperbolic flow contribute to showing the
accuracy and stability of the new numerical method. They also provide a better understanding of
the three regimes that may exist for each flow and of the transition between those.

5. DISCUSSION AND CONCLUSION

We have developed a new numerical method to simulate the mechanical behavior of a capsule in
an unbounded Stokes flow. This method couples a boundary integral method to model the internal
and external flows with a non-classical explicit finite element model of the capsule membrane.
Coupling those two techniques had never been attempted before and we have shown here that this
coupling is feasible, accurate, and stable.

5.1. Limitations of the local approach

Writing the membrane equilibrium equation as a variational problem (Equation (9)) rather than a
local equilibrium equation (Equation (7)) imposes different conditions on the discretization of the
unknowns. When using the local equilibrium equation, the load q is equal to the surface divergence
of the tensions T. Thus to be able to use q in the boundary integral (Equation (3)), T must be
continuous over the entire surface of the capsule. The position (and displacement field) must,
therefore, be of class C1 over the surface. Unfortunately, such a C1 map of the position is not
possible on a sphere (this is a classical corollary of the Poincaré–Brouwer ‘hairy ball’ theorem
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[35]). This topological problem is unavoidable when using the local equilibrium equation for a
capsule.

All the studies that used the local equilibrium encountered the problem. Lac et al. [8] meshed
the sphere with cubic B-splines, along coordinates similar to standard spherical coordinates. While
this method offers a C2 description of the position on a large part of the capsule, it introduces
two singular points—the poles—where the local covariant basis cannot be defined and where the
tensions, therefore, cannot be computed. Furthermore, as the Christoffel symbols go to infinity
when approaching the poles, numerical errors become important around those points. Lac et al.
eventually alleviated this issue by introducing a second mesh, with the poles orthogonal to those
of the first mesh [36]. They solved the solid problem once on each mesh and computed a weighted
average of the load to reduce the contribution of the areas close to the poles. This method, while
giving very good results, is computationally costly as it requires to solve the solid problem twice
and to regularly project the position and the load from one grid onto the other. Furthermore, it
still exhibits some numerical instability in particular cases like the hyperbolic flow (Equation (37))
when one set of poles lies along the elongation axis.

Another technique to mesh the sphere while using a local approach is to use elements between
which the first spatial derivatives are discontinuous. An ad hoc method then needs to be imple-
mented to treat the discontinuities. An example of such a method is provided by the work of Wang
and Dimitrakopoulos [37]. They discretized the interface using a moderate number of spectral
elements (between 6 and 14), which offer a highly regular representation of the position within
each element, but have discontinuities between the elements. They added a first-order smoothing
scheme to enforce the continuity of the position and of its first derivatives from one element to the
next. In contrast with the low number of elements (and, therefore, limited amount of smoothing
necessary) used in spectral methods, Ramanujan and Pozrikidis [7] used an unstructured mesh
with 512 triangular P2 elements, between which the tensions are discontinuous. They developed
an intricate technique to average the tensor T at each node from the values on the connected
elements and then re-interpolated it between the nodes to compute the load (which they treated as
element-wise constant). The effects of so many averages are difficult to predict or control.

In contrast with the local equilibrium, methods relying on the variational problem are not
subjected to these topological complications. Equation (9) allows u to be in H1, which means that
the solid problem may be discretized using a finite element space where the first spatial derivatives
of the position are discontinuous. The load can thus be obtained without resorting to any sort of
uncontrolled smoothing or averaging technique. We believe that variational methods are a sounder
way of handling capsule mechanics than methods based on the local equilibrium.

5.2. Comparison with other methods

We have compared the results provided by our new model in the case a simple shear flow with
three previous studies and have found a good agreement. It may be noted, in particular, that our
results are remarkably close to those of Lac et al. [8] (within 1%). Both studies find the same
critical capillary numbers CaL and CaH, although two different methods are used to model the
behavior of the membrane. This seems to indicate that the values of the critical capillary numbers
have a physical relevance and are not a consequence of the numerical method used.

We find results equally close to those of Lac et al. in a planar hyperbolic flow. The same limiting
value of the capillary number CaL is obtained in both studies, once again indicating that this value
is physical rather than determined by the numerical method. However, Lac et al. encountered
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numerical problems at high capillary numbers, due to the presence of high curvatures during the
transient phase. The higher numerical stiffness of our elements, compared with the cubic B-splines
they used, allows us to remain stable during the transient phase and to reach a steady state when
one exists. Our discretization, however, does not allow us to get a precise description of the local
curvature at the tips when the capsule is very elongated. In this case, the spectral element method of
Dodson and Dimitrakopoulos [9] seems better suited. However, with such high curvatures, bending
effects should probably not be neglected. Further studies using different numerical methods would
be needed to confirm our understanding of the different behaviors of the NH and Sk laws and the
values of Ca∞ that we find.

5.3. Bending stiffness and limits of the membrane model

A major difference between our results and those by Lac et al. [8] is the behavior of the numerical
method when the membrane is undergoing in-plane compression. Whereas the technique used
by Lac et al. eventually fails when negative tensions appear (Ca<CaL or Ca>CaH in a simple
shear flow, Ca <CaL in a planar hyperbolic flow), our numerical method remains stable and a
steady equilibrium state is achieved. This is probably due to the larger numerical stiffness of
the finite elements as compared to the bi-cubic B-spline functions used by Lac et al. Neither
Doddi and Bagchi [20] nor Li and Sarkar [12], who also used lower order discretization than Lac
et al., reported stability problems at low Ca, which would confirm the hypothesis. The stiffness
introduced by the numerical method contributes to the stability of the problem because it enriches
the membrane model with some bending stiffness. It allows the numerical procedure to remain
stable during transient phases when in-plane compression and high curvatures may render other
methods unstable. It also has the advantage that steady states with negative tensions can be
computed and studied.

While it stabilizes the numerical procedure, the stiffness introduced by the elements is a
byproduct of the numerical method and cannot be controlled or used to model the physical bending
stiffness of a capsule. For instance the folds that are observed for Ca<CaL (Figure 6(a)) depend
on the mesh, with a wavelength equal to the element size. Experimentally, the wall of a capsule
has a finite thickness and, therefore, a finite bending stiffness. However, it should be noted that,
as long as the membrane is locally taut and the local curvature remains small, the bending effects
are negligible. For a capsule that is initially spherical and must increase its surface area to deform,
these hypotheses are frequently valid. This explains why our method, with its small non-physical
stiffness, generally gives results identical to those obtained with Lac et al. method, which has a
vanishing bending stiffness.

Wherever negative tensions appear, bending effects determine the behavior of the capsule wall.
However, while not appropriate to compute the wrinkled or post-buckling state, a membrane model
like ours is sufficient to determine the occurrence and location of negative tensions. A more
thorough study of the wrinkles would require treating the capsule wall as a thin shell with a
physical bending stiffness. The framework of finite elements seems appropriate to implement such
a shell model, which we intend to do in the near future.

ACKNOWLEDGEMENTS

This project was supported in part by the Conseil Régional de Picardie through project �Flec and by the
French Ministère de la Recherche through project Pilcam2. We thank Jean-Louis Batoz (Université de
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36. Lac É, Morel A, Barthès-Biesel D. Hydrodynamic interaction between two identical capsules in a simple shear
flow. Journal of Fluid Mechanics 2007; 573:149–169.

37. Wang Y, Dimitrakopoulos P. A three-dimensional spectral boundary element algorithm for interfacial dynamics
in Stokes flow. Physics of Fluids 2006; 18(8):82–106. DOI: 10.1063/1.2337572.

22




