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THE WAVE EQUATION ON DAMEK–RICCI SPACES

JEAN–PHILIPPE ANKER, VITTORIA PIERFELICE, AND MARIA VALLARINO

Abstract. We study the dispersive properties of the wave equation associated with
the shifted Laplace–Beltrami operator on Damek–Ricci spaces, and deduce Strichartz
estimates for a large family of admissible pairs. As an application, we obtain global
well–posedness results for the nonlinear wave equation.

1. Introduction

The aim of this paper is to study the dispersive properties of the linear wave equation
on Damek–Ricci spaces and their application to nonlinear Cauchy problems.
For the linear wave equation on Rn

(1)





∂ 2
t u(t, x)−∆xu(t, x) = F (t, x) ,

u(0, x) = f(x) ,

∂t|t=0 u(t, x) = g(x) ,

the theory is well established ; the dispersive L1 → L∞ estimates are classical, while
Strichartz estimates were proved by [16] and [23]. These estimates serve as main tools
to study the corresponding nonlinear problems and to prove local and global existence
with either small or large initial data. In particular, for the semilinear wave equation

(2)





∂ 2
t u(t, x)−∆xu(t, x) = F (ut(, x)) ,

u(0, x) = f(x) ,

∂t|t=0 u(t, x) = g(x) ,

with

(3) F (u) ∼ |u|γ near 0 ,

a fairly complete theory of well–posedness for small initial data exists. The results depend
on the space dimension n. After the pioneering work [21] of John in dimension n= 3,
Strauss conjectured in [30] that the problem (2) is globally well–posed for small initial
data provided

(4) γ > γ0(n) =
1
2
+ 1

n−1
+
√(

1
2
+ 1

n−1

)2
+ 2

n−1
(n≥2).
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The negative part of the conjecture was verified in [29] by Sideris, who proved blow up
for generic data when γ<γ0(n) (and nonlinearities satisfying F (u)& |u|γ). The positive
part of the conjecture was also verified for any dimension in several steps (see e.g. [24]
[26],[15], [10], as well as [14] for a survey and [11], [12] for related results).
Several attemps have been made to extend Strichartz estimates for dispersive equations

from Euclidean spaces to other settings. In this paper we consider the shifted wave
equation

(5)





∂ 2
t u(t, x)− (∆S +Q2/4) u(t, x) = F (t, x)

u(0, x) = f(x) ,

∂t|t=0 u(t, x) = g(x) ,

on Damek–Ricci spaces S (also known as harmonic NA groups). Recall that these spaces
are solvable extensions S = N ⋉R+ of Heisenberg type groups N, equipped with an
invariant Riemannian structure ; ∆S denotes the associated Laplace–Beltrami operator,
whose L2 spectrum is the half line

(
−∞;−Q2/4

]
, and Q the homogeneous dimension

of N. As Riemannian manifolds, these solvable Lie groups include all symmetric spaces
of the noncompact type and rank one ; they are all harmonic but most of them are not
symmetric, thus providing counterexamples to the Lichnerowicz conjecture [8]. We refer
to Section 2 for more details about their structure and analysis thereon.
The Cauchy problem (5) was considered by Tataru [31] and by Ionescu [20]. Tataru

obtained sharp dispersive Lq′→Lq estimates for the operators

cos
(
t
√
−∆S−Q2/4

)
and

sin(t
√

−∆S−Q2/4 )√
−∆S−Q2/4

when S is a real hyperbolic space, while Ionescu investigated Lq→Lq estimates for these
operators when S is a rank one symmetric space.
In [4] we derived Strichartz estimates for the Cauchy problem (5) when S is a real

hyperbolic space. Our aim here is to extend the results obtained in [4] to the larger
class of Damek–Ricci spaces. The difficulty is due to the fact that Damek–Ricci spaces
are nonsymmetric in general, so that some of the proofs given in [4] do not work in this
context. Despite this difficulty, we are able to obtain Strichartz estimates for solutions
to the Cauchy problem (5). Corresponding results for the the Schrödinger equation were
obtained [2] and [3] (see also [27]).
In Section 7 we apply our Strichartz estimates to obtain global well–posedness results

for the nonlinear wave equation with small initial data and low regularity. Notice that
this result is new even for hyperbolic spaces, since in [4] we only discussed local well–
posedness. An interesting new feature, which differentiates our results from the Euclidean
case, is the absence of a lower critical exponent for power–like nonlinearities on Damek–
Ricci spaces. Indeed, for γ>1 arbitrarily close to 1, we are able to prove global existence
for the problem

(6)





∂ 2
t u(t, x)− (∆S+Q2/4) u(t, x) = F (u(t, x)) ,

u(0, x) = f(x) ,

∂t|t=0 u(t, x) = g(x) ,
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with small initial data and nonlinearities F satisfying

|F (u)| ≤ C |u|γ and |F (u)−F (v)| ≤ C (|u|γ−1+ |v|γ−1) |u− v |.
Recall that Tataru [31] proved global existence on hyperbolic spaces for small smooth
initial data, provided the power γ is greater than the Strauss critical exponent (4). Thus,
by combining our results with [31], we see that the Cauchy problem (6) is well posed for
small smooth initial data and any power γ >1. Notice moreover that in Theorem (7.2)
we allow for small initial data with low regularity, arbitrarily close to the critical one in
the Euclidean case, which is determined by concentration and scaling arguments.

2. Damek–Ricci spaces

In this section we recall the definition of H–type groups, describe their Damek–Ricci
extensions, and recall the main results of spherical analysis on these spaces. For the
details we refer the reader to [1, 6, 7, 8, 9, 28].

Let n be a Lie algebra equipped with an inner product 〈·, ·〉 and denote by | · | the
corresponding norm. Let v and z be complementary orthogonal subspaces of n such that
[n, z] = {0} and [n, n] ⊆ z. According to Kaplan [22], the algebra n is of H–type if, for
every Z in z of unit length, the map JZ : v → v, defined by

〈JZX, Y 〉 = 〈Z, [X, Y ]〉 ∀X, Y ∈ v ,

is orthogonal. The connected and simply connected Lie group N associated to n is called
an H–type group. We identify N with its Lie algebra n via the exponential map

v× z −→ N

(X,Z) 7−→ exp(X + Z) .

Thus multiplication in N reads

(X,Z)(X ′, Z ′) =
(
X +X ′, Z +Z ′+ 1

2
[X,X ′]

)
∀X, X ′ ∈ v ∀Z, Z ′ ∈ z .

The group N is a two-step nilpotent group with Haar measure dXdZ . The number
Q= m

2
+ k , where m and k denote the dimensions of v and z respectively, is called the

homogeneous dimension of N .
Let S be the semidirect product S =N ⋉R+, defined by

(X,Z, a)(X ′, Z ′, a′) =
(
X + a

1

2X ′, Z+ aZ ′+ 1
2
a

1

2 [X,X ′], aa′
)

for all (X,Z, a), (X ′, Z ′, a′) ∈ S . We shall denote by n the dimension m+ k +1 of S .
Notice that m is an even number ≥ 2 and we shall always assume that k≥ 1 (the case
when k = 0 corresponds to real hyperbolic spaces and has been investigated in [4]). This
implies that the dimension of the space S is n≥4.
The group S is nonunimodular. Indeed the right and left Haar measures on S are

given respectively by

dρ(X,Z, a) = a−1 dX dZ da and dµ(X,Z, a) = a−(Q+1) dX dZ da .

Then the modular function is δ(X,Z, a) = a−Q.
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We equip S with the left invariant Riemannian metric induced by the inner product

〈(X,Z, ℓ), (X ′, Z ′, ℓ′)〉 = 〈X,X ′〉+ 〈Z,Z ′〉+ ℓ ℓ′ ,

on the Lie algebra s of S. For every x∈S, we shall denote by r(x) the distance between
the point x and the identity e of S and by a(x) the A–component of x, i.e. the element
a(x)∈R

+ such that x = (X,Z, a(x)), with X ∈v, Z ∈ z. The following useful inequality
holds (see [1, formula (1.20)]) :

(7) | log a(x)| ≤ r(x) ∀ x∈S .

The Riemannian measure is the left Haar measure µ introduced above and we denote by
∆S the Laplace–Beltrami operator associated with this Riemannian structure on S.
A radial function on S is a function that depends only on the distance from the identity.

If f is radial, then by [1, formula (1.16)]
∫

S

dµ f =

∫ ∞

0

dr f(r) V (r) ,

where

(8) V (r) = 2m+k sinhm+k r
2
coshk r

2
∀ r∈R+.

Let π denote the radialisation operator defined in [5, page 150] which associates to each
function f in C∞(S) a radial function on S. More precisely,

πf(r) = const.

∫

∂B(s)

dσ f(rσ) ∀ r∈R
+,

where ∂B(s) is the unit sphere in s and dσ denotes the surface measure on it.
The spherical functions ϕλ on S are normalized eigenfunctions of ∆S :

{
∆S ϕλ = −

(
λ2+ Q2

4

)
ϕλ ,

ϕλ(e) = 1 ,

where λ∈C (see [1, formula (2.6)]). In the sequel we shall use various properties of the
spherical functions, which we now summarize. We refer to [1, 9] for more details.
All spherical functions are of the form

(9) ϕλ = π(δiλ/Q−1/2) = π(a(·)−iλ+Q/2) ∀λ∈C ,

where δ is the modular function. This easily implies that

(10) |ϕλ(r)| . ϕ0(r) ∀λ∈C, ∀ r∈R
+.

Moreover, it is well known that

(11) ϕ0(r) . (1+ r) e−
Q
2
r ∀ r∈R

+.

The asymptotic behavior of the spherical functions is given by

ϕλ(r) = c(λ) Φλ(r) + c(−λ) Φ−λ(r) ∀λ∈Cr
i
2
Z ,
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where

(12) c(λ) = Γ
(
n
2

)
2Q−2iλ Γ(2 iλ)

Γ(iλ+ Q
2
) Γ(iλ+ m

4
+ 1

2
)

and

Φλ(r) = (2 cosh r
2
)i2λ−Q

2F1

(
Q
2
−iλ, m

4
− 1

2
−iλ; 1−2iλ; (cosh r

2
)−2

)

(see [25, pp. 7–8]). On one hand, Φλ is another radial eigenfunction of ∆S for the same

eigenvalue −
(
λ2+ Q2

4

)
, i.e.

(13)
0 =

{
∆S +

Q2

4
+λ2

}
Φλ(r) =

{
∂ 2
r +

V ′(r)
V (r))

∂r +
Q2

4
+λ2

}
Φλ(r)

= V (r)−
1

2

{
∂ 2
r −ω(r)+λ2

}{
V (r)

1

2 Φλ(r)
}
,

where

(14)

ω(r) = V (r)−
1

2 ∂ 2
r V (r)

1

2 − Q2

4

= 1
4
m
2

(
Q−1

)(
sinh r

2

)−2
+ k

2

(
k
2
−1

)(
sinh r

)−2

=
∑+∞

j=1
ωj e

−jr with ωj=O(j).

On the other hand, the function Φλ can be expanded as follows :

(15)
Φλ(r) =

∑+∞

ℓ=0

Γ(Q/2−iλ+ℓ)
Γ(Q/2−iλ)

Γ(m/4+1/2−iλ+ℓ)
Γ(m/4+1/2−iλ)

Γ(1−2iλ+ℓ)
Γ(1−2iλ)

22ℓ

ℓ !
(2 cosh r

2
)2iλ−Q−2ℓ

= 2−
k
2 V (r)−

1

2

∑+∞

ℓ=0
Γℓ(λ) e

(iλ−ℓ)r as r→+∞.

By combining (13), (14), (15), the coefficients Γℓ are shown to satisfy the recurrence
formula

(16)





Γ0 = 1,

ℓ (ℓ− i 2λ) Γℓ(λ) =
∑ℓ−1

j=0
ωℓ−j Γj(λ) ∀ ℓ∈N∗.

It is well known (see e.g. [5, Theorem 3.2]) that there exist nonnegative constants C and
d such that

(17) |Γℓ(λ)| ≤ C (1+ ℓ)d ,

for all ℓ∈N and for all λ∈C with Imλ≥−|Reλ|. We shall need the following improved
estimates.

Lemma 2.1. Let 0<ε<1 and Ωε = { λ∈C | |Reλ|≤ ε |λ|, Imλ≤− 1−ε
2

}. Then, there
exists a positive constant d and, for every h∈N, a positive constant C such that

(18) | ∂ h
λ Γℓ(λ)| ≤ C ℓd (1+|λ|)−h−1 ∀ ℓ∈N∗, ∀λ∈CrΩε .

Proof. The case h∈N∗ follows by Cauchy’s formula from the case h=0, that we prove
now. On one hand, there exists A≥0 such that

|ωj | ≤ A j ∀ j∈N
∗.
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On the other hand, there exists B>0 such that

| ℓ− i 2λ| ≥B max {ℓ, 1+|λ|} ∀ ℓ∈N
∗, ∀λ∈CrΩε .

Choose C =2A/B and d ≥ 1 such that d+1 ≥ C . For ℓ =1, we have Γ1(λ) =
ω1

1− i 2λ
,

which implies
|Γ1(λ)| ≤ A

B
1

1+ |λ| ≤ C
1+ |λ| ,

as required. For ℓ>1, we have

Γℓ(λ) =
ωℓ

ℓ (ℓ−i 2λ)
+ 1

ℓ (ℓ−i 2λ)

∑
0<j<ℓ

ωℓ−j Γj(λ) ,

which implies

|Γℓ(λ)| ≤ A
B

ℓ
1+ |λ| +

A
B

1
ℓ2

∑
0<j<ℓ

(ℓ−j) C j d

1+ |λ|

≤ C
2

ℓd

1+ |λ| +
C
2

ℓd

1+ |λ|
C
ℓ

∑
0<j<ℓ

(
j
ℓ

)d

≤ C ℓd

1+ |λ| .

�

The spherical Fourier transform Hf of an integrable radial function f on S is defined
by

Hf(λ) =

∫

S

dµ f ϕλ .

For suitable radial functions f on S, an inversion formula and a Plancherel formula hold:

f(x) = cS

∫ ∞

0

dλ |c(λ)|−2Hf(λ)ϕλ(x) ∀x ∈ S ,

and ∫

S

dµ |f |2 = cS

∫ ∞

0

dλ |c(λ)|−2 |Hf(λ)|2 ,

where the constant cS depends only on m and k. It is well known that

(19) |c(λ)|−2 . |λ|−2 (1 + |λ|)n−3 ∀λ ∈ R .

In the sequel we shall use the fact that H = F ◦ A, where A denotes the Abel
transform and F denotes the Fourier transform on the real line. Actually we shall
use the factorization H−1=A−1◦F−1. For later use, let us recall the inversion formulae
for the Abel transform [1, formula (2.24)], which involve the differential operators

D1 = − 1
sinh r

∂
∂r

and D2 = − 1
sinh(r/2)

∂
∂r

.

If k is even, then

(20) A−1f(r) = aeS D
k/2
1 Dm/2

2 f (r) ,

where aeS = 2−(3m+k)/2 π−(m+k)/2, while, if k is odd, then

(21) A−1f(r) = aoS

∫ ∞

r

D(k+1)/2
1 Dm/2

2 f (s) dν(s) ,

where aoS = 2−(3m+k)/2 π−n/2 and dν(s) = (cosh s− cosh r)−1/2 sinh s ds.
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3. Sobolev spaces and conservation of energy

Let us first introduce inhomogeneous Sobolev spaces on a Damek–Ricci space, which
will be involved in the conservation laws, in the dispersive estimates and in the Strichartz
estimates for the shifted wave equation. We refer to [32] for more details about function
spaces on Riemannian manifolds.
Let 1<q<∞ and σ∈R. By definition, Hσ

q (S) is the image of Lq(S) under (−∆S)
−σ

2

(in the space of distributions on S), equipped with the norm

‖f ‖Hσ
q
= ‖(−∆S)

σ
2 f ‖Lq .

In this definition, we may replace −∆S by −∆S−Q2

4
+ Q̃2

4
, where Q̃>Q and we set

D̃ =
(
−∆S−Q2

4
+ Q̃2

4

) 1

2 .

Thus Hσ
q (S) = D̃−σLq(S) and ‖f ‖Hσ

q
∼ ‖D̃σf ‖Lq . If σ = N is a nonnegative integer,

then Hσ
q (S) cöıncides with the Sobolev space

WN,q(S) = { f ∈Lq(S) | ∇jf ∈Lq(S) ∀ 1≤j≤N }
defined in terms of covariant derivatives and equipped with the norm

‖f‖WN,q =
∑N

j=0
‖∇jf ‖Lq .

By following the same proof of [4, Proposition 3.1] we obtain the following Sobolev
embedding Theorem.

Proposition 3.1. Let 1<q1<q2<∞ and σ1, σ2∈R such that σ1− n
q1
≥ σ2− n

q2
. Then

Hσ1

q1
(S) ⊂ Hσ2

q2
(S) .

By this inclusion, we mean that there exists a constant C>0 such that

‖f‖Hσ2
q2

≤ C ‖f‖Hσ1
q1

∀ f ∈C∞
c (S) .

Beside the Lq Sobolev spaces Hσ
q (S), our analysis of the shifted wave equation on S

involves the following L2 Sobolev spaces :

Hσ,τ (S) = D̃−σD−τL2(S),

where D=
(
−∆S− Q2

4

) 1

2 , σ∈R and τ < 3
2
(actually we are only interested in the cases

τ = 0 and τ =± 1
2
). Notice that





Hσ,τ (S) =Hσ
2 (S) if τ = 0,

Hσ,τ (S)⊂Hσ+τ
2 (S) if τ < 0,

Hσ,τ (S)⊃Hσ+τ
2 (S) if 0< τ < 3

2
.

Lemma 3.2. If 0<τ < 3
2
, then

Hσ,τ (S) ⊂ Hσ+τ
2 (S) +H∞

2+(S),

where H∞
2+(S) =

⋂
s∈R
q>2

Hs
q (S) (recall that H

s
q (S) is decreasing as qց2 and sր+∞).
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Proof. See [4, Lemma 3.2]. �

Let us next introduce the energy

(22) E(t) = 1
2

∫

S

dµ(x)
{
|∂tu(t, x)|2+ |Dxu(t, x)|2

}

for solutions to the homogeneous Cauchy problem

(23)





∂ 2
t u−

(
∆S+

Q2

4

)
u = 0

u(0, x) = f(x)

∂t|t=0 u(t, x) = g(x) .

It is easily verified that ∂tE(t) = 0, hence (22) is conserved. In other words, for every
time t in the interval of definition of u,

‖∂tu(t, x)‖2
L2
x
+ ‖Dxu(t, x)‖2

L2
x
= ‖g‖2

L2 + ‖Df‖2
L2 .

Let σ∈R and τ < 3
2
. By applying the operator D̃σDτ to (23), we deduce that

‖ ∂tD̃
σ
xD

τ
xu(t, ·)‖2

L2
x
+ ‖D̃σ

xD
τ+1
x u(t, ·)‖2

L2
x
= ‖D̃σDτg‖2

L2 + ‖D̃σDτ+1f ‖2
L2 ,

which can be rewritten in terms of Sobolev norms as follows :

(24) ‖∂tu(t, ·)‖2
Hσ,τ + ‖u(t, ·)‖2

Hσ,τ+1 = ‖g‖2
Hσ,τ + ‖f‖2

Hσ,τ+1 .

4. Kernel estimates

In this section we derive pointwise estimates for the radial convolution kernel w
(σ,τ)
t of

the operator W
(σ,τ)
t = D−τD̃τ−σe i tD, for suitable exponents σ∈R and τ ∈ [0, 3

2
). To do

so, we follow the strategy used in [4] for hyperbolic spaces. The difficulty here is that
Damek–Ricci spaces are nonsymmetric in general, so that some of the proofs given in [4]
do not work in this context.
By the inversion formula of the spherical Fourier transform,

w
(σ,τ)
t (r) = const.

∫ +∞

0

dλ |c(λ)|−2 λ−τ
(
λ2+ Q̃2

4

)τ−σ
2 ϕλ(r) e

itλ .

Let us split up

w
(σ,τ)
t (r) = w

(σ,τ)
t,0 (r) + w

(σ,τ)
t,∞ (r)

= const.

∫ 2

0

dλχ0(λ) |c(λ)|−2 λ−τ
(
λ2+ Q̃2

4

)τ−σ
2 ϕλ(r) e

itλ

+ const.

∫ +∞

1

dλχ∞(λ) |c(λ)|−2 λ−τ
(
λ2+ Q̃2

4

)τ−σ
2 ϕλ(r) e

itλ ,

using smooth cut–off functions χ0 and χ∞ on [0,+∞) such that 1= χ0+χ∞ , χ0 =1 on

[0, 1] and χ∞=1 on [2,+∞). We shall first estimate w
(σ,τ)
t,0 and next a variant of w

(σ,τ)
t,∞ .
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The kernel w
(σ,τ)
t,∞ has indeed a logarithmic singularity on the sphere r= t when σ = n+1

2
.

We bypass this problem by considering the analytic family of operators

W̃
(σ,τ)
t,∞ = eσ

2

Γ(n+1

2
−σ)

χ∞(D)D−τ D̃τ−σ e i tD

in the vertical strip 0≤Re σ≤ n+1
2

and the corresponding kernels

(25) w̃
(σ,τ)
t,∞ (r) = eσ

2

Γ(n+1

2
−σ)

∫ +∞

1

dλχ∞(λ) |c(λ)|−2 λ−τ
(
λ2+ Q̃2

4

)τ−σ
2 e itλ ϕλ(r) .

Notice that the Gamma function, which occurs naturally in the theory of Riesz distri-
butions, will allow us to deal with the boundary point σ = n+1

2
, while the exponential

function yields boundedness at infinity in the vertical strip. Notice also that, once mul-
tiplied by χ∞(D), the operator D−τD̃τ−σ behaves like D̃−σ .

4.1. Estimate of w0
t = w

(σ,τ)
t,0 .

Theorem 4.1. Let σ ∈ R and τ < 2. The following pointwise estimates hold for the

kernel w0
t = w

(σ,τ)
t,0 :

(i) Assume that |t|≤ 2. Then, for every r ≥ 0,

|w0
t (r)| . ϕ0(r).

(ii) Assume that |t|≥ 2.

(a) If 0≤ r ≤ |t|
2
, then

|w0
t (r)| . |t|τ−3 ϕ0(r).

(b) If r ≥ |t|
2
, then

|w0
t (r)| . (1+ |r−|t||)τ−2 e−

Q
2
r .

Proof. Recall that

(26) w0
t (r) = const.

∫ 2

0

dλχ0(λ) |c(λ)|−2 λ−τ
(
λ2+ Q̃2

4

)τ−σ
2 ϕλ(r) e

itλ .

By symmetry we may assume that t>0.
(i) It follows from the estimates (10) and (19) that

|w0
t (r)| .

∫ 2

0

dλ λ2−τ ϕ0(r) . ϕ0(r) .

(ii) We prove first (a) by substituting the representation (9) of ϕλ in (26). Specifically,

w0
t (r) = const.

∫

∂B(s)

dσ a(rσ)Q/2

∫ 2

0

dλχ0(λ) b(λ) e
i{t−log a(rσ)}λ ,

where b(λ) = |c(λ)|−2 λ−τ
(
λ2+ Q̃2

4

)τ−σ
2 and a(rσ) is the A-component of the point rσ

defined in Section 2. According to estimate (7) and to Lemma A.1 in Appendix A, the
inner integral is bounded above by

{t− log a(rσ)}τ−3 ≤ (t− r)τ−3 ≍ tτ−3 ∀σ ∈ ∂B(s) .
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Since π
[
a(·)Q/2

]
= ϕ0, we conclude that

w0
t (r) . tτ−3

∫

∂B(s)

dσ a(rσ)Q/2

= C tτ−3 π
[
a(·)Q/2

]
(r)

= C tτ−3 ϕ0(r) .

We prove next (b) by substituting in (26) the asymptotic expansion (15) of ϕλ and by
reducing to Fourier analysis on R. Specifically,

(27) w0
t (r) = const. e−

Q
2
r
∑+∞

ℓ=0
e−ℓr

{
I+,0
ℓ (t, r) + I−,0

ℓ (t, r)
}
,

where

I±,0
ℓ (t, r) =

∫ 2

0

dλχ0(λ) b
±
ℓ (λ) e

i(t±r)λ

and

b±ℓ (λ) = c(∓λ)−1 λ−τ
(
λ2+ Q̃2

4

)τ−σ
2 Γℓ(±λ) .

By applying Lemma A.1 and Lemma 2.1, we obtain

|I+,0
ℓ (t, r)| . (1+ ℓ)d (t+r)τ−2 ≤ (1+ ℓ)d rτ−2

and

|I−,0
ℓ (t, r)| . (1+ ℓ)d (1+ |r−t|)τ−2 ,

where d is the constant which appears in Lemma 2.1.
We conclude the proof by summing up these estimates in (27). �

4.2. Estimate of w̃∞
t = w̃

(σ,τ)
t,∞ .

Theorem 4.2. The following pointwise estimates hold for the kernel w̃∞
t = w̃

(σ,τ)
t,∞ , for

any fixed τ ∈R and uniformly in σ∈C with Re σ = n+1
2

:

(i) Assume that 0< |t|≤2.

(a) If 0≤r≤3, then | w̃∞
t (r)| . |t|−n−1

2 .

(b) If r≥3, then w̃∞
t (r) = O

(
r−∞ e−

Q
2
r
)
.

(ii) Assume that |t|≥2. Then

| w̃∞
t (r)| . (1+ |r−|t||)−∞ e−

Q
2
r ∀ r≥0.

Proof of Theorem 4.2.ii. Recall that, up to a positive constant,

w̃∞
t (r) = eσ

2

Γ(n+1

2
−σ)

∫ +∞

1

dλ χ∞(λ) |c(λ)|−2 λ−τ
(
λ2+ Q̃2

4

)τ−σ
2 ϕλ(r) e

itλ .

By symmetry we may assume again that t > 0. If 0 ≤ r ≤ t
2
, we resume the proof of

Theorem 4.1.ii.a, using Lemma A.2 instead of Lemma A.1, and estimate this way

(28) | w̃∞
t (r)| . (t−r)−∞ ϕ0(r) . t−∞ e−

Q
2
r .
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If r≥ t
2
, we resume the proof of Theorem 4.1.ii.b and expand this way

(29) w̃∞
t (r) = eσ

2

Γ(n+1

2
−σ)

e−
Q
2
r
∑+∞

ℓ=0
e−ℓr

{
I+,∞
ℓ (t, r) + I−,∞

ℓ (t, r)
}
,

where

I±,∞
ℓ (t, r) =

∫ +∞

0

dλχ∞(λ) b±ℓ (λ) e
i(t±r)λ

and

b±ℓ (λ) = c(∓λ)−1 λ−τ
(
λ2+ Q̃2

4

)τ−σ
2 Γℓ(±λ) .

It follows from the expression (12) of the c-function and from Lemma 2.1 that b±ℓ is a
symbol of order

ν =

{
−1 if k = 0 ,

−2 if k ∈ N
∗ .

By Lemma A.2 we obtain that forall N ∈ N∗, there exists a positive constant CN such
that for every ℓ ∈ N

(30) |I+,∞
ℓ (t, r)| ≤ CN |σ|N (1 + ℓ)d (t+ r)−N ≤ CN |σ|N (1 + ℓ)d r−N ,

and for every ℓ ∈ N∗

(31) |I−,∞
ℓ (t, r)| ≤ CN |σ|N (1 + ℓ)d (1 + |r − t|)−N ,

where d is the constant which appears in Lemma 2.1. To estimate the term I−,∞
0 we

apply Lemma A.3. To do so, we establish the asymptotic behavior of the symbol b−0 (λ),
as λ → +∞. On one hand, by (12) we have

c(λ)−1 = 1
Γ(n

2
)
2−Q+i2λ Γ(iλ+Q

2
) Γ(iλ+m

4
+ 1

2
)

Γ(i 2λ)

= C(n,m,Q)
( iλ+Q

2

iλ

)iλ− 1

2
(
iλ + Q

2

)Q
2
( iλ+m

4
+ 1

2

iλ

)iλ (
iλ+ m

4
+ 1

2

)m
4
{
1 + O(λ−1)

}

= C(n,m,Q) λ
Q
2
+m

4

{
1 + O(λ−1)

}
,

according to Stirling’s formula

Γ(ξ) =
√
2π ξ ξ− 1

2 e−ξ
{
1+ O(|ξ|−1)

}
.

On the other hand,

λ−τ (λ2+ ρ̃2)
τ−σ
2 = λ−σ

{
1+ O(|σ|λ−2)

}
.

Since Q
2
+ m

4
− Re σ = −1 we get

b−0 (λ) = c0 λ
−1−i Im σ + r0(λ) with |r0(λ)| ≤ C |σ| λ−2 .

As announced, it follows now from Lemma A.3 that

(32) |I−,∞
0 (t, r)| ≤ C |σ|2

| Im σ| if |r−t|≤1.

By combining (28), (29), (30), (31) and (32), we conclude that

| w̃∞
t (r)| . (1+ |r− t|)−∞ e−

Q
2
r ∀ r≥ t

2
.
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The estimate of Theorem 4.2.i.a is of local nature and thus similar to the Euclidean case.
For the sake of completeness, we include a proof in Appendix C.

Proof of Theorem 4.2.i.b. Here 0< |t|≤ 2 and r≥3. By symmetry we may assume again
that t>0. Up to positive constants, the inverse spherical Fourier transform (25) can be
rewritten in the following way :

w̃∞
t (r) = eσ

2

Γ(n+1

2
−σ)

A−1gt(r) ,

where

gt(r) = 2

∫ +∞

1

dλ χ∞(λ) λ−τ
(
λ2+ Q̃2

4

)τ−σ
2 eitλ cosλr .

Let us split up 2 cosλr = eiλr+ e−iλr and gt(r)= g+t (r)+ g−t (r) accordingly, so that

g±t (r) =

∫ +∞

1

dλ χ∞(λ) λ−τ
(
λ2+ Q̃2

4

)τ−σ
2 e i(t±r)λ .

Recall that the inversion formulae (20) and (21) of the Abel transform involve the dif-

ferential operators D1= − 1
sinh r

∂
∂r

and D2= − 1
sinh(r/2)

∂
∂r
. We shall use the fact that, for

all integers p≥1 and q≥1,

(33) Dp
1 Dq

2 =

p+q∑

j=1

p∑

ℓ=1

γ∞
ℓ,j(r)

(
∂
∂r

)j
,

where the coefficients γ∞
ℓ,j(r) are linear combinations of products

(34)

(
1

sinh r

)
×

(
∂
∂r

)ℓ2( 1
sinh r

)
× · · · ×

(
∂
∂r

)ℓm

×
(

∂
∂r

)j1( 1
sinh(r/2)

)
× · · ·

(
∂
∂r

)jq( 1
sinh(r/2)

)
,

with ℓ2+ . . .+ ℓp= p− ℓ and j1+ . . .+ jq= q − j + ℓ.

Since 1
sinh r

= 2
∑+∞

h=0 e
−(2h+1)r is O(e−r), as well as its derivatives, we deduce that γ∞

ℓ,j(r)

is O(e−(p+q/2)r) as r→+∞. We shall also use the fact that

(
∂
∂r

)j
g±t (r) =

∫ +∞

1

dλ χ∞(λ) λ−τ
(
λ2+ Q̃2

4

)τ−σ
2 (±iλ)j e i(t±r)λ .

According to Lemma A.2, for every N∈N∗, there exists CN≥0 such that

(35)
∣∣( ∂

∂r

)j
g±t (r)

∣∣ ≤ CN |σ|N (r± t)−N .

• Case 1 : Assume that k is even.

By the formula (20) we obtain that

w̃∞
t (r) = const. eσ

2

Γ(n+1

2
−σ)

Dk/2
1 Dm/2

2 (g+t + g−t )(r) ,

which by (33) and (35) is estimated by

|w̃∞
t (r)| ≤ CN r−N e−

Q
2
r ∀N ∈ N

∗ .

• Case 2 : Assume that k is odd.
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According to (33) and (35), for every N ∈N
∗, there exists CN ≥0 such that

∣∣D(k+1)/2
1 Dm/2

2 gt(s)
∣∣ ≤ CN |σ|N s−N e−

Q+1

2
s ∀ s≥3 .

By estimating
cosh s− cosh r = 2 sinh s+r

2
sinh s−r

2
& er sinh s−r

2
,

sinh s . es , e−
Q
2
s ≤ e−

Q
2
r , s−N ≤ r−N ,

and performing the change of variables s=r+u, we deduce that

|w̃∞
t (r)| . eσ

2

Γ(n+1

2
−σ)

∫ +∞

r

ds sinh s√
cosh s− cosh r

∣∣D(k+1)/2
1 Dm/2

2 gt(s)
∣∣

≤ CN

∫ +∞

r

ds sinh s√
cosh s−cosh r

s−N e−
Q+1

2
s

≤ CN r−N e−
Q
2
r

∫ +∞

0

du√
sinh u

2

≤ CN r−N e−
Q
2
r .

�
5. Dispersive estimates

In this section we obtain Lq′ → Lq estimates for the operator D−τ D̃τ−σe i tD, which
will be crucial for our Strichartz estimates in next section. Let us split up its kernel
wt = w0

t + w∞
t as before. We will handle the contribution of w0

t , using the pointwise
estimates obtained in Subsection 4.1 and the following criterion.

Lemma 5.1. There exists a positive constant C such that, for every radial measurable

function κ on S, for every 2≤q, q̃<∞ and f ∈Lq′(S),

‖f ∗κ ‖
Lq ≤ C ‖f‖Lq̃′

{∫ +∞

0

dr V (r)ϕ0(r)
ν |κ(r)|α

} 1

α

.

where ν = 2 min{q, q̃}
q+ q̃

, α = α(q, q̃) = q q̃
q+ q̃

and V denotes the radial density of the measure

µ as in (8).

Proof. This estimate is obtained by interpolation between the following version of the
Herz criterion [17] for Damek–Ricci spaces obtained in [1, Theorem 3.3]

‖f ∗κ ‖L2 . ‖f‖L2

∫ +∞

0

dr V (r)ϕ0(r) |κ(r)| ,

and the elementary inequalities

‖f ∗κ ‖
Lq ≤ ‖f‖

L1 ‖κ‖Lq , ‖f ∗κ ‖
L∞ ≤ ‖f‖Lq̃′ ‖κ‖Lq̃ .

�

For the second part w∞
t , we resume the Euclidean approach, which consists in inter-

polating analytically between L2→L2 and L1→L∞ estimates for the family of operators

(36) W̃
(σ,τ)
t,∞ = eσ

2

Γ(n+1

2
−σ)

χ∞(D)D−τ D̃τ−σ e i tD
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in the vertical strip 0≤ Re σ ≤ n+1
2

.

5.1. Small time dispersive estimate.

Theorem 5.2. Assume that 0 < |t| ≤ 2, 2 < q <∞, 0 ≤ τ < 3
2
and σ ≥ (n+1)(1

2
− 1

q
).

Then, ∥∥D−τ D̃τ−σe i tD
∥∥
Lq′→Lq . |t|−(n−1)( 1

2
− 1

q
) .

Proof. We divide the proof into two parts, corresponding to the kernel decomposition
wt= w0

t+w∞
t . By applying Lemma 5.1 and by using the pointwise estimates in Theorem

4.1.i, we obtain on one hand

∥∥f ∗w0
t

∥∥
Lq .

{∫ +∞

0

dr V (r)ϕ0(r) |w0
t (r)|

q
2

} 2

q ‖f‖Lq′

.
{ ∫ +∞

0

dr (1+ r)1+
q
2 e−

Q
2
r( q

2
−1)

} 2

q ‖f‖Lq′

. ‖f‖Lq′ ∀ f ∈Lq′ .

For the second part, we consider the analytic family (36). If Re σ = 0, then

‖f ∗ w̃∞
t ‖L2 . ‖f‖L2 ∀ f ∈L2.

If Re σ = n+1
2
, we deduce from the pointwise estimates in Theorem 4.2.i that

‖f ∗ w̃∞
t ‖L∞ . |t|−n−1

2 ‖f‖L1 ∀ f ∈L1.

By interpolation we conclude for σ = (n+ 1)
(
1
2
− 1

q

)
that

∥∥f ∗w∞
t ‖

Lq . |t|−(n−1)( 1
2
− 1

q
)‖f‖Lq′ ∀ f ∈Lq′ .

�

5.2. Large time dispersive estimate.

Theorem 5.3. Assume that |t| ≥ 2, 2< q <∞, 0≤ τ < 3
2
and σ ≥ (n+1)(1

2
−1

q
). Then

∥∥D−τ D̃τ−σe i tD
∥∥
Lq′→Lq . |t|τ−3 .

Proof. We divide the proof into three parts, corresponding to the kernel decomposition

wt = 1I
B
(
0, |t|

2

)w0
t + 1I

SrB
(
0, |t|

2

)w0
t + w∞

t .

Estimate 1 : By applying Lemma 5.1 and using the pointwise estimates in Theorem
4.1.ii.a, we obtain

‖f ∗ {1I
B
(
0, |t|

2

)w0
t } ‖Lq .

{∫ |t|
2

0

dr V (r)ϕ0(r) |w0
t (r)|

q
2

} 2

q ‖f‖Lq′

.
{∫ +∞

0

dr (1+ r)1+
q
2 e−

Q
2
r( q

2
−1)

} 2

q

︸ ︷︷ ︸
<+∞

|t|τ−3 ‖f‖Lq′ ∀ f ∈Lq′ .
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Estimate 2 : By applying Lemma 5.1 and using the pointwise estimates in Theorem
4.1.ii.b, we obtain

‖f ∗ {1I
SrB

(
0, |t|

2

)w0
t } ‖Lq .

{∫ +∞

|t|
2

dr V (r)ϕ0(r)
2

q |w0
t (r)|

q
2

} 2

q ‖f‖Lq′

.
{∫ +∞

|t|
2

dr r e−( q
2
−1) Q

2
r
} 2

q

︸ ︷︷ ︸
. |t|−∞

‖f‖Lq′ ∀ f ∈Lq′ .

Estimate 3 : In order to estimate the Lq′→Lq norm of f 7→ f ∗w∞
t , we use interpolation

for the analytic family (36). If Re σ = 0, then

‖f ∗ w̃∞
t ‖L2 . ‖f‖L2 ∀ f ∈L2.

If Re σ = n+1
2
, we deduce from Theorem 4.2.ii that

‖f ∗ w̃∞
t ‖L∞ . |t|−∞ ‖f‖L1 ∀ f ∈L1.

By interpolation we conclude for σ = (n+1)
(
1
2
− 1

q

)
that

∥∥f ∗w∞
t ‖

Lq . |t|−∞ ‖f‖Lq′ ∀ f ∈Lq′ .

�

By taking τ=1 in Theorems 5.2 and 5.3, we obtain in particular the following disper-
sive estimates.

Corollary 5.4. Let 2<q<∞ and σ≥(n+1)
(
1
2
− 1

q

)
. Then

‖ D̃−σ+1 e itD

D
‖Lq′→Lq .

{
|t|−(n−1)( 1

2
− 1

q
)

if 0< |t|≤2,

|t|−2 if |t|≥2 .

6. Strichartz estimates

Consider the inhomogeneous linear wave equation on S :

(37)





∂ 2
t u(t, x)−

(
∆S +

Q2

4

)
u(t, x) = F (t, x)

u(0, x) = f(x)

∂t|t=0 u(t, x) = g(x) ,

whose solution is given by Duhamel’s formula :

u(t, x) = (cos tDx)f (x) +
sin tDx

Dx
g(x) +

∫ t

0

ds sin(t−s)Dx

Dx
F (s, x) .

Definition 6.1. A couple (p, q) is called admissible if
(
1
p
, 1
q

)
belongs to the triangle

(38) Tn =
{(

1
p
, 1
q

)
∈
(
0, 1

2

]
×
(
0, 1

2

) ∣∣ 2
p
+ n−1

q
≥ n−1

2

}
.

From the dispersive estimates obtained above and by arguing as in the proof of The-
orem [4, 6.3] we obtain the following result.
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Theorem 6.2. Let (p, q) and (p̃, q̃) be two admissible couples. Then the following

Strichartz estimate holds for solutions to the Cauchy problem (37) :

(39) ‖u‖
Lp(R ;Lq)

. ‖f‖
Hσ−1

2
, 1
2
+ ‖g‖

Hσ−1
2
,− 1

2
+ ‖F‖

Lp̃′
(
R ;Hσ+σ̃−1

q̃′

) ,

where σ ≥ (n+1)
2

(
1
2
− 1

q

)
and σ̃ ≥ (n+1)

2

(
1
2
− 1

q̃

)
. Moreover,

(40)

‖u‖
L∞

(
R ;Hσ−1

2
, 1
2

) + ‖∂tu‖
L∞

(
R ;Hσ−1

2
,− 1

2

)

. ‖f‖
Hσ−1

2
, 1
2
+ ‖g‖

Hσ−1
2
,−1

2
+ ‖F‖

Lp̃′
(
R ;Hσ+σ̃−1

q̃′

) .

Remark 6.3. Observe that, in the statement of Theorem 6.2, we may replace R by any

time interval I containing 0.

7. GWP results for the NLW equation on S

We apply Strichartz estimates for the inhomogeneous linear Cauchy problem asso-
ciated with the wave equation to prove global well–posedness results for the following
nonlinear Cauchy problem

(41)





∂ 2
tu(t, x)−

(
∆S +

Q2

4

)
u(t, x) = F (u(t, x))

u(0, x) = f(x)

∂t|t=0 u(t, x) = g(x) ,

with a power–like nonlinearity F (u). By this we mean that

(42) |F (u)| ≤ C |u|γ and |F (u)−F (v)| ≤ C (|u|γ−1+ |v|γ−1) |u− v |
for some C≥0 and γ>1. Let us recall the definition of global well–posedness.

Definition 7.1. The Cauchy problem (41) is globally well–posed in Hσ,τ ×Hσ,τ−1 if,

for any bounded subset B of Hσ,τ×Hσ,τ−1, there exist a Banach space X, continuously

embedded into C (R;Hs,τ) ∩ C1(R;Hs,τ−1), such that

• for any initial data (f, g)∈B, (41) has a unique solution u∈X;

• the map (f, g) 7→ u is continuous from B into X.

The amount of smoothness σ requested for GWP of (41) in Hσ− 1

2
, 1
2×Hσ− 1

2
,− 1

2 depends
on γ and is represented in Figure 1 below. There

γ1 =
n+3
n

= 1+ 3
n
, γ2 =

(n+1)2

(n−1)2+4
= 1+ 2

n−1

2
+ 2

n−1

, γconf =
n+3
n−1

= 1+ 4
n−1

,

γ3 =
n2+5n−2+

√
n4+2n3+21n2−12n+4
2n2−2n

= 1+

√
4n+(n−6

2
− 2

n−1
)2 − (n−6

2
− 2

n−1
)

n
,

γ4 =
n2+2n−5
n2−2n−1

= 1+ 2
n−1

2
− 1

n−1

, γ∞ = min{γ3, γ4} =

{
γ3 if n= 4, 5,

γ4 if n≥ 6,

and the curves C1, C2, C3 are given by

C1(γ) =
n+1
4

(
1− n+5

2nγ−n−1

)
, C2(γ) =

n+1
4

− 1
γ−1

, C3(γ) =
n
2
− 2

γ−1
.
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σ

0

1

1
2

n
2

γγ1 γ2 γconf γ∞

C1 C2

C3

Figure 1. Regularity in dimension n≥ 4

Theorem 7.2. Assume that F (u) satisfies (42). Then (41) is globally well–posed for

small initial data in Hσ− 1

2
, 1
2 ×Hσ− 1

2
,− 1

2 in the following cases :

(A) 1<γ≤γ1 and σ>0 ;

(B) γ1<γ≤γ2 and σ≥C1(γ) ;

(C) γ2≤γ≤γconf and σ≥C2(γ) ;
(D) γconf ≤γ<γ∞ (1) and σ≥C3(γ).

More precisely, for such γ and σ, there exists an admissible couple (p0, q0) and, for

sufficiently small initial data (f, g)∈Hσ− 1

2
, 1
2×Hσ− 1

2
,− 1

2 , a unique solution u to (41) such
that

u ∈ C1
(
R;Hσ− 1

2
, 1
2 (S)

)
∩ Lp0

(
R;Lq0(S)) and ∂tu ∈ C

(
R;Hσ− 1

2
,− 1

2 (S)
)
.

Proof. We apply the standard fixed point method based on Strichartz estimates. Define
u=Φ(v) as the solution to the following linear Cauchy problem

(43)





∂ 2
tu(t, x)−D2

xu(t, x) = F (v(t, x)),

u(0, x) = f(x),

∂t|t=0u(t, x) = g(x),

which is given by the Duhamel formula

u(t, x) = (cos tDx)f (x) +
sin tDx

Dx
g(x) +

∫ t

0

ds sin(t−s)Dx

Dx
F (v(s, x)) .

1The endpoint γ=γ∞ is excluded in dimension n=4, 5 and is actually included in dimension n≥6.
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By Theorem 6.2 this solution satisfies the Strichartz estimate

‖u‖
L∞

(
R ;Hσ−1

2
, 1
2

) + ‖∂tu‖
L∞

(
R ;Hσ−1

2
,− 1

2

) + ‖u‖
Lp(R;Lq)

. ‖f‖
Hσ−1

2
, 1
2
+ ‖g‖

Hσ−1
2
,− 1

2
+ ‖F (v)‖

Lp̃′
(
R ;Hσ+σ̃−1

q̃′

) ,

which hold for all admissible couples (p, q), (p̃, q̃) introduced in Definition 6.1 and for all
σ≥ n+1

2

(
1
2
− 1

q

)
, σ̃≥ n+1

2

(
1
2
− 1

q̃

)
. According to the nonlinear assumption (42), we estimate

the inhomogeneous term as follows :

‖F (v)‖
Lp̃′

(
R ; Hσ+σ̃−1

q̃′

) . ‖ |v|γ‖
Lp̃′

(
R ;Hσ+σ̃−1

q̃′

) .

Assuming σ+ σ̃−1≤ n ( 1
q̃′
− 1

q̃′
1

)≤ 0, we deduce from Sobolev’s embedding (Proposition

3.1) that

(44)

‖u‖
L∞

(
R ;Hσ−1

2
,1
2

) + ‖∂tu‖
L∞

(
R ;Hσ−1

2
,− 1

2

) + ‖u‖
Lp(R ;Lq)

. ‖f‖
Hσ−1

2
, 1
2
+ ‖g‖

Hσ−1
2
,− 1

2
+ ‖v‖ γ

Lp̃′γ
(
R ;Lq̃′

1
γ
) .

In order to remain within the same function space, we require that q = q̃′1γ and p = p̃′γ.
It remains for us to check that the following conditions can be fulfilled simultaneously :

(45)





(i) p= p̃′γ ,

(ii) 0< 1
q̃′
≤ γ

q
< 1 ,

(iii) n−1
2

− n+1
2

(
1
q
+ 1

q̃

)
≤ n

(
1
q̃′
− γ

q

)
,

(iv) 2
p
+ n−1

q
≥ n−1

2
,

(v) 2
p̃
+ n−1

q̃
≥ n−1

2
,

(vi)
(
1
p
, 1
q

)
∈
(
0, 1

2

]
×
[

n−3
2(n−1)

, 1
2

)
,

(vii)
(
1
p̃
, 1
q̃

)
∈
(
0, 1

2

]
×
[

n−3
2(n−1)

, 1
2

)
.

Suppose indeed that there exist indices p, q, p̃, q̃ satisfying all conditions in (45). Then
(44) shows that Φ maps X into itself, where X denotes the Banach space

X =
{
u
∣∣ u ∈ C (R;Hσ− 1

2
, 1
2 (S)) ∩ Lp(R;Lq(S)) ,

∂tu ∈ C (R;Hσ− 1

2
,− 1

2 (S))
}
,

equipped with the norm

‖u‖
X
= ‖u‖

L∞
(
R ;Hσ−1

2
, 1
2

) + ‖∂tu‖
L∞

(
R ;Hσ−1

2
,− 1

2

) + ‖u‖
Lp

(
R ;Lq

) ,

Moreover we shall show that Φ is a contraction on the ball

Xε = { u∈X | ‖u‖X ≤ ε } ,
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provided ε > 0 and ‖f‖
Hσ−1

2
, 1
2
+ ‖g‖

Hσ−1
2
,− 1

2
are sufficiently small. Let v, ṽ ∈ X and

u=Φ(v), ũ=Φ(ṽ). By arguing as above and using Hölder’s inequality, we have

(46)

‖ u− ũ ‖
X
≤ C ‖F (v)−F (ṽ)‖

Lp̃′
(
R ;Hσ+σ̃−1

q̃′

)

≤ C
∥∥{|v|γ−1+ |ṽ|γ−1} |v− ṽ |

∥∥
Lp̃′

(
R ;Lq̃′

1

)

≤ C
{
‖v‖ γ−1

Lp

(
R ;Lq

)+ ‖ṽ‖ γ−1

Lp

(
R ;Lq

)} ‖v− ṽ‖
Lp

(
R ;Lq

)

≤ C
{
‖v‖γ−1

X + ‖ṽ‖γ−1
X

}
‖v− ṽ‖X .

If ‖v‖X≤ ε and ‖ṽ‖X≤ ε and ‖f‖
Hσ−1

2
, 1
2
+ ‖g‖

Hσ−1
2
,−1

2
≤ δ , then (44) yields on one hand

‖u‖X ≤ C δ + C εγ and ‖ũ‖X ≤ C δ + C εγ ,

while (46) yields on the other hand

‖u− ũ‖X ≤ 2C εγ−1 ‖v− ṽ‖X .

Thus, if we choose ε>0 and δ>0 so small that C εγ−1≤ 1
4
and C δ ≤ 3

4
ε, then

‖u‖X ≤ ε, ‖ũ‖X ≤ ε and ‖u− ũ‖X ≤ 1
2
‖v− ṽ‖X ,

if v, ṽ ∈Xε and u= Φ(v), ũ=Φ(ṽ). Hence the map Φ is a contraction on the complete
metric space Xε and the fixed point theorem allows us to conclude.
Let us eventually prove the existence of couples (p, q) and (p̃, q̃) satisfying all conditions

in (45). Condition (45.iii) amounts to

(47) 2nγ−n−1
q

+ n−1
q̃

≤ n+1 i.e. 1
q̃
≤ n+1

n−1
− 2nγ−n−1

n−1
1
q
.

By combining (47) with (45.ii) and (45.vi), we deduce that

n−3
2(n−1)

≤ 1
q
≤ 2

(γ−1)(n+1)
.

This implies that γ ≤ γ̃∞= n2+2n−7
(n+1)(n−3)

= 1+ 4(n−1)
(n+1)(n−3)

. By combining (47) with (45.vii),

we obtain
n−3

2(n−1)
≤ 1

q̃
≤ min

{
1
2
, n+1
n−1

− 2nγ−n−1
n−1

1
q

}
, 1

q̃
6= 1

2
.

By combining (47) with (45.vii), we also obtain 1
q
≤ n+5

2(2nγ−n−1)
. In summary, the condi-

tions on q reduce to

n−3
2(n−1)

≤ 1
q
≤ min

{
1
2
, 1
γ
, 2
(γ−1)(n+1)

, n+5
2(2nγ−n−1)

}
, 1

q
6= 1

2
, 1
γ
,

or case by case to

• 1< γ ≤ γ1 and n−3
2(n−1)

≤ 1
q
< 1

2
,

• γ1 < γ ≤ γ2 and n−3
2(n−1)

≤ 1
q
≤ n+5

2(2nγ−n−1)
,

• γ2 < γ ≤ γ̃∞ and n−3
2(n−1)

≤ 1
q
≤ 2

(γ−1)(n+1)
.

Let us turn to the indices p and p̃. According to (45), we have

n−1
2

(
1
2
− 1

q

)
≤ 1

p
≤ 1

2
and n−1

2

(
1
2
− 1

q̃

)
≤ 1

p̃
≤ 1

2
.
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Since 1
p̃
= 1− γ

p
, we end up with the following conditions on p and p̃ :

(48)

{
(i) n−1

2

(
1
2
− 1

q

)
≤ 1

p
≤min

{
1
2
, 5−n

4γ
+ n−1

2γ q̃

}
,

(ii) n−1
2

(
1
2
− 1

q̃

)
≤ 1

p̃
≤ 1

2
.

There exist indices p and p̃ which satisfy (48) provided that 1
q̃
≥ γ

2
+ n−5

2(n−1)
− γ

q
. We thus

have to find q̃ such that

(49) max
{

n−3
2(n−1)

, γ
2
+ n−5

2(n−1)
− γ

q

}
≤ 1

q̃
≤ min

{
1
2
, n+1
n−1

− 2nγ−n−1
(n−1)q

}
,

with 1
q̃
6= 1

2
. This implies that q has to satisfy the following conditions :

(50) max
{

n−3
2(n−1)

, 1
2
− 2

γ (n−1)

}
≤ 1

q
≤ min

{
1
2
, 1
γ
, 2
(γ−1)(n+1)

, n+5
2(2nγ−n−1)

, n+7−γ (n−1)
2(γ−1)(n+1)

}
,

with 1
q
6= 1

2
− 2

γ (n−1)
, 1

2
, 1

γ
. The fact that n−3

2(n−1)
≤ n+7−γ (n−1)

2(γ−1)(n+1)
easily implies that γ≤γ4<

γ̃∞ . The fact that 1
2
− 2

γ (n−1)
< n+7−γ (n−1)

2(γ−1)(n+1)
implies that γ<γ3 . In summary, here are the

final conditions on q , depending on γ and possibly on the dimension n :

(A) 1< γ ≤ γ1 = 1+ 3
n
and n−3

2(n−1)
≤ 1

q
< 1

2
.

(B) γ1 < γ ≤ γ2 =
(n+1)2

n2−2n+5
and n−3

2(n−1)
≤ 1

q
≤ n+5

2(2nγ−n−1)
.

(C) γ2 < γ < γconf and
n−3

2(n−1)
≤ 1

q
≤ 2

(γ−1)(n+1)
when n≥ 5.

When n= 4, we distinguish two subcases :

• γ2 < γ ≤ 2 and n−3
2(n−1)

≤ 1
q
≤ 2

(γ−1)(n+1)
,

• 2< γ < γconf and
1
2
− 2

γ (n−1)
< 1

q
≤ 2

(γ−1)(n+1)
.

(D) When n≥ 6, we distinguish two subcases :

• γconf ≤ γ ≤ 2 and n−3
2(n−1)

≤ 1
q
≤ n+7−γ (n−1)

2(γ−1)(n+1)
,

• 2< γ ≤ γ4 and 1
2
− 2

γ (n−1)
< 1

q
≤ n+7−γ (n−1)

2(γ−1)(n+1)
.

When n= 5, we replace γ4 by γ3and require γ < γ3.

When n= 4, γconf ≤ γ < γ3 and 1
2
− 2

γ (n−1)
< 1

q
≤ n+7−γ (n−1)

2(γ−1)(n+1)
.

Let us now examine these cases separately.

Case (A). In this case, we choose successively q such that
n−3

2(n−1)
≤ 1

q
< 1

2
,

q̃ satisfying (49), and p, p̃ satisfying (48). Thus, when 1 < γ ≤ γ1 and σ > 0, there
exists always an admissible couple (p, q) such that all conditions (45) are satisfied and

σ ≥ (n+1)
2

(1
2
− 1

q
).

Case (B). In this case, we choose successively q such that
n−3

2(n−1)
≤ 1

q
≤ n+5

2(2nγ−n−1)

p, p̃ satisfying (48), and a correspondent q̃ which satisfies (49). Thus, when γ1 < γ ≤ γ2
and σ ≥ n+1

4
− (n+1)(n+5)

4(2nγ−n−1)
, there exists an admissible couple (p, q) such that all conditions

(45) are satisfied and σ ≥ (n+1)
2

(1
2
− 1

q
).
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Case (C). Assume first that n≥ 5. we choose successively q such that

(51) n−3
2(n−1)

≤ 1
q
≤ 2

(γ−1)(n+1)
,

q̃ satisfying (49), and p, p̃ satisfying (48).
Assume next that n= 4. If γ2 < γ ≤ 2, we choose q according to (51). If 2< γ < γconf ,

we replace (51) by
1
2
− 2

γ (n−1)
< 1

q
≤ 2

(γ−1)(n+1)
.

In both cases, we can choose afterwards q̃, p, p̃ satisfying (49) and (48).
In summary, when γ2 < γ < γconf and σ ≥ n+1

4
− 1

γ−1
, there exists always an admissible

couple (p, q) such that all conditions (45) are satisfied and σ ≥ (n+1)
2

(1
2
− 1

q
).

Case (D). Assume first that n≥ 6. If γconf ≤ γ ≤ 2, we choose successively q such that

(52) n−3
2(n−1)

≤ 1
q
≤ n+7−γ(n−1)

2(γ−1)(n+1)
,

q̃ satisfying (49), and p, p̃ satisfying (48). If 2< γ ≤ γ4 , (52) is replaced by

(53) 1
2
− 2

γ(n−1)
< 1

q
≤ n+7−γ(n−1)

2(γ−1)(n+1)
.

Assume next that n = 5. We choose again q according to (52) if γconf ≤ γ ≤ 2 and
according to (53) if 2< γ < γ3 . In both cases, we can choose afterwards q̃, p, p̃ satisfying
(49) and (48).
Assume eventually that n = 4. Then we choose q according to (52) and q̃, p, p̃ satis-

fying (49) and (48).
In summary, in this case when σ ≥ n

2
− 2

γ−1
, there exists always an admissible couple

(p, q) such that all conditions (45) are satisfied and σ ≥ n+1
2

(1
2
− 1

q
).

This concludes the proof of Theorem 7.2. �

Appendix A

In this appendix we collect some lemmata in Fourier analysis on R which are used for
the kernel analysis in Section 4 and in Appendix C. These lemmata are proved in [4,
Appendix A].

Lemma A.1. Let b be a compactly supported homogeneous symbol on R of order ν>−1.
In other words, b is a smooth function on R

∗, whose support is bounded in R and which

has the following behavior at the origin :

sup
λ∈R∗

|λ| ℓ−ν | ∂ ℓ
λb(λ)| < +∞ ∀ ℓ∈N .

Then its Fourier transform

k(x) =

∫ +∞

0

dλ b(λ) eiλx

is a smooth function on R, with the following behavior at infinity:

k(x) = O
(
|x|−ν−1

)
as |x|→∞ .
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More precisely, let N be the smallest integer > d+1. Then ∃ C≥0, ∀ x∈R
∗,

|k(x)| ≤ C |x|−ν−1
N∑

ℓ=0

sup
λ∈R∗

(1+|λ|)ℓ−ν | ∂ ℓ
λb(λ)| .

Lemma A.2. Let b be an inhomogeneous symbol on R of order ν∈R. In other words,

b is a smooth function on R such that

sup
λ∈R

(1+|λ|)ℓ−ν | ∂ ℓ
λb(λ)| < +∞ ∀ ℓ∈N .

Then its Fourier transform

k(x) =

∫ +∞

−∞
dλ b(λ) eiλx

is a smooth function on R
∗, which has the following asymptotic behaviors :

(i) At infinity, k(x) = O
(
|x|−∞)

. More precisely, for every N > ν+1, there exists

CN ≥ 0 such that, for every x∈R∗,

|k(x)| ≤ CN |x|−N sup
λ∈R

(1+|λ|)N−ν | ∂N
λ b(λ)| .

(ii) At the origin,

k(x) =





O(1) if ν<−1,

O(log 1
|x|) if ν=−1,

O(|x|−ν−1) if ν>−1.

More precisely :

◦ If ν<−1, then there exists C≥0 such that, for every x∈R,

|k(x)| ≤ C sup
λ∈R

(1+|λ|)−ν |b(λ)| .

◦ If ν=−1, then there exists C≥0 such that, for every 0< |x|< 1
2
,

|k(x)| ≤ C log 1
|x|

{
sup
λ∈R

(1+|λ|) |b(λ)| + sup
λ∈R

(1+|λ|)2 |b′(λ)|
}
.

◦ If ν >−1, let N be the smallest integer > ν+1. Then there exists C≥0 such

that, for every 0< |x|<1,

|k(x)| ≤ C |x|−ν−1
N∑

ℓ=0

sup
λ∈R

(1+|λ|)ℓ−ν | ∂ ℓ
λb(λ)| .

(iii) Similar estimates hold for the derivatives

∂ ℓ
x k(x) =

∫ +∞

−∞
dλ (iλ)ℓ b(λ) eiλx

which correspond to symbols bℓ(λ) = (iλ)ℓ a(λ) of order ν+ℓ.
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Lemma A.3. Assume that

b(λ) = ζ χ∞(λ) λ−m−1−iζ + f(λ)

where m∈N, ζ∈R, and f is a symbol of order ν<−m−1. Then

∂m
x k(x) =

∫ +∞

−∞
dλ b(λ) (iλ)m e iλx

is a bounded function at the origin. More precisely, there exists C ≥ 0 such that, for

every 0< |x|< 1
2
,

| ∂m
x k(x)| ≤ C

{
1 + ζ2+ sup

λ∈R
(1+|λ|)−ν |f(λ)|

}
.

Appendix B

In this appendix we collect some properties of the Riesz distributions. We refer to [13,
ch. 1, § 3 & ch. 2, § 2] or [18, ch. III, § 3.2] for more details. The Riesz distribution R+

z

is defined by

(54) 〈R+
z , ϕ〉 = 1

Γ(z)

∫ +∞

0

dλ λz−1 ϕ(λ)

when Re z > 0. It extends to a holomorphic family {R+
z }z∈C of tempered distributions

on R which satisfy the following properties :

(i) λR+
z = zR+

z+1 ∀ z∈ C,

(ii) ( d
dλ
)R+

z = R+
z−1 ∀ z∈ C,

(iii) R+
0 = δ0 and more generally R+

−m = ( d
dλ
)mδ0 ∀ m∈N,

(iv) R+
z+z′ = R+

z ∗R+
z′ ∀ z, z′∈ C.

Hence

〈R+
z , ϕ〉 = 〈( d

dλ
)mR+

z+m , ϕ〉 = (−1)m

Γ(z+m)

∫ +∞

0

dλ λz+m−1
(

d
dλ

)m
ϕ(λ)

when Re z>−m. The Riesz distribution R−
z = (R+

z )
∨ is defined similarly. Their Fourier

transforms are given by

(v) FR±
z = e±iπ

2
z (x± i0)−z ∀ z∈C,

where

〈(x± i0)z, ϕ〉 = limεց0

∫

R

dx (x± iε)z ϕ(x)

when Re z>−1 and

(x± i0)z = Γ(z+1) {R+
z+1+ e±iπzR−

z+1}
in general (notice that there are actually no singularities in the last expression).



24 JEAN–PHILIPPE ANKER, VITTORIA PIERFELICE, AND MARIA VALLARINO

Appendix C

In this appendix we prove the local kernel estimates

(55) | w̃∞
t (r)| . |t|−n−1

2

stated in Theorem 4.2.i.a under the assumptions 0< |t|≤2, 0≤r≤3 and Re σ= n+1
2
. By

symmetry, we may assume again that t>0.

• Case 1 : Assume that r≤ t
2
.

By using the representation (9) of the spherical functions, we obtain

(56) w̃∞
t (r) = eσ

2

Γ(−i Im σ)

∫

∂B(s)

dσ a
Q
2 (rσ)

∫ ∞

1

dλχ∞(λ) b(λ) e iλ{t−log a(rσ)} ,

where

b(λ) = |c(λ)|−2 λ−τ
(
λ2+ Q̃2

4

)τ−σ
2 ,

and a(rσ) is the A-component of the point rσ. By (7)

| t− log a(rσ)| ≥ t− r ≥ t
2

∀σ ∈ ∂B(s) ,

so that according to Lemma A.2 in Appendix A, since χ∞b is a symbol of order n−3
2

the
inner integral in (56) is

O
(
|σ|N | t− log a(rσ)|−n−1

2

)
= O

(
|σ|N t−

n−1

2

)
,

where N is the smallest integer > n−1
2

. Hence

| w̃∞
t (r)| . t−

n−1

2 .

• Case 2 : Assume that r> t
2
.

In this case we estimate w̃t(r) using the inverse Abel transform. More precisely, we apply
the inversion formulae (20) and (21) to the Euclidean Fourier transform

g̃∞
t (r) = eσ

2

Γ(−i Im σ)

∫ +∞

1

dλχ∞(λ) |c(λ)|−2 λ−τ
(
λ2+ Q̃2

4

)τ−σ
2 e itλ cosλr .

We shall use the fact that, for all integers p≥1 and q≥1,

(57) Dp
1 Dq

2 =

p+q∑

j=1

p∑

ℓ=1

γ0
ℓ,j(r)

(
1
r

∂
∂r

)j
,

where the coefficients γ0
ℓ,j(r) in (57) are smooth functions on R, which are linear combi-

nations of products
(

r
sinh r

)
×
(
1
r

∂
∂r

)ℓ2( r
sinh r

)
× · · · ×

(
1
r

∂
∂r

)ℓp( r
sinh r

)

×
(
1
r

∂
∂r

)j1( r
sinh(r/2)

)
× · · · ×

(
1
r

∂
∂r

)jq( r
sinh(r/2)

)

with ℓ2+ . . . + ℓp = p−ℓ and j1+ . . . + jq = q− j + ℓ. We shall also use the following
expansion

(58)
(
1
r

∂
∂r

)j
=

∑ j

h=1
βj,h r

h−2j
(

∂
∂r

)h
,
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where the coefficients βj,h in (58) are constants.

◦ Subcase 2.a : Assume that k is even. Then, up to a multiplicative constant,

w̃∞
t (r) = Dk/2

1 Dm/2
2 g̃∞

t (r) .

Consider first

(59) eσ
2

Γ(−i Im σ)

∫ 6

r

1

dλ χ∞(λ) λ−τ
(
λ2+ Q̃2

4

)τ−σ
2 e itλ

(
1
r

∂
∂r

)j
cosλr .

Since χ∞(λ)λ−τ
(
λ2+ Q̃2

4

)τ−σ
2 e itλ = O(λ−n+1

2 ) according to the assumption Re σ= n+1
2
,

and
(
1
r

∂
∂r

)j
cos λr = O(λ2j ) by Taylor’s formula, the expression (59) is





O(1) if 1≤j < n−1
4

,

O(log 1
r
) if j= n−1

4
,

O(r
n−1

2
−2j ) if n−1

4
< j≤ n−1

2
,

hence O(r−
n−1

2 ) in all cases. Consider next

(60) eσ
2

Γ(−i Im σ)

∫ +∞

6

r

dλ λ−τ
(
λ2+ Q̃2

4

)τ−σ
2 rh−2j

(
∂
∂r

)h
e i(t±r)λ .

Since
(

∂
∂r

)h
e i(t±r)λ = (±iλ)he i(t±r)λ and

λ−τ
(
λ2+ Q̃2

4

)τ−σ
2 (±iλ)h e i(t±r)λ = O(λh−n+1

2 ) ,

the expression (60) is easily seen to be O(r
n−1

2
−2j ) as long as h< n−1

2
. For the remaining

case, where h=j= n−1
2

, let us expand

λ−τ (λ2+ ρ̃2)
τ−σ
2 λ

n−1

2 = λ−1−i Im σ
(
1+ Q̃2

4λ2

)τ−σ
2 = λ−1−i Im σ + O

(
|σ|λ−3

)

and split
∫ +∞

6

r

=

∫ 6

r
+ 1

|r±t|

6

r

+

∫ +∞

6

r
+ 1

|r±t|

in (60). The previous splitting is meaningful only if r 6= t. On one hand, the resulting
integrals

(61) I± = eσ
2

Γ(−i Im σ)

∫ 6

r
+ 1

|r±t|

6

r

dλ λ−1−i Im σ e i(t±r)λ

and

(62) II± = eσ
2

Γ(−i Im σ)

∫ +∞

6

r
+ 1

|r±t|

dλ λ−1−i Imσ e i(t±r)λ

are uniformly bounded. This is proved by integrations by parts :
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I± = eσ
2

Γ(1−i Im σ)

O(1)︷ ︸︸ ︷
λ−i Im σ e i(t±r)λ

∣∣∣
λ= 6

r
+ 1

|r±t|

λ= 6

r

∓ i eσ
2

Γ(1−i Im σ)
(r±t)

∫ 1

r
+ 1

|r±t|

1

r

dλ λ−i Im σ e i(t±r)λ

︸ ︷︷ ︸
O( 1

|r±t|)

= O(1),

while

II± = ∓ i eσ
2

Γ(−i Im σ)
1

r±t

O(|r±t|)︷ ︸︸ ︷
λ−1−i Im σe i(t±r)λ

∣∣∣
λ=+∞

λ= 6

r
+ 1

r±t

∓ i eσ
2
(1+i Im σ)

Γ(−i Im σ)
1

r±t

∫ +∞

6

r
+ 1

|r±t|

dλ λ−2−i Im σe i(t±r)λ

︸ ︷︷ ︸
O(|r±t|)

= O(1).

Hence the contributions of (61) and (62) to (60) are O(r−
n−1

2 ). On the other hand, the

remainder’s contribution to (60) is obviously O(r2−
n−1

2 ). As a conclusion, for all r > t
2

and r 6= t,

| w̃∞
t (r)| . r−

n−1

2 . t−
n−1

2 .

If r = t, the estimates follows as before and is even easier, because ei(t−r)λ = 1.

◦ Subcase 2.b : Assume that k is odd. Then, up to a multiplicative constant,

(63) w̃∞
t (r) = eσ

2

Γ(−i Im σ)

∫ +∞

r

ds sinh s√
cosh s−cosh r

D(k+1)/2
1 Dm/2

2 g̃∞
t (s) .

Let us split

(64)

∫ +∞

r

=

∫ 6

r

+

∫ +∞

6

.

The following estimate is obtained by resuming the proof of Theorem 4.2.i.b in the
odd–dimensional case :

∣∣D(k+1)/2
1 Dm/2

2 g̃∞
t (s)

∣∣ . e−
Q+1

2
s ∀ s≥6 .

Since ∫ +∞

6

ds sinh s√
cosh s−cosh r

e−
Q+1

2
s .

∫ +∞

0

du
√
sinhu

< +∞ ,

the contribution to (63) of the second integral in (64) is uniformly bounded. Thus we
are left with the contribution of the first integral, which is a purely local estimate. To
do so, we argue as in [4, Lemma C.1] and obtain the following result.

Lemma C.1 Let p, q be two integers ≥1 and let λ≥1, r≤3.
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(i) Assume that λr≤6. Then

θ(λ, r) =

∫ 6

r

ds sinh s√
cosh s− cosh r

Dp
1 Dq

2 cosλs

is O(λ2p+2q−1−ε r−ε), for every ε>0.
(ii) Assume that λr≥6. Then

θ±(λ, r) =

∫ 6

r

ds sinh s√
cosh s− cosh r

Dp
1 Dq

2e
±iλs

has the following behavior :

θ±(λ, r) = c± λp+q− 1

2 (sinh r)
1

2
−p−q e±iλr +O(λp+q−1 r−p−q )

where c± is a nonzero complex constant.

Proof. We first prove (i). Recall that

Dp
1 Dq

2(cosλs) =

{
O(λ2p+2q) if λs≤6,

O(λp+qs−p−q) if λs≥6,

hence Dp
1 Dq

2(cosλs) = O(λ2p+2q−1−εs−1−ε) in both cases. By combining this estimate
with

sinh s ≍ s , and cosh s− cosh r ≍ s2− r2 ,

and by performing an elementary change of variables, we reach our conclusion :

|θ(λ, r)| . λ2p+2q−1−ε

∫ 6

r

ds s−ε (s2− r2)−
1

2 ≤ λ2p+2q−1−ε r−ε

∫ +∞

1

ds s−ε (s2−1)−
1

2

︸ ︷︷ ︸
<+∞

.

We next prove (ii). Recall that

Dp
1 Dq

2(e
±iλs) = (± iλ)p+q

(sinh s)p(sinh s/2)q
e±iλs +O(λp+q−1s−p−q−1)

The remainder’s contribution to θ±(λ, r) is estimated as above :
∫ 6

r

ds sinh s√
cosh s− cosh r

λp+q−1 s−p−q−1 . λp+q−1

∫ 6

r

ds s−p−q (s2− r2)−
1

2 . λp+q−1 r−p−q .

In order to handle the contribution of (± iλ)p+q

(sinh s)p(sinh s/2)q
e±iλs we observe that, since r ≤ s ≤

6, this term is comparable to (± iλ)p+q

(sinh s)p+q e
±iλs and we conclude as in [4, Lemma C.1]. �

From now on, the discussion of Subcase 2.b is similar to Subcase 2.a. On one hand, by
applying Lemma C.1.i with p= k+1

2
and q = m

2
, we obtain

∫ 6

r

1
dλ χ∞(λ) λ−τ

(
λ2+ Q̃2

4

)τ−σ
2 e itλ θ(λ, r) = O(rk+m−Reσ+1) = O

(
r−

n−1

2

)
.

On the other hand, by expanding

λ−τ
(
λ2+ Q̃2

4

)τ−σ
2 = λ−σ

(
1+ Q̃2

4λ2

) τ−σ
2 = λ−n+1

2
−i Im σ + O

(
|σ| λ−n+1

2
−2

)
∀ λ≥2
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and θ±(λ, r) according to Lemma C.1.ii, we have

eσ
2

Γ(−i Im σ)

∫ +∞

6

r

dλ χ∞(λ) λ−τ
(
λ2+ Q̃2

4

)τ−σ
2 e itλ θ±(λ, r)

= c± (I±+ II±) (sinh r)
1−n
2 + O

(
r

5

2
−n

2

)
,

where I± and II± denote the integrals (61) and (62), which are uniformly bounded and
whose sum is equal to

eσ
2

Γ(−i Im σ)

∫ +∞

6

r

dλ λ−1−i Im σ e i(t±r)λ .

As a conclusion, we obtain again

| w̃∞
t (r)| . r−

n−1

2 . t−
n−1

2 .

Remark C.3. In order to estimate the wave kernel for small time, we might have used

the Hadamard parametrix [19, § 17.4] instead of spherical analysis.
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