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Introduction

The aim of this paper is to study the dispersive properties of the linear wave equation on Damek-Ricci spaces and their application to nonlinear Cauchy problems.

For the linear wave equation on R n

     ∂ 2 t u(t, x) -∆ x u(t, x) = F (t, x) , u(0, x) = f (x) , ∂ t | t=0 u(t, x) = g(x) , (1) 
the theory is well established ; the dispersive L 1 → L ∞ estimates are classical, while Strichartz estimates were proved by [START_REF] Ginibre | Generalized Strichartz inequalities for the wave equation[END_REF] and [START_REF] Keel | Endpoint Strichartz estimates[END_REF]. These estimates serve as main tools to study the corresponding nonlinear problems and to prove local and global existence with either small or large initial data. In particular, for the semilinear wave equation ( 2)

     ∂ 2 t u(t, x) -∆ x u(t, x) = F (ut(, x)) , u(0, x) = f (x) , ∂ t | t=0 u(t, x) = g(x) , with (3) 
F (u) ∼ |u| γ near 0 , a fairly complete theory of well-posedness for small initial data exists. The results depend on the space dimension n. After the pioneering work [START_REF] John | Blow-up of solutions of nonlinear wave equations in three space dimensions[END_REF] of John in dimension n = 3, Strauss conjectured in [START_REF] Strauss | Nonlinear Wave Equations[END_REF] that the problem ( 2) is globally well-posed for small initial data provided

(4) γ > γ 0 (n) = 1 2 + 1 n-1 + 1 2 + 1 n-1 2 + 2 n-1 (n ≥ 2).
The negative part of the conjecture was verified in [START_REF] Sideris | Nonexistence of global solutions to semilinear wave equations in high dimensions[END_REF] by Sideris, who proved blow up for generic data when γ < γ 0 (n) (and nonlinearities satisfying F (u) |u| γ ). The positive part of the conjecture was also verified for any dimension in several steps (see e.g. [START_REF] Klainerman | Global, small amplitude solutions to nonlinear evolution equations[END_REF] [26], [START_REF] Georgiev | Weighted Strichartz estimates and global existence for semilinear wave equations[END_REF], [START_REF] D'ancona | Weighted decay estimates for the wave equation[END_REF], as well as [START_REF] Georgiev | Semilinear hyperbolic equations[END_REF] for a survey and [START_REF] D'ancona | Decay estimates for the wave and Dirac equations with a magnetic potential[END_REF], [START_REF] D'ancona | Strichartz and smoothing estimates of dispersive equations with magnetic potentials[END_REF] for related results).

Several attemps have been made to extend Strichartz estimates for dispersive equations from Euclidean spaces to other settings. In this paper we consider the shifted wave equation ( 5)

     ∂ 2 t u(t, x) -(∆ S + Q 2 /4) u(t, x) = F (t, x) u(0, x) = f (x) , ∂ t | t=0 u(t, x) = g(x) ,
on Damek-Ricci spaces S (also known as harmonic NA groups). Recall that these spaces are solvable extensions S = N ⋉ R + of Heisenberg type groups N, equipped with an invariant Riemannian structure ; ∆ S denotes the associated Laplace-Beltrami operator, whose L 2 spectrum is the half line -∞; -Q 2 /4 , and Q the homogeneous dimension of N. As Riemannian manifolds, these solvable Lie groups include all symmetric spaces of the noncompact type and rank one ; they are all harmonic but most of them are not symmetric, thus providing counterexamples to the Lichnerowicz conjecture [START_REF] Damek | A class of nonsymmetric harmonic Riemannian spaces[END_REF]. We refer to Section 2 for more details about their structure and analysis thereon.

The Cauchy problem [START_REF] Astengo | A class of L p -convolutors on harmonic extensions of H-type groups[END_REF] was considered by Tataru [START_REF] Tataru | Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation[END_REF] and by Ionescu [START_REF] Ionescu | Fourier integral operators on noncompact symmetric spaces of real rank one[END_REF]. Tataru obtained sharp dispersive L q ′ → L q estimates for the operators cos t -∆ S -Q 2 /4 and sin(t

√ -∆ S -Q 2 /4 ) √ -∆ S -Q 2 /4
when S is a real hyperbolic space, while Ionescu investigated L q → L q estimates for these operators when S is a rank one symmetric space.

In [START_REF] Anker | Nonlinear wave equation on real hyperbolic spaces[END_REF] we derived Strichartz estimates for the Cauchy problem [START_REF] Astengo | A class of L p -convolutors on harmonic extensions of H-type groups[END_REF] when S is a real hyperbolic space. Our aim here is to extend the results obtained in [START_REF] Anker | Nonlinear wave equation on real hyperbolic spaces[END_REF] to the larger class of Damek-Ricci spaces. The difficulty is due to the fact that Damek-Ricci spaces are nonsymmetric in general, so that some of the proofs given in [START_REF] Anker | Nonlinear wave equation on real hyperbolic spaces[END_REF] do not work in this context. Despite this difficulty, we are able to obtain Strichartz estimates for solutions to the Cauchy problem [START_REF] Astengo | A class of L p -convolutors on harmonic extensions of H-type groups[END_REF]. Corresponding results for the the Schrödinger equation were obtained [START_REF] Anker | Nonlinear Schrödinger equation on real hyperbolic spaces[END_REF] and [START_REF] Anker | Schrödinger equations on Damek-Ricci spaces[END_REF] (see also [START_REF] Pierfelice | Weighted Strichartz estimates for the Schrödinger and wave equations on Damek-Ricci spaces[END_REF]).

In Section 7 we apply our Strichartz estimates to obtain global well-posedness results for the nonlinear wave equation with small initial data and low regularity. Notice that this result is new even for hyperbolic spaces, since in [START_REF] Anker | Nonlinear wave equation on real hyperbolic spaces[END_REF] we only discussed local wellposedness. An interesting new feature, which differentiates our results from the Euclidean case, is the absence of a lower critical exponent for power-like nonlinearities on Damek-Ricci spaces. Indeed, for γ > 1 arbitrarily close to 1, we are able to prove global existence for the problem (6)

     ∂ 2 t u(t, x) -(∆ S + Q 2 /4) u(t, x) = F (u(t, x)) , u(0, x) = f (x) , ∂ t | t=0 u(t, x) = g(x) ,
with small initial data and nonlinearities F satisfying

|F (u)| ≤ C |u| γ and |F (u) -F (v)| ≤ C (|u| γ-1 + |v| γ-1 ) |u -v|.
Recall that Tataru [START_REF] Tataru | Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation[END_REF] proved global existence on hyperbolic spaces for small smooth initial data, provided the power γ is greater than the Strauss critical exponent (4). Thus, by combining our results with [START_REF] Tataru | Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation[END_REF], we see that the Cauchy problem ( 6) is well posed for small smooth initial data and any power γ > 1. Notice moreover that in Theorem (7.2) we allow for small initial data with low regularity, arbitrarily close to the critical one in the Euclidean case, which is determined by concentration and scaling arguments.

Damek-Ricci spaces

In this section we recall the definition of H-type groups, describe their Damek-Ricci extensions, and recall the main results of spherical analysis on these spaces. For the details we refer the reader to [START_REF] Anker | Spherical analysis on harmonic AN groups[END_REF][START_REF] Cowling | H-type groups and Iwasawa dwcompositions[END_REF][START_REF] Cowling | An approach to symmetric spaces of rank one via groups of Heisenberg type[END_REF][START_REF] Damek | A class of nonsymmetric harmonic Riemannian spaces[END_REF][START_REF] Damek | Harmonic analysis on solvable extensions of H-type groups[END_REF][START_REF] Ricci | The spherical transform on harmonic extensions of H-type groups[END_REF].

Let n be a Lie algebra equipped with an inner product •, • and denote by | • | the corresponding norm. Let v and z be complementary orthogonal subspaces of n such that [n, z] = {0} and [n, n] ⊆ z. According to Kaplan [START_REF] Kaplan | Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms[END_REF], the algebra n is of H-type if, for every Z in z of unit length, the map J Z : v → v, defined by

J Z X, Y = Z, [X, Y ] ∀X, Y ∈ v ,
is orthogonal. The connected and simply connected Lie group N associated to n is called an H-type group. We identify N with its Lie algebra n via the exponential map

v × z -→ N (X, Z) -→ exp(X + Z) . Thus multiplication in N reads (X, Z)(X ′ , Z ′ ) = X + X ′ , Z + Z ′ + 1 2 [X, X ′ ] ∀X, X ′ ∈ v ∀Z, Z ′ ∈ z .
The group N is a two-step nilpotent group with Haar measure dX dZ . The number Q = m 2 + k, where m and k denote the dimensions of v and z respectively, is called the homogeneous dimension of N.

Let S be the semidirect product S = N ⋉ R + , defined by

(X, Z, a)(X ′ , Z ′ , a ′ ) = X + a 1 2 X ′ , Z + aZ ′ + 1 2 a 1 2 [X, X ′ ], aa ′ for all (X, Z, a), (X ′ , Z ′ , a ′ ) ∈ S . We shall denote by n the dimension m + k + 1 of S .
Notice that m is an even number ≥ 2 and we shall always assume that k ≥ 1 (the case when k = 0 corresponds to real hyperbolic spaces and has been investigated in [START_REF] Anker | Nonlinear wave equation on real hyperbolic spaces[END_REF]). This implies that the dimension of the space S is n ≥ 4.

The group S is nonunimodular. Indeed the right and left Haar measures on S are given respectively by dρ(X, Z, a) = a -1 dX dZ da and dµ(X, Z, a) = a -(Q+1) dX dZ da .

Then the modular function is δ(X, Z, a) = a -Q .

We equip S with the left invariant Riemannian metric induced by the inner product

(X, Z, ℓ), (X ′ , Z ′ , ℓ ′ ) = X, X ′ + Z, Z ′ + ℓ ℓ ′ ,
on the Lie algebra s of S. For every x ∈ S, we shall denote by r(x) the distance between the point x and the identity e of S and by a(x) the A-component of x, i.e. the element a(x) ∈ R + such that x = (X, Z, a(x)), with X ∈ v, Z ∈ z. The following useful inequality holds (see [1, formula (1.20)]) :

(7) | log a(x)| ≤ r(x) ∀ x ∈ S .
The Riemannian measure is the left Haar measure µ introduced above and we denote by ∆ S the Laplace-Beltrami operator associated with this Riemannian structure on S.

A radial function on S is a function that depends only on the distance from the identity. If f is radial, then by [1, formula (1.16)

] S dµ f = ∞ 0 dr f (r) V (r) , where (8) V (r) = 2 m+k sinh m+k r 2 cosh k r 2 ∀ r ∈ R + .
Let π denote the radialisation operator defined in [5, page 150] which associates to each function f in C ∞ (S) a radial function on S. More precisely,

πf (r) = const. ∂B(s) dσ f (rσ) ∀ r ∈ R + ,
where ∂B(s) is the unit sphere in s and dσ denotes the surface measure on it.

The spherical functions ϕ λ on S are normalized eigenfunctions of ∆ S :

∆ S ϕ λ = -λ 2 + Q 2 4 ϕ λ , ϕ λ (e) = 1 ,
where λ ∈ C (see [1, formula (2.6)]). In the sequel we shall use various properties of the spherical functions, which we now summarize. We refer to [START_REF] Anker | Spherical analysis on harmonic AN groups[END_REF][START_REF] Damek | Harmonic analysis on solvable extensions of H-type groups[END_REF] for more details.

All spherical functions are of the form (9)

ϕ λ = π(δ iλ/Q-1/2 ) = π(a(•) -iλ+Q/2 ) ∀ λ ∈ C ,
where δ is the modular function. This easily implies that

(10) |ϕ λ (r)| ϕ 0 (r) ∀ λ ∈ C, ∀ r ∈ R + .
Moreover, it is well known that

(11) ϕ 0 (r) (1+ r) e -Q 2 r ∀ r ∈ R + .
The asymptotic behavior of the spherical functions is given by [25, pp. 7-8]). On one hand, Φ λ is another radial eigenfunction of ∆ S for the same eigenvalue -

ϕ λ (r) = c(λ) Φ λ (r) + c(-λ) Φ -λ (r) ∀ λ ∈ C i 2 Z , where (12) c(λ) = Γ n 2 2 Q-2iλ Γ(2 iλ) Γ(iλ+ Q 2 ) Γ(iλ+ m 4 + 1 2 ) and Φ λ (r) = (2 cosh r 2 ) i2λ-Q 2 F 1 Q 2 -iλ, m 4 -1 2 -iλ; 1-2iλ; (cosh r 2 ) -2 (see
λ 2 + Q 2 4 , i.e. ( 13 
) 0 = ∆ S + Q 2 4 + λ 2 Φ λ (r) = ∂ 2 r + V ′ (r) V (r)) ∂ r + Q 2 4 + λ 2 Φ λ (r) = V (r) -1 2 ∂ 2 r -ω(r) + λ 2 V (r) 1 2 Φ λ (r)
, where ( 14)

ω(r) = V (r) -1 2 ∂ 2 r V (r) 1 2 -Q 2 4 = 1 4 m 2 Q-1 sinh r 2 -2 + k 2 k 2 -1 sinh r -2 = +∞ j=1
ω j e -jr with ω j = O(j).

On the other hand, the function Φ λ can be expanded as follows :

(15)

Φ λ (r) = +∞ ℓ=0 Γ(Q/2-iλ+ℓ) Γ(Q/2-iλ) Γ(m/4+1/2-iλ+ℓ) Γ(m/4+1/2-iλ) Γ(1-2iλ+ℓ) Γ(1-2iλ) 2 2 ℓ ℓ ! (2 cosh r 2 ) 2iλ-Q-2ℓ = 2 -k 2 V (r) -1 2 +∞ ℓ=0
Γ ℓ (λ) e (iλ-ℓ)r as r → +∞.

By combining (13), ( 14), [START_REF] Georgiev | Weighted Strichartz estimates and global existence for semilinear wave equations[END_REF], the coefficients Γ ℓ are shown to satisfy the recurrence formula ( 16)

   Γ 0 = 1, ℓ (ℓ -i 2λ) Γ ℓ (λ) = ℓ-1 j=0 ω ℓ-j Γ j (λ) ∀ ℓ ∈ N * .
It is well known (see e.g. [START_REF] Astengo | A class of L p -convolutors on harmonic extensions of H-type groups[END_REF]Theorem 3.2]) that there exist nonnegative constants C and d such that

(17) |Γ ℓ (λ)| ≤ C (1+ ℓ) d ,
for all ℓ ∈ N and for all λ ∈ C with Im λ ≥ -| Re λ|. We shall need the following improved estimates.

Lemma 2.1. Let 0 < ε < 1 and Ω ε = { λ ∈ C | | Re λ| ≤ ε |λ|, Im λ ≤ -1-ε 2 }.
Then, there exists a positive constant d and, for every h ∈ N, a positive constant C such that

(18) | ∂ h λ Γ ℓ (λ)| ≤ C ℓ d (1+|λ|) -h-1 ∀ ℓ ∈ N * , ∀ λ ∈ C Ω ε . Proof.
The case h ∈ N * follows by Cauchy's formula from the case h = 0, that we prove now. On one hand, there exists A ≥ 0 such that

| ω j | ≤ A j ∀ j ∈ N * .
On the other hand, there exists B > 0 such that

| ℓ -i 2λ| ≥ B max {ℓ, 1+|λ|} ∀ ℓ ∈ N * , ∀ λ ∈ C Ω ε . Choose C = 2A/B and d ≥ 1 such that d+1 ≥ C . For ℓ = 1, we have Γ 1 (λ) = ω 1 1-i 2λ , which implies | Γ 1 (λ)| ≤ A B 1 1+|λ| ≤ C 1+|λ| , as required. For ℓ > 1, we have Γ ℓ (λ) = ω ℓ ℓ (ℓ-i 2λ) + 1 ℓ (ℓ-i 2λ) 0<j<ℓ ω ℓ-j Γ j (λ) , which implies | Γ ℓ (λ)| ≤ A B ℓ 1+|λ| + A B 1 ℓ 2 0<j<ℓ (ℓ-j) C j d 1+|λ| ≤ C 2 ℓ d 1+|λ| + C 2 ℓ d 1+|λ| C ℓ 0<j<ℓ j ℓ d ≤ C ℓ d 1+|λ| .
The spherical Fourier transform Hf of an integrable radial function f on S is defined by

Hf (λ) = S dµ f ϕ λ .
For suitable radial functions f on S, an inversion formula and a Plancherel formula hold:

f (x) = c S ∞ 0 dλ |c(λ)| -2 Hf (λ) ϕ λ (x) ∀x ∈ S ,
and

S dµ |f | 2 = c S ∞ 0 dλ |c(λ)| -2 |Hf (λ)| 2 ,
where the constant c S depends only on m and k. It is well known that

(19) |c(λ)| -2 |λ| -2 (1 + |λ|) n-3 ∀λ ∈ R .
In the sequel we shall use the fact that H = F • A, where A denotes the Abel transform and F denotes the Fourier transform on the real line. Actually we shall use the factorization H -1 = A -1 • F -1 . For later use, let us recall the inversion formulae for the Abel transform [1, formula (2.24)], which involve the differential operators

D 1 = -1 sinh r ∂ ∂r and D 2 = -1 sinh(r/2) ∂ ∂r . If k is even, then (20) A -1 f (r) = a e S D k/2 1 D m/2 2 f (r) ,
where

a e S = 2 -(3m+k)/2 π -(m+k)/2 , while, if k is odd, then (21) A -1 f (r) = a o S ∞ r D (k+1)/2 1 D m/2 2 f (s) dν(s) ,
where a o S = 2 -(3m+k)/2 π -n/2 and dν(s) = (cosh scosh r) -1/2 sinh s ds.

Sobolev spaces and conservation of energy

Let us first introduce inhomogeneous Sobolev spaces on a Damek-Ricci space, which will be involved in the conservation laws, in the dispersive estimates and in the Strichartz estimates for the shifted wave equation. We refer to [START_REF] Triebel | Theory of function spaces II[END_REF] for more details about function spaces on Riemannian manifolds.

Let 1 < q < ∞ and σ ∈ R. By definition, H σ q (S) is the image of L q (S) under (-∆ S ) -σ 2 (in the space of distributions on S), equipped with the norm

f H σ q = (-∆ S ) σ 2 f L q .
In this definition, we may replace

-∆ S by -∆ S -Q 2 4 + Q 2 4 , where Q > Q and we set D = -∆ S -Q 2 4 + Q 2 4 1 2
.

Thus H σ q (S) = D -σ L q (S) and f H σ q ∼ D σ f L q . If σ = N is a nonnegative integer, then H σ q (S) coïncides with the Sobolev space W N,q (S) = { f ∈ L q (S) | ∇ j f ∈ L q (S) ∀ 1 ≤ j ≤ N }
defined in terms of covariant derivatives and equipped with the norm

f W N,q = N j=0 ∇ j f L q .
By following the same proof of [4, Proposition 3.1] we obtain the following Sobolev embedding Theorem.

Proposition 3.1. Let 1 < q 1 < q 2 < ∞ and σ 1 , σ 2 ∈ R such that σ 1 -n q 1 ≥ σ 2 -n q 2 . Then H σ 1 q 1 (S) ⊂ H σ 2 q 2 (S)
. By this inclusion, we mean that there exists a constant C > 0 such that

f H σ 2 q 2 ≤ C f H σ 1 q 1 ∀ f ∈ C ∞ c (S) .
Beside the L q Sobolev spaces H σ q (S), our analysis of the shifted wave equation on S involves the following L 2 Sobolev spaces :

H σ,τ (S) = D -σ D -τ L 2 (S), where D = -∆ S -Q 2 4 1 2 , σ ∈ R and τ < 3
2 (actually we are only interested in the cases τ = 0 and τ

= ± 1 2 ). Notice that      H σ,τ (S) = H σ 2 (S) if τ = 0, H σ,τ (S) ⊂ H σ+τ 2 (S) if τ < 0, H σ,τ (S) ⊃ H σ+τ 2 (S) if 0 < τ < 3 2 . Lemma 3.2. If 0 < τ < 3 2 , then H σ,τ (S) ⊂ H σ+τ 2 (S) + H ∞ 2 + (S), where H ∞ 2 + (S) = s∈R q>2
H s q (S) (recall that H s q (S) is decreasing as q ց 2 and s ր +∞).

Proof. See [4, Lemma 3.2].
Let us next introduce the energy ( 22)

E(t) = 1 2 S dµ(x) |∂ t u(t, x)| 2 + |D x u(t, x)| 2
for solutions to the homogeneous Cauchy problem ( 23)

     ∂ 2 t u -∆ S + Q 2 4 u = 0 u(0, x) = f (x) ∂ t | t=0 u(t, x) = g(x) .
It is easily verified that ∂ t E(t) = 0, hence ( 22) is conserved. In other words, for every time t in the interval of definition of u,

∂ t u(t, x) 2 L 2 x + D x u(t, x) 2 L 2 x = g 2 L 2 + Df 2 L 2 .
Let σ ∈ R and τ < 3 2 . By applying the operator Dσ D τ to ( 23), we deduce that

∂ t Dσ x D τ x u(t, •) 2 L 2 x + Dσ x D τ +1 x u(t, •) 2 L 2 x = Dσ D τ g 2 L 2 + Dσ D τ +1 f 2 L 2 ,
which can be rewritten in terms of Sobolev norms as follows :

(24) ∂ t u(t, •) 2 H σ,τ + u(t, •) 2 H σ,τ +1 = g 2 H σ,τ + f 2 H σ,τ +1 .

Kernel estimates

In this section we derive pointwise estimates for the radial convolution kernel w (σ,τ ) t of the operator W (σ,τ ) t = D -τ Dτ-σ e i tD , for suitable exponents σ ∈ R and τ ∈ [0, 3 2 ). To do so, we follow the strategy used in [START_REF] Anker | Nonlinear wave equation on real hyperbolic spaces[END_REF] for hyperbolic spaces. The difficulty here is that Damek-Ricci spaces are nonsymmetric in general, so that some of the proofs given in [START_REF] Anker | Nonlinear wave equation on real hyperbolic spaces[END_REF] do not work in this context.

By the inversion formula of the spherical Fourier transform,

w (σ,τ ) t (r) = const. +∞ 0 dλ |c(λ)| -2 λ -τ λ 2 + Q 2 4 τ -σ 2 ϕ λ (r) e itλ .
Let us split up

w (σ,τ ) t (r) = w (σ,τ ) t,0 (r) + w (σ,τ ) t,∞ (r) = const. 2 0 dλ χ 0 (λ) |c(λ)| -2 λ -τ λ 2 + Q 2 4 τ -σ 2 ϕ λ (r) e itλ + const. +∞ 1 dλ χ ∞ (λ) |c(λ)| -2 λ -τ λ 2 + Q 2 4 τ -σ 2 ϕ λ (r) e itλ ,
using smooth cut-off functions χ 0 and χ ∞ on [0, +∞) such that 1 = χ 0 + χ ∞ , χ 0 = 1 on [0, 1] and χ ∞ = 1 on [2, +∞). We shall first estimate w (σ,τ ) t,0 and next a variant of w

(σ,τ ) t,∞ .
The kernel w (σ,τ )

t,∞ has indeed a logarithmic singularity on the sphere r = t when σ = n+1 2 . We bypass this problem by considering the analytic family of operators

W (σ,τ ) t,∞ = e σ 2 Γ( n+1 2 -σ) χ ∞ (D) D -τ Dτ-σ e i tD in the vertical strip 0 ≤ Re σ ≤ n+1
2 and the corresponding kernels ( 25)

w (σ,τ ) t,∞ (r) = e σ 2 Γ( n+1 2 -σ) +∞ 1 dλ χ ∞ (λ) |c(λ)| -2 λ -τ λ 2 + Q 2 4 τ -σ 2 e itλ ϕ λ (r) .
Notice that the Gamma function, which occurs naturally in the theory of Riesz distributions, will allow us to deal with the boundary point σ = n+1 2 , while the exponential function yields boundedness at infinity in the vertical strip. Notice also that, once multiplied by χ ∞ (D), the operator D -τ Dτ-σ behaves like D-σ . 

|w 0 t (r)| ϕ 0 (r). (ii) Assume that |t| ≥ 2. (a) If 0 ≤ r ≤ |t| 2 , then |w 0 t (r)| |t| τ -3 ϕ 0 (r). (b) If r ≥ |t| 2 , then |w 0 t (r)| (1+ |r-|t||) τ -2 e -Q 2 r . Proof. Recall that (26) w 0 t (r) = const. 2 0 dλ χ 0 (λ) |c(λ)| -2 λ -τ λ 2 + Q 2 4 τ -σ 2 ϕ λ (r) e itλ .
By symmetry we may assume that t > 0.

(i) It follows from the estimates ( 10) and ( 19) that

|w 0 t (r)| 2 0 dλ λ 2-τ ϕ 0 (r) ϕ 0 (r) .
(ii) We prove first (a) by substituting the representation (9) of ϕ λ in [START_REF] Lindblad | On existence and scattering with minimal regularity for semilinear wave equations[END_REF]. Specifically,

w 0 t (r) = const. ∂B(s) dσ a(rσ) Q/2 2 0 dλ χ 0 (λ) b(λ) e i{t-log a(rσ)}λ , where b(λ) = |c(λ)| -2 λ -τ λ 2 + Q 2 4 τ -σ 2
and a(rσ) is the A-component of the point rσ defined in Section 2. According to estimate [START_REF] Cowling | An approach to symmetric spaces of rank one via groups of Heisenberg type[END_REF] and to Lemma A.1 in Appendix A, the inner integral is bounded above by

{t -log a(rσ)} τ -3 ≤ (t -r) τ -3 ≍ t τ -3
∀σ ∈ ∂B(s) .

Since π a(•) Q/2 = ϕ 0 , we conclude that

w 0 t (r) t τ -3 ∂B(s) dσ a(rσ) Q/2 = C t τ -3 π a(•) Q/2 (r) = C t τ -3 ϕ 0 (r) .
We prove next (b) by substituting in [START_REF] Lindblad | On existence and scattering with minimal regularity for semilinear wave equations[END_REF] the asymptotic expansion (15) of ϕ λ and by reducing to Fourier analysis on R. Specifically, ( 27)

w 0 t (r) = const. e -Q 2 r
+∞ ℓ=0 e -ℓr I +,0 ℓ (t, r) + I -,0 ℓ (t, r) , where

I ±,0 ℓ (t, r) = 2 0 dλ χ 0 (λ) b ± ℓ (λ) e i(t±r)λ and b ± ℓ (λ) = c(∓λ) -1 λ -τ λ 2 + Q 2 4 τ -σ 2
Γ ℓ (±λ) . By applying Lemma A.1 and Lemma 2.1, we obtain

|I +,0 ℓ (t, r)| (1+ ℓ) d (t+r) τ -2 ≤ (1+ ℓ) d r τ -2 and |I -,0 ℓ (t, r)| (1+ ℓ) d (1 + |r-t|) τ -2
, where d is the constant which appears in Lemma 2.1.

We conclude the proof by summing up these estimates in [START_REF] Pierfelice | Weighted Strichartz estimates for the Schrödinger and wave equations on Damek-Ricci spaces[END_REF].

4.2. Estimate of w ∞ t = w (σ,τ ) t,∞ .
Theorem 4.2. The following pointwise estimates hold for the kernel

w ∞ t = w (σ,τ ) t,∞ , for any fixed τ ∈ R and uniformly in σ ∈ C with Re σ = n+1 2 : (i) Assume that 0 < |t| ≤ 2. (a) If 0 ≤ r ≤ 3, then | w ∞ t (r)| |t| -n-1 2 . (b) If r ≥ 3, then w ∞ t (r) = O r -∞ e -Q 2 r . (ii) Assume that |t| ≥ 2. Then | w ∞ t (r)| (1 + |r -|t||) -∞ e -Q 2 r ∀ r ≥ 0.
Proof of Theorem 4.2.ii. Recall that, up to a positive constant,

w ∞ t (r) = e σ 2 Γ( n+1 2 -σ) +∞ 1 dλ χ ∞ (λ) |c(λ)| -2 λ -τ λ 2 + Q 2 4 τ -σ 2 ϕ λ (r) e itλ .
By symmetry we may assume again that t > 0. If 0 ≤ r ≤ t 2 , we resume the proof of Theorem 4.1.ii.a, using Lemma A.2 instead of Lemma A.1, and estimate this way

(28) | w ∞ t (r)| (t-r) -∞ ϕ 0 (r) t -∞ e -Q 2 r .
If r ≥ t 2 , we resume the proof of Theorem 4.1.ii.b and expand this way

(29) w ∞ t (r) = e σ 2 Γ( n+1 2 -σ) e -Q 2 r +∞ ℓ=0 e -ℓr I +,∞ ℓ (t, r) + I -,∞ ℓ (t, r) ,
where

I ±,∞ ℓ (t, r) = +∞ 0 dλ χ ∞ (λ) b ± ℓ (λ) e i(t±r)λ and b ± ℓ (λ) = c(∓λ) -1 λ -τ λ 2 + Q 2 4 τ -σ 2 Γ ℓ (±λ) .
It follows from the expression (12) of the c-function and from Lemma 2.1 that b ± ℓ is a symbol of order

ν = -1 if k = 0 , -2 if k ∈ N * .
By Lemma A.2 we obtain that forall N ∈ N * , there exists a positive constant C N such that for every ℓ ∈ N

(30) |I +,∞ ℓ (t, r)| ≤ C N |σ| N (1 + ℓ) d (t + r) -N ≤ C N |σ| N (1 + ℓ) d r -N ,
and for every ℓ

∈ N * (31) |I -,∞ ℓ (t, r)| ≤ C N |σ| N (1 + ℓ) d (1 + |r -t|) -N ,
where d is the constant which appears in Lemma 2.1. To estimate the term I -,∞ 0 we apply Lemma A.3. To do so, we establish the asymptotic behavior of the symbol b - 0 (λ), as λ → +∞. On one hand, by [START_REF] D'ancona | Strichartz and smoothing estimates of dispersive equations with magnetic potentials[END_REF] we have

c(λ) -1 = 1 Γ( n 2 ) 2 -Q+i2λ Γ(iλ+ Q 2 ) Γ(iλ+ m 4 + 1 2 ) Γ(i 2λ) = C(n, m, Q) iλ+ Q 2 iλ iλ-1 2 iλ + Q 2 Q 2 iλ+ m 4 + 1 2 iλ iλ iλ + m 4 + 1 2 m 4 1 + O(λ -1 ) = C(n, m, Q) λ Q 2 + m 4 1 + O(λ -1 ) ,
according to Stirling's formula

Γ(ξ) = √ 2π ξ ξ-1 2 e -ξ 1 + O(|ξ| -1
) . On the other hand,

λ -τ (λ 2 + ρ2 ) τ -σ 2 = λ -σ 1 + O(|σ|λ -2 ) . Since Q 2 + m 4 -Re σ = -1 we get b - 0 (λ) = c 0 λ -1-i Im σ + r 0 (λ) with |r 0 (λ)| ≤ C |σ| λ -2 . As announced, it follows now from Lemma A.3 that (32) |I -,∞ 0 (t, r)| ≤ C |σ| 2 | Im σ| if |r-t| ≤ 1.
By combining (28), ( 29), [START_REF] Strauss | Nonlinear Wave Equations[END_REF], [START_REF] Tataru | Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation[END_REF] and [START_REF] Triebel | Theory of function spaces II[END_REF], we conclude that

| w ∞ t (r)| (1 + |r-t|) -∞ e -Q 2 r ∀ r ≥ t 2 .
The estimate of Theorem 4.2.i.a is of local nature and thus similar to the Euclidean case.

For the sake of completeness, we include a proof in Appendix C.

Proof of Theorem 4.2.i.b. Here 0 < |t| ≤ 2 and r ≥ 3. By symmetry we may assume again that t > 0. Up to positive constants, the inverse spherical Fourier transform (25) can be rewritten in the following way :

w ∞ t (r) = e σ 2 Γ( n+1 2 -σ) A -1 g t (r)
, where

g t (r) = 2 +∞ 1 dλ χ ∞ (λ) λ -τ λ 2 + Q 2 4 τ -σ 2 
e itλ cos λr .

Let us split up 2 cos λr = e iλr + e -iλr and g t (r) = g + t (r)+ g - t (r) accordingly, so that

g ± t (r) = +∞ 1 dλ χ ∞ (λ) λ -τ λ 2 + Q 2 4 τ -σ 2 
e i(t±r)λ .

Recall that the inversion formulae ( 20) and ( 21) of the Abel transform involve the differential operators

D 1 = -1 sinh r ∂ ∂r and D 2 = -1 sinh(r/2) ∂ ∂r .
We shall use the fact that, for all integers p ≥ 1 and q ≥ 1, (33)

D p 1 D q 2 = p+q j=1 p ℓ=1 γ ∞ ℓ,j (r) ∂ ∂r j
,

where the coefficients γ ∞ ℓ,j (r) are linear combinations of products (34)

1 sinh r × ∂ ∂r ℓ 2 1 sinh r × • • • × ∂ ∂r ℓm × ∂ ∂r j 1 1 sinh(r/2) × • • • ∂ ∂r jq 1 
sinh(r/2) , with ℓ 2 + . . . + ℓ p = p -ℓ and j 1 + . . . + j q = q -j + ℓ. Since 1 sinh r = 2 +∞ h=0 e -(2h+1)r is O(e -r ), as well as its derivatives, we deduce that γ ∞ ℓ,j (r) is O(e -(p+q/2)r ) as r → +∞. We shall also use the fact that

∂ ∂r j g ± t (r) = +∞ 1 dλ χ ∞ (λ) λ -τ λ 2 + Q 2 4 τ -σ 2 
(±iλ) j e i(t±r)λ .

According to Lemma A.2, for every N ∈ N * , there exists

C N ≥ 0 such that (35) ∂ ∂r j g ± t (r) ≤ C N |σ| N (r ± t) -N . • Case 1 : Assume that k is even.
By the formula [START_REF] Ionescu | Fourier integral operators on noncompact symmetric spaces of real rank one[END_REF] we obtain that

w ∞ t (r) = const. e σ 2 Γ( n+1 2 -σ) D k/2 1 D m/2 2 (g + t + g - t )(r) ,
which by (33) and ( 35) is estimated by

| w ∞ t (r)| ≤ C N r -N e -Q 2 r
∀N ∈ N * .

• Case 2 : Assume that k is odd.

According to (33) and (35), for every N ∈ N * , there exists C N ≥ 0 such that

D (k+1)/2 1 D m/2 2 g t (s) ≤ C N |σ| N s -N e -Q+1 2 s ∀ s ≥ 3 .
By estimating cosh scosh r = 2 sinh s+r 2 sinh s-r 2 e r sinh s-r 2 , sinh s e s , e -Q 2 s ≤ e -Q 2 r , s -N ≤ r -N , and performing the change of variables s = r+u, we deduce that

| w ∞ t (r)| e σ 2 Γ( n+1 2 -σ) +∞ r ds sinh s √ cosh s -cosh r D (k+1)/2 1 D m/2 2 g t (s) ≤ C N +∞ r ds sinh s √ cosh s -cosh r s -N e -Q+1 2 s ≤ C N r -N e -Q 2 r +∞ 0 du √ sinh u 2 ≤ C N r -N e -Q 2 r .

Dispersive estimates

In this section we obtain L q ′ → L q estimates for the operator D -τ Dτ-σ e i tD , which will be crucial for our Strichartz estimates in next section. Let us split up its kernel w t = w 0 t + w ∞ t as before. We will handle the contribution of w 0 t , using the pointwise estimates obtained in Subsection 4.1 and the following criterion. Lemma 5.1. There exists a positive constant C such that, for every radial measurable function κ on S, for every 2 ≤ q, q < ∞ and f ∈ L q ′ (S),

f * κ L q ≤ C f L q′ +∞ 0 dr V (r) ϕ 0 (r) ν |κ(r)| α 1 α .
where ν =2 min{q, q} q + q , α = α(q, q) = q q q + q and V denotes the radial density of the measure µ as in [START_REF] Damek | A class of nonsymmetric harmonic Riemannian spaces[END_REF].

Proof. This estimate is obtained by interpolation between the following version of the Herz criterion [START_REF] Herz | Sur le phénomène de Kunze-Stein[END_REF] for Damek-Ricci spaces obtained in [1, Theorem 3.3]

f * κ L 2 f L 2 +∞ 0 dr V (r) ϕ 0 (r) |κ(r)| ,
and the elementary inequalities

f * κ L q ≤ f L 1 κ L q , f * κ L ∞ ≤ f L q′ κ L q .
For the second part w ∞ t , we resume the Euclidean approach, which consists in interpolating analytically between L 2 → L 2 and L 1 → L ∞ estimates for the family of operators ( 36)

W (σ,τ ) t,∞ = e σ 2 Γ( n+1 in the vertical strip 0 ≤ Re σ ≤ n+1 2 . 5.1. Small time dispersive estimate. Theorem 5.2. Assume that 0 < |t| ≤ 2, 2 < q < ∞, 0 ≤ τ < 3 2 and σ ≥ (n +1)( 1 2 -1 q ). Then, D -τ Dτ-σ e i tD L q ′ →L q |t| -(n-1)( 1 2 -1 q ) .
Proof. We divide the proof into two parts, corresponding to the kernel decomposition w t = w 0 t +w ∞ t . By applying Lemma 5.1 and by using the pointwise estimates in Theorem 4.1.i, we obtain on one hand

f * w 0 t L q +∞ 0 dr V (r) ϕ 0 (r) |w 0 t (r)| q 2 2 q f L q ′ +∞ 0 dr (1+ r) 1+ q 2 e -Q 2 r ( q 2 -1) 2 q f L q ′ f L q ′ ∀ f ∈ L q ′ .
For the second part, we consider the analytic family (36). If Re σ = 0, then

f * w ∞ t L 2 f L 2 ∀ f ∈ L 2 .
If Re σ = n+1 2 , we deduce from the pointwise estimates in Theorem 4.

2.i that f * w ∞ t L ∞ |t| -n-1 2 f L 1 ∀ f ∈ L 1 .
By interpolation we conclude for σ = (n + 1)

1 2 -1 q that f * w ∞ t L q |t| -(n-1)( 1 2 -1 q ) f L q ′ ∀ f ∈ L q ′ . 5.2. Large time dispersive estimate. Theorem 5.3. Assume that |t| ≥ 2, 2 < q < ∞, 0 ≤ τ < 3 2 and σ ≥ (n+1)( 1 2 -1 q ). Then D -τ Dτ-σ e i tD L q ′ →L q |t| τ -3 .
Proof. We divide the proof into three parts, corresponding to the kernel decomposition

w t = 1I B 0, |t| 2 w 0 t + 1I S B 0, |t| 2 
w 0 t + w ∞ t .
Estimate 1 : By applying Lemma 5.1 and using the pointwise estimates in Theorem 4.1.ii.a, we obtain

f * {1I B 0, |t| 2 w 0 t } L q |t| 2 0 dr V (r) ϕ 0 (r) |w 0 t (r)| q 2 2 q f L q ′ +∞ 0 dr (1+ r) 1+ q 2 e -Q 2 r ( q 2 -1) 2 q <+∞ |t| τ -3 f L q ′ ∀ f ∈ L q ′ .
Estimate 2 : By applying Lemma 5.1 and using the pointwise estimates in Theorem 4.1.ii.b, we obtain

f * {1I S B 0, |t| 2 w 0 t } L q +∞ |t| 2 dr V (r) ϕ 0 (r) 2 q |w 0 t (r)| q 2 2 q f L q ′ +∞ |t| 2 dr r e -( q 2 -1) Q 2 r 2 q |t| -∞ f L q ′ ∀ f ∈ L q ′ .
Estimate 3 : In order to estimate the L q ′ → L q norm of f → f * w ∞ t , we use interpolation for the analytic family (36). If Re σ = 0, then

f * w ∞ t L 2 f L 2 ∀ f ∈ L 2 . If Re σ = n+1 2 , we deduce from Theorem 4.2.ii that f * w ∞ t L ∞ |t| -∞ f L 1 ∀ f ∈ L 1 .
By interpolation we conclude for σ = (n+1)

1 2 -1 q that f * w ∞ t L q |t| -∞ f L q ′ ∀ f ∈ L q ′ .
By taking τ = 1 in Theorems 5.2 and 5.3, we obtain in particular the following dispersive estimates.

Corollary 5.4. Let 2 < q < ∞ and σ ≥ (n+1) 1 2 -1 q . Then D-σ+1

e i t D D L q ′ →L q |t| -(n-1)( 1 2 -1 q ) if 0 < |t| ≤ 2, |t| -2 if |t| ≥ 2 .

Strichartz estimates

Consider the inhomogeneous linear wave equation on S :

(37)

     ∂ 2 t u(t, x) -∆ S + Q 2 4 u(t, x) = F (t, x) u(0, x) = f (x) ∂ t | t=0 u(t, x) = g(x) ,
whose solution is given by Duhamel's formula :

u(t, x) = (cos tD x )f (x) + sin tDx Dx g(x) + t 0 ds sin(t-s)Dx Dx F (s, x) . Definition 6.1. A couple (p, q) is called admissible if 1 p , 1 q belongs to the triangle (38) T n = 1 p , 1 q ∈ 0, 1 2 × 0, 1 2 2 p + n-1 q ≥ n-1 2 .
From the dispersive estimates obtained above and by arguing as in the proof of Theorem [4, 6.3] we obtain the following result. Theorem 6.2. Let (p, q) and (p, q) be two admissible couples. Then the following Strichartz estimate holds for solutions to the Cauchy problem (37) :

(39) u L p (R;L q ) f H σ-1 2 , 1 2 + g H σ-1 2 ,-1 2 + F L p′ R;H σ+σ-1 q′ , where σ ≥ (n+1) 2 1 2 -1 q and σ ≥ (n+1) 2 1 2 -1 q . Moreover, ( 40 
) u L ∞ R;H σ-1 2 , 1 2 
+ ∂ t u L ∞ R;H σ-1 2 ,-1 2 f H σ-1 2 , 1 2 + g H σ-1 2 ,-1 2 + F L p′ R;H σ+σ-1 q′ .
Remark 6.3. Observe that, in the statement of Theorem 6.2, we may replace R by any time interval I containing 0.

GWP results for the NLW equation on S

We apply Strichartz estimates for the inhomogeneous linear Cauchy problem associated with the wave equation to prove global well-posedness results for the following nonlinear Cauchy problem (41)

     ∂ 2 t u(t, x) -∆ S + Q 2 4 u(t, x) = F (u(t, x)) u(0, x) = f (x) ∂ t | t=0 u(t, x) = g(x) ,
with a power-like nonlinearity F (u). By this we mean that Definition 7.1. The Cauchy problem (41) is globally well-posed in H σ,τ × H σ,τ -1 if, for any bounded subset B of H σ,τ × H σ,τ -1 , there exist a Banach space X, continuously embedded into C (R; H s,τ ) ∩ C 1 (R; H s,τ -1 ), such that • for any initial data (f, g) ∈ B, (41) has a unique solution u ∈ X;

• the map (f, g) → u is continuous from B into X.
The amount of smoothness σ requested for GWP of (41

) in H σ-1 2 , 1 2 ×H σ-1 2 ,- 1 
2 depends on γ and is represented in Figure 1 below. There

γ 1 = n+3 n = 1+ 3 n , γ 2 = (n+1) 2 (n-1) 2 +4 = 1+ 2 n-1 2 + 2 n-1 , γ conf = n+3 n-1 = 1+ 4 n-1 , γ 3 = n 2 +5n-2+ √ n 4 +2n 3 +21n 2 -12n+4 2n 2 -2n = 1+ 4n+( n-6 2 -2 n-1 ) 2 -( n-6 2 -2 n-1 ) n , γ 4 = n 2 +2n-5 n 2 -2n-1 = 1+ 2 n-1 2 -1 n-1 , γ ∞ = min{γ 3 , γ 4 } = γ 3 if n = 4, 5, γ 4 if n ≥ 6,
and the curves C 1 , C 2 , C 3 are given by

C 1 (γ) = n+1 4 1 -n+5 2 nγ -n-1 , C 2 (γ) = n+1 4 -1 γ -1 , C 3 (γ) = n 2 -2 γ -1 . σ 0 1 1 2 n 2 γ γ 1 γ 2 γ conf γ ∞ C 1 C 2 C 3 Figure 1. Regularity in dimension n ≥ 4
Theorem 7.2. Assume that F (u) satisfies (42). Then (41) is globally well-posed for small initial data in

H σ-1 2 , 1 2 ×H σ-1 2 ,-1 2 in the following cases : (A) 1 < γ ≤ γ 1 and σ > 0 ; (B) γ 1 < γ ≤ γ 2 and σ ≥ C 1 (γ) ; (C) γ 2 ≤ γ ≤ γ conf and σ ≥ C 2 (γ) ; (D) γ conf ≤ γ < γ ∞ ( 1 ) and σ ≥ C 3 (γ).
More precisely, for such γ and σ, there exists an admissible couple (p 0 , q 0 ) and, for sufficiently small initial data

(f, g) ∈ H σ-1 2 , 1 2 ×H σ-1 2 ,-1 2 , a unique solution u to (41) such that u ∈ C 1 R; H σ-1 2 , 1 2 (S) ∩ L p 0 R; L q 0 (S)) and ∂ t u ∈ C R; H σ-1 2 ,-1 2 (S) .
Proof. We apply the standard fixed point method based on Strichartz estimates. Define u = Φ(v) as the solution to the following linear Cauchy problem (43)

     ∂ 2 t u(t, x) -D 2 x u(t, x) = F (v(t, x)), u(0, x) = f (x), ∂ t | t=0 u(t, x) = g(x),
which is given by the Duhamel formula

u(t, x) = (cos tD x )f (x) + sin tDx Dx g(x) + t 0 ds sin(t-s)Dx Dx F (v(s, x)) .
1 The endpoint γ = γ ∞ is excluded in dimension n = 4, 5 and is actually included in dimension n ≥ 6.

By Theorem 6.2 this solution satisfies the Strichartz estimate

u L ∞ R;H σ-1 2 , 1 2 
+ ∂ t u L ∞ R;H σ-1 2 ,-1 2 + u L p (R;L q ) f H σ-1 2 , 1 2 + g H σ-1 2 ,-1 2 + F (v) L p′ R;H σ+σ-1 q′ ,
which hold for all admissible couples (p, q), (p, q) introduced in Definition 6.1 and for all σ ≥ n+1

2 1 2 -1 q , σ ≥ n+1 2 1 2 -1 q .
According to the nonlinear assumption (42), we estimate the inhomogeneous term as follows :

F (v) L p′ R; H σ+σ-1 q′ |v| γ L p′ R;H σ+σ-1 q′ . Assuming σ + σ -1 ≤ n ( 1 q′ -1 q′ 1
) ≤ 0, we deduce from Sobolev's embedding (Proposition 3.1) that (44)

u L ∞ R;H σ-1 2 , 1 2 
+ ∂ t u L ∞ R;H σ-1 2 ,-1 2 + u L p (R;L q ) f H σ-1 2 , 1 2 + g H σ-1 2 ,-1 2 + v γ L p′ γ R;L q′ 1 γ .
In order to remain within the same function space, we require that q = q′ 1 γ and p = p′ γ. It remains for us to check that the following conditions can be fulfilled simultaneously :

(45)                          (i) p = p′ γ , (ii) 0 < 1 q′ ≤ γ q < 1 , (iii) n-1 2 -n+1 2 1 q + 1 q ≤ n 1 q′ -γ q , (iv) 2 p + n-1 q ≥ n-1 2 , (v) 2 p + n-1 q ≥ n-1 2 , (vi) 1 p , 1 q ∈ 0, 1 2 × n-3 2(n-1) , 1 2 , (vii) 1 p , 1 q ∈ 0, 1 2 × n-3 2(n-1) , 1 2 . 
Suppose indeed that there exist indices p, q, p, q satisfying all conditions in (45). Then (44) shows that Φ maps X into itself, where X denotes the Banach space

X = u u ∈ C (R; H σ-1 2 , 1 2 (S)) ∩ L p (R; L q (S)) , ∂ t u ∈ C (R; H σ-1 2 ,-1 2 (S)) ,
equipped with the norm

u X = u L ∞ R;H σ-1 2 , 1 2 
+ ∂ t u L ∞ R;H σ-1 2 ,-1 2 + u L p R;L q ,
Moreover we shall show that Φ is a contraction on the ball

X ε = { u ∈ X | u X ≤ ε } , provided ε > 0 and f H σ-1 2 , 1 2 + g H σ-1 2 ,- 1 
2 are sufficiently small. Let v, ṽ ∈ X and u = Φ(v), ũ = Φ(ṽ). By arguing as above and using Hölder's inequality, we have

(46) u -ũ X ≤ C F (v) -F (ṽ) L p′ R;H σ+σ-1 q′ ≤ C {|v| γ-1 + |ṽ| γ-1 } |v -ṽ| L p′ R;L q′ 1 ≤ C v γ-1 L p R;L q + ṽ γ-1 L p R;L q v -ṽ L p R;L q ≤ C v γ-1 X + ṽ γ-1 X v -ṽ X . If v X ≤ ε and ṽ X ≤ ε and f H σ-1 2 , 1 2 + g H σ-1 2 ,-1 2 ≤ δ, then (44) yields on one hand u X ≤ C δ + C ε γ and ũ X ≤ C δ + C ε γ ,
while (46) yields on the other hand

u -ũ X ≤ 2 C ε γ-1 v -ṽ X .
Thus, if we choose ε > 0 and δ > 0 so small that

C ε γ-1 ≤ 1 4 and C δ ≤ 3 4 ε, then u X ≤ ε, ũ X ≤ ε and u -ũ X ≤ 1 2 v -ṽ X , if v, ṽ ∈ X ε and u = Φ(v), ũ = Φ(ṽ).
Hence the map Φ is a contraction on the complete metric space X ε and the fixed point theorem allows us to conclude.

Let us eventually prove the existence of couples (p, q) and (p, q) satisfying all conditions in (45). Condition (45.iii) amounts to (47)

2nγ -n-1 q + n-1 q ≤ n + 1 i.e. 1 q ≤ n+1 n-1 -2nγ-n-1 n-1 1 
q . By combining (47) with (45.ii) and (45.vi), we deduce that n-3

2(n-1) ≤ 1 q ≤ 2 (γ-1)(n+1) .
This implies that γ ≤ γ ∞ = n 2 +2n-7 (n+1)(n-3) = 1+ 4(n-1) (n+1)(n-3) . By combining (47) with (45.vii), we obtain n-3

2(n-1) ≤ 1 q ≤ min 1 2 , n+1 n-1 -2nγ-n-1 n-1 1 
q , 1 q = 1 2 . By combining (47) with (45.vii), we also obtain 1 q ≤ n+5 2(2nγ-n-1) . In summary, the conditions on q reduce to n-3

2(n-1) ≤ 1 q ≤ min 1 2 , 1 γ , 2 (γ-1)(n+1) , n+5 2(2nγ-n-1) , 1 q = 1 2 , 1 γ , or case by case to • 1 < γ ≤ γ 1 and n-3 2(n-1) ≤ 1 q < 1 2 , • γ 1 < γ ≤ γ 2 and n-3 2(n-1) ≤ 1 q ≤ n+5 2(2nγ-n-1) , • γ 2 < γ ≤ γ ∞ and n-3 2(n-1) ≤ 1 q ≤ 2 (γ-1)(n+1)
. Let us turn to the indices p and p. According to (45), we have

n-1 2 1 2 -1 q ≤ 1 p ≤ 1 2
and n-1

2 1 2 -1 q ≤ 1 p ≤ 1 2 .
Since 1 p = 1 -γ p , we end up with the following conditions on p and p :

(48) (i) n-1 2 1 2 -1 q ≤ 1 p ≤ min 1 2 , 5-n 4γ + n-1 2γ q , (ii) n-1 2 1 2 -1 q ≤ 1 p ≤ 1 2 .
There exist indices p and p which satisfy (48) provided that 1 q ≥ γ 2 + n-5 2(n-1) -γ q . We thus have to find q such that (49)

max n-3 2(n-1) , γ 2 + n-5 2(n-1) -γ q ≤ 1 q ≤ min 1 2 , n+1 n-1 -2nγ -n-1 (n-1)q
, with 1 q = 1 2 . This implies that q has to satisfy the following conditions : (50)

max n-3 2(n-1) , 1 2 -2 γ (n-1) ≤ 1 q ≤ min 1 2 , 1 γ , 2 (γ-1)(n+1) , n+5 2(2nγ-n-1) , n+7-γ (n-1) 2(γ-1)(n+1) , with 1 q = 1 2 -2 γ (n-1) , 1 2 , 1 γ .
The fact that n-3 2(n-1) ≤ n+7-γ (n-1) 2(γ-1)(n+1) easily implies that γ ≤ γ 4 < γ∞ . The fact that 1 2 -2 γ (n-1) < n+7-γ (n-1) 2(γ-1)(n+1) implies that γ < γ 3 . In summary, here are the final conditions on q, depending on γ and possibly on the dimension n :

(A) 1 < γ ≤ γ 1 = 1 + 3 n and n-3 2(n-1) ≤ 1 q < 1 2 . (B) γ 1 < γ ≤ γ 2 = (n+1) 2 n 2 -2n+5 and n-3 2(n-1) ≤ 1 q ≤ n+5 2(2nγ-n-1) . (C) γ 2 < γ < γ conf and n-3 2(n-1) ≤ 1 q ≤ 2 (γ-1)(n+1)
when n ≥ 5. When n = 4, we distinguish two subcases :

• γ 2 < γ ≤ 2 and n-3 2(n-1) ≤ 1 q ≤ 2 (γ-1)(n+1) , • 2 < γ < γ conf and 1 2 -2 γ (n-1) < 1 q ≤ 2 (γ-1)(n+1
) . (D) When n ≥ 6, we distinguish two subcases :

• γ conf ≤ γ ≤ 2 and n-3 2(n-1) ≤ 1 q ≤ n+7-γ (n-1) 2(γ-1)(n+1) , • 2 < γ ≤ γ 4 and 1 2 -2 γ (n-1) < 1 q ≤ n+7-γ (n-1) 2(γ-1)(n+1) . When n = 5, we replace γ 4 by γ 3 and require γ < γ 3 . When n = 4, γ conf ≤ γ < γ 3 and 1 2 -2 γ (n-1) < 1 q ≤ n+7-γ (n-1) 2(γ-1)(n+1) . Let us now examine these cases separately. Case (A). In this case, we choose successively q such that n-3 2(n-1) ≤ 1 q < 1 2 , q satisfying (49), and p, p satisfying (48). Thus, when 1 < γ ≤ γ 1 and σ > 0, there exists always an admissible couple (p, q) such that all conditions (45) are satisfied and σ ≥ (n+1) 2 ( 1 2 -1 q ). Case (B). In this case, we choose successively q such that n-3

2(n-1) ≤ 1 q ≤ n+5 2(2nγ-n-1)
p, p satisfying (48), and a correspondent q which satisfies (49). Thus, when γ 1 < γ ≤ γ 2 and σ ≥ n+1 4 -(n+1)(n+5) 4(2nγ-n-1) , there exists an admissible couple (p, q) such that all conditions (45) are satisfied and σ

≥ (n+1) 2 ( 1 2 -1 q ).
More precisely, let N be the smallest integer > d+1.

Then ∃ C ≥ 0, ∀ x ∈ R * , |k(x)| ≤ C |x| -ν-1 N ℓ=0 sup λ∈R * (1+|λ|) ℓ-ν | ∂ ℓ λ b(λ)| .
Lemma A.2. Let b be an inhomogeneous symbol on R of order ν ∈ R. In other words, b is a smooth function on R such that

sup λ∈R (1+|λ|) ℓ-ν | ∂ ℓ λ b(λ)| < +∞ ∀ ℓ ∈ N .
Then its Fourier transform

k(x) = +∞ -∞ dλ b(λ) e iλx
is a smooth function on R * , which has the following asymptotic behaviors :

(i) At infinity, k(x) = O |x| -∞ .
More precisely, for every N > ν +1, there exists

C N ≥ 0 such that, for every x ∈ R * , |k(x)| ≤ C N |x| -N sup λ∈R (1+|λ|) N -ν | ∂ N λ b(λ)| .
(ii) At the origin,

k(x) =      O(1) if ν < -1, O(log 1 |x| ) if ν = -1, O(|x| -ν-1 ) if ν > -1.

More precisely :

• If ν < -1, then there exists C ≥ 0 such that, for every x ∈ R,

|k(x)| ≤ C sup λ∈R (1+|λ|) -ν |b(λ)| . • If ν = -1, then there exists C ≥ 0 such that, for every 0 < |x| < 1 2 , |k(x)| ≤ C log 1 |x| sup λ∈R (1+|λ|) |b(λ)| + sup λ∈R (1+|λ|) 2 |b ′ (λ)| . • If ν > -1, let N be the smallest integer > ν +1. Then there exists C ≥ 0 such that, for every 0 < |x| < 1, |k(x)| ≤ C |x| -ν-1 N ℓ=0 sup λ∈R (1+|λ|) ℓ-ν | ∂ ℓ λ b(λ)| .
(iii) Similar estimates hold for the derivatives

∂ ℓ x k(x) = +∞ -∞ dλ (iλ) ℓ b(λ) e iλx which correspond to symbols b ℓ (λ) = (iλ) ℓ a(λ) of order ν +ℓ. Lemma A.3. Assume that b(λ) = ζ χ ∞ (λ) λ -m-1-iζ + f (λ)
where m ∈ N, ζ ∈ R, and f is a symbol of order ν < -m-1. Then

∂ m x k(x) = +∞ -∞ dλ b(λ) (iλ) m e iλx
is a bounded function at the origin. More precisely, there exists C ≥ 0 such that, for every 0

< |x| < 1 2 , | ∂ m x k(x)| ≤ C 1 + ζ 2 + sup λ∈R (1+|λ|) -ν |f (λ)| . ∀σ ∈ ∂B(s) , so that according to Lemma A.2 in Appendix A, since χ ∞ b is a symbol of order n-3 2 the inner integral in (56) is O |σ| N | t -log a(rσ)| -n-1 2 = O |σ| N t -n-1 2 , where N is the smallest integer > n-1 2 . Hence | w ∞ t (r)| t -n-1 2 . • Case 2 : Assume that r > t 2 .
In this case we estimate w t (r) using the inverse Abel transform. More precisely, we apply the inversion formulae [START_REF] Ionescu | Fourier integral operators on noncompact symmetric spaces of real rank one[END_REF] and [START_REF] John | Blow-up of solutions of nonlinear wave equations in three space dimensions[END_REF] to the Euclidean Fourier transform

g ∞ t (r) = e σ 2 Γ(-i Im σ) +∞ 1 dλ χ ∞ (λ) |c(λ)| -2 λ -τ λ 2 + Q 2 4 τ -σ 2 
e itλ cos λr .

We shall use the fact that, for all integers p ≥ 1 and q ≥ 1, (57)

D p 1 D q 2 = p+q j=1 p ℓ=1 γ 0 ℓ,j (r) 1 r ∂ ∂r j
,

where the coefficients γ 0 ℓ,j (r) in (57) are smooth functions on R, which are linear combinations of products

r sinh r × 1 r ∂ ∂r ℓ 2 r sinh r × • • • × 1 r ∂ ∂r ℓp r sinh r × 1 r ∂ ∂r j 1 r sinh(r/2) × • • • × 1 r ∂ ∂r jq r sinh(r/2)
with ℓ 2 + . . . + ℓ p = p-ℓ and j 1 + . . . + j q = q -j + ℓ. We shall also use the following expansion (58)

1 r ∂ ∂r j = j h=1 β j,h r h-2j ∂ ∂r h
, where the coefficients β j,h in (58) are constants.

• Subcase 2.a : Assume that k is even. Then, up to a multiplicative constant,

w ∞ t (r) = D k/2 1 D m/2 2 g ∞ t (r) . Consider first (59) e σ 2 Γ(-i Im σ) 6 r 1 dλ χ ∞ (λ) λ -τ λ 2 + Q 2 4 τ -σ 2 e itλ 1 r ∂ ∂r j cos λr . Since χ ∞ (λ)λ -τ λ 2 + Q 2 4 τ -σ 2 e itλ = O(λ - n+1 
2 ) according to the assumption Re σ = n+1 2 , and 1 r ∂ ∂r j cos λr = O(λ 2j ) by Taylor's formula, the expression (59) is

     O(1) if 1 ≤ j < n-1 4 , O(log 1 r ) if j = n-1 4 , O(r n-1 2 -2j ) if n-1 4 < j ≤ n-1 2 , hence O(r -n- 1 
2 ) in all cases. Consider next (60)

e σ 2 Γ(-i Im σ) +∞ 6 r dλ λ -τ λ 2 + Q 2 4 τ -σ 2 r h-2j ∂ ∂r h e i(t±r)λ .
Since ∂ ∂r h e i(t±r)λ = (±iλ) h e i(t±r)λ and

λ -τ λ 2 + Q 2 4 τ -σ 2 (±iλ) h e i(t±r)λ = O(λ h-n+1 2 ) ,
the expression (60) is easily seen to be O(r n-1 2 -2j ) as long as h < n-1 2 . For the remaining case, where h = j = n-1 2 , let us expand

λ -τ (λ 2 + ρ2 ) τ -σ 2 λ n-1 2 = λ -1-i Im σ 1+ Q 2 4λ 2 τ -σ 2 = λ -1-i Im σ + O |σ|λ -3
and split are uniformly bounded. This is proved by integrations by parts : Hence the contributions of ( 61) and ( 62) to (60) are O(r -n-1

I ± = e σ 2 Γ(1-i Im σ) O(1) λ -i Im σ e i(t±r)λ λ= 6 r + 1 |r±t| λ= 6 r ∓ i e σ 2 Γ(1-i Im σ) (r±t) 1 r + 1
2 ). On the other hand, the remainder's contribution to (60) is obviously O(r 2-n-1

2 ). As a conclusion, for all r > t 2 and r = t,

| w ∞ t (r)| r -n-1 2 t -n-1
2 . If r = t, the estimates follows as before and is even easier, because e i(t-r)λ = 1.

• Subcase 2.b : Assume that k is odd. Then, up to a multiplicative constant, θ ± (λ, r) = c ± λ p+q-1 2 (sinh r) 1 2 -p-q e ±iλr + O(λ p+q-1 r -p-q ) where c ± is a nonzero complex constant.

Proof. We first prove (i). Recall that D p 1 D q 2 (cos λs) = O(λ 2p+2q ) if λs ≤ 6, O(λ p+q s -p-q ) if λs ≥ 6, hence D p 1 D q 2 (cos λs) = O(λ 2p+2q-1-ε s -1-ε ) in both cases. By combining this estimate with sinh s ≍ s , and cosh scosh r ≍ s 2 -r 2 , and by performing an elementary change of variables, we reach our conclusion : We next prove (ii). Recall that D p 1 D q 2 (e ±iλs ) = (± iλ) p+q (sinh s) p (sinh s/2) q e ±iλs + O(λ p+q-1 s -p-q-1 ) The remainder's contribution to θ ± (λ, r) is estimated as above : 6 r ds sinh s √ cosh scosh r λ p+q-1 s -p-q-1 λ p+q-1 6 r ds s -p-q (s 2 -r 2 ) -1 2 λ p+q-1 r -p-q .

In order to handle the contribution of (± iλ) p+q (sinh s) p (sinh s/2) q e ±iλs we observe that, since r ≤ s ≤ 6, this term is comparable to (± iλ) p+q (sinh s) p+q e ±iλs and we conclude as in [START_REF] Anker | Nonlinear wave equation on real hyperbolic spaces[END_REF]Lemma C.1]. From now on, the discussion of Subcase 2.b is similar to Subcase 2.a. On one hand, by applying Lemma C.1.i with p = k+1 2 and q = m 2 , we obtain On the other hand, by expanding As a conclusion, we obtain again

λ -τ λ 2 + Q 2 4 τ -σ 2 = λ -σ 1 + Q 2 4λ 2 τ -σ 2 = λ -n+1 2 -i Im σ + O |σ| λ -n+1
| w ∞ t (r)| r -n-1 2 t -n-1 2 .
Remark C.3. In order to estimate the wave kernel for small time, we might have used the Hadamard parametrix [19, § 17.4] instead of spherical analysis.

  (42) |F (u)| ≤ C |u| γ and |F (u) -F (v)| ≤ C (|u| γ-1 + |v| γ-1 ) |u -v| for some C ≥ 0 and γ > 1. Let us recall the definition of global well-posedness.

  ). The previous splitting is meaningful only if r = t. On one hand, the resulting integrals Im σ e i(t±r)λ

|r±t| 1 rII ± = ∓ i e σ 2 Γ 6 r + 1 |r±t|

 1261 dλ λ -i Im σ e i(t±r)λ (-i Im σ)1 r±t O(|r ±t|) λ -1-i Im σ e i(t±r)λ λ=+∞ λ= 6 r + 1 r±t ∓ i e σ 2 (1+i Im σ) Γ(-i Im σ) 1 r±t +∞ dλ λ -2-i Im σ e i(t±r)λ O(|r ±t|)= O(1).

6 .

 6 The following estimate is obtained by resuming the proof of Theorem 4.2.i.b in the odd-dimensional case : u < +∞ , the contribution to (63) of the second integral in (64) is uniformly bounded. Thus we are left with the contribution of the first integral, which is a purely local estimate. To do so, we argue as in [4, Lemma C.1] and obtain the following result.Lemma C.1 Let p, q be two integers ≥ 1 and let λ ≥ 1, r ≤ 3.

( i )

 i Assume that λr ≤ 6. Thenθ(λ, r) = 6 r ds sinh s √ cosh scosh r D p 1 D q 2 cos λs is O(λ 2p+2q-1-ε r -ε ), for every ε > 0. (ii) Assume that λr ≥ 6. Then θ ± (λ, r) = 6 r ds sinh s √ cosh scosh r D p 1 D q 2 e ±iλshas the following behavior :

6 r 1 ds s -ε (s 2 - 1

 6121 ds s -ε (s 2 -r 2 ) -1 2 ≤ λ 2p+2q-1-ε r -ε +∞

6 r 1 4 τ -σ 2 e 2 .

 61422 dλ χ ∞ (λ) λ -τ λ 2 + Q 2 itλ θ(λ, r) = O(r k+m-Reσ +1 ) = O r -n-1

2 - 2 ∀ λ ≥ 2 and 6 r 4 τ -σ 2 e 2 , 6 r

 22264226 θ ± (λ, r) according to Lemma C.1.ii, we havee σ 2 Γ(-i Im σ) +∞ dλ χ ∞ (λ) λ -τ λ 2 + Q 2 itλ θ ± (λ, r) = c ± (I ± + II ± ) (sinh r)where I ± and II ± denote the integrals (61) and (62), which are uniformly bounded and whose sum is equal to e σ 2 Γ(-i Im σ) +∞ dλ λ -1-i Im σ e i(t±r)λ .

  Assume that |t| ≤ 2. Then, for every r ≥ 0,

	4.1. Estimate of w 0 t = w	(σ,τ ) t,0 .
	Theorem 4.1. Let σ ∈ R and τ < 2. The following pointwise estimates hold for the kernel w 0 t = w (σ,τ ) t,0 :
	(i)	

-σ) χ ∞ (D) D -τ Dτ-σ e i tD

Case (C). Assume first that n ≥ 5. we choose successively q such that (51) n-3 2(n-1) ≤ 1 q ≤ 2 (γ-1)(n+1) , q satisfying (49), and p, p satisfying (48).

Assume next that n = 4. If γ 2 < γ ≤ 2, we choose q according to (51). If 2 < γ < γ conf , we replace (51) by

In both cases, we can choose afterwards q, p, p satisfying (49) and (48).

In summary, when γ 2 < γ < γ conf and σ ≥ n+1 4 -1 γ-1 , there exists always an admissible couple (p, q) such that all conditions (45) are satisfied and σ ≥ (n+1) 2 ( 1 2 -1 q ). Case (D). Assume first that n ≥ 6. If γ conf ≤ γ ≤ 2, we choose successively q such that (52

2(γ-1)(n+1) , q satisfying (49), and p, p satisfying (48). If 2 < γ ≤ γ 4 , (52) is replaced by

2(γ-1)(n+1) . Assume next that n = 5. We choose again q according to (52) if γ conf ≤ γ ≤ 2 and according to (53) if 2 < γ < γ 3 . In both cases, we can choose afterwards q, p, p satisfying (49) and (48).

Assume eventually that n = 4. Then we choose q according to (52) and q, p, p satisfying (49) and (48).

In summary, in this case when σ ≥ n 2 -2 γ-1 , there exists always an admissible couple (p, q) such that all conditions (45) are satisfied and σ ≥ n+1 2 ( 1 2 -1 q ). This concludes the proof of Theorem 7.2.

Appendix A

In this appendix we collect some lemmata in Fourier analysis on R which are used for the kernel analysis in Section 4 and in Appendix C. These lemmata are proved in [4, Appendix A].

Lemma A.1. Let b be a compactly supported homogeneous symbol on R of order ν > -1. In other words, b is a smooth function on R * , whose support is bounded in R and which has the following behavior at the origin :

Then its Fourier transform

is a smooth function on R, with the following behavior at infinity:

Appendix B

In this appendix we collect some properties of the Riesz distributions. We refer to [13, ch. 1, § 3 & ch. 2, § 2] or [18, ch. III, § 3.2] for more details. The Riesz distribution R + z is defined by

when Re z > 0. It extends to a holomorphic family {R + z } z∈C of tempered distributions on R which satisfy the following properties :

∨ is defined similarly. Their Fourier transforms are given by

when Re z > -1 and (x ± i0) z = Γ(z+1) {R + z+1 + e ±iπz R - z+1 } in general (notice that there are actually no singularities in the last expression).

Appendix C

In this appendix we prove the local kernel estimates

stated in Theorem 4.2.i.a under the assumptions 0 < |t| ≤ 2, 0 ≤ r ≤ 3 and Re σ = n+1 2 . By symmetry, we may assume again that t > 0.

• Case 1 : Assume that r ≤ t 2 . By using the representation (9) of the spherical functions, we obtain