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A PDE APPROACH TO LARGE-TIME ASYMPTOTICS
FOR BOUNDARY-VALUE PROBLEMS FOR

NONCONVEX HAMILTON-JACOBI EQUATIONS

GUY BARLES AND HIROYOSHI MITAKE

Abstract. We investigate the large-time behavior of three types

of initial-boundary value problems for Hamilton-Jacobi Equations

with nonconvex Hamiltonians. We consider the Neumann or oblique

boundary condition, the state constraint boundary condition and

Dirichlet boundary condition. We establish general convergence re-

sults for viscosity solutions to asymptotic solutions as time goes to

infinity via an approach based on PDE techniques. These results are

obtained not only under general conditions on the Hamiltonians but

also under weak conditions on the domain and the oblique direction

of reflection in the Neumann case.

1. Introduction and Main Results

In this paper we investigate the large time behavior of viscosity solu-

tions of the initial-boundary value problems for Hamilton-Jacobi Equa-

tions which we write under the form

(IB)











ut +H(x,Du) = 0 in Ω× (0,∞), (1)

B(x, u,Du) = 0 on ∂Ω× (0,∞), (2)

u(x, 0) = u0(x) on Ω, (3)

where Ω is a bounded domain of RN , H = H(x, p) is a given real-valued

continuous function on Ω× [0,∞), which is coercive, i.e.,

(A1) lim
r→+∞

inf{H(x, p) | x ∈ Ω, |p| ≥ r} = +∞.

Here B and u0 are given real-valued continuous functions on ∂Ω × R ×
R

N and Ω, respectively. The solution u is a real-valued function on

Ω × [0,∞) and we respectively denote by ut := ∂u/∂t and Du :=

(∂u/∂x1, . . . , ∂u/∂xN ) its time derivative and gradient with respect to
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the space variable. We are dealing only with viscosity solutions of Hamilton-

Jacobi equations in this paper and thus the term “viscosity” may be

omitted henceforth. We also point out that the boundary conditions

have to be understood in the viscosity sense : we refer the reader to the

beginning of Appendix where this definition is recalled.

We consider three types of boundary conditions (BC in short)

(Neumann or oblique BC) B(x, r, p) = γ(x) · p− g(x), (4)

where g is a given real-valued continuous function on ∂Ω and γ : Ω → R
N

is a continuous vector field which is oblique to ∂Ω, i.e.,

n(x) · γ(x) > 0 for any x ∈ ∂Ω, (5)

where n(x) is the outer unit normal vector at x to ∂Ω,

(state constraint BC) B(x, r, p) = −1 for all (x, r, p) ∈ Ω× R× R
N ,

(6)

and finally

(Dirichlet BC) B(x, r, p) = r − g(x). (7)

We respectively denote Problem (IB) with boundary conditions (4), (6)

and (7) by (CN), (SC) and (CD).

We impose different regularity assumptions on ∂Ω depending on the

boundary condition we are treating. When we consider Neumann/oblique

derivative problems, we always assume that Ω is a domain with a C1-

boundary. When we consider state constraint or Dirichlet problems, we

always assume that Ω is a domain with a C0-boundary. Moreover when

we consider Dirichlet problems, we assume a compatibility condition on

the initial value u0 and the boundary value g, i.e.,

u0(x) ≤ g(x) for all x ∈ ∂Ω. (8)

Since we are going to assume γ in (4) to be only continuous (and not

Lipschitz continuous as it is classically the case), we have to solve Prob-

lem (IB) with very weak conditions. This is possible as a consequence

of the coercivity assumption on H since the solutions are expected to be

in W 1,∞, which denotes the set of bounded functions whose the first dis-

tributional derivatives are essentially bounded. We postpone the proof

of the existence, uniqueness and regularity of the solution u of (IB) to

Appendix since the proofs are a little bit technical and the main topic

of this paper concerns the asymptotic behavior as t → +∞ of the solu-

tions. The reader may first assume that ∂Ω and γ are regular enough to

concentrate on this asymptotic behavior and then consider Appendix for

the generalization to less regular situations.

More precisely we have the following existence result for (IB).
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Theorem 1.1 (Existence of Solutions of (IB)). Assume that (A1) holds

and that u0 ∈ W 1,∞(Ω).

(i) Assume that Ω is a bounded domain with a C1-boundary and that γ, g

are continuous functions which satisfy (5). There exists a unique solution

u of (CN) which is continuous on Ω× [0,∞) and in W 1,∞(Ω× [0,∞)).

(ii) Assume that Ω is a bounded domain with a C0-boundary. There exists

a unique solution u of (SC) which is continuous on Ω × [0,∞) and in

W 1,∞(Ω× [0,∞)).

(iii) Assume that Ω is a bounded domain with a C0-boundary and that

g ∈ C(∂Ω) and u0 which satisfy (8). There exists a unique solution u of

(CD) which is continuous on Ω× [0,∞) and in W 1,∞(Ω× [0,∞)).

Throughout this work, we are going to use anytime the same assump-

tions as in Theorem 1.1 which clearly depend on the kind of problem we

are considering. In order to simplify the statements of our results, we will

say from now on the “basic assumptions” ((BA) in short) are satisfied if

(A1) holds and if Ω is a bounded domain with a C1-boundary in the case

of Neumann/oblique derivatives boundary conditions or Ω is a bounded

domain with a C0-boundary in the case of state constraint or Dirichlet

boundary conditions. When it is relevant, u0 ∈ W 1,∞(Ω) is also assumed

to be part of (BA) (results for time-dependent problems) and so are the

continuity assumptions for γ, g on ∂Ω as well as (5) and (8).

Next we recall that the standard asymptotic behavior for solutions of

Hamilton-Jacobi Equations is given by an additive eigenvalue or ergodic

problem : for t large enough, the solution u(x, t) is expected to look like

−ct + v(x) where the constant c and the function v are solutions of

H(x,Dv(x)) = c in Ω ,

with suitable boundary conditions. A typical result, which was first

proved in R
N for the periodic case by P.-L. Lions, G. Papanicolaou and

S. R. S. Varadhan [27], is that there exists a unique constant c for which

this problem has a solution, while the solution v may be non unique,

even up to an additive constant. This non-uniqueness feature is a key

difficulty in the study of the asymptotic behavior.

In the Neumann/oblique derivative or state constraint case, the addi-

tive eigenvalue or ergodic problem reads

(E)

{

H(x,Dv(x)) = a in Ω, (9)

B(x, v(x), Dv(x)) = 0 on ∂Ω. (10)

Here one seeks for a pair (v, a) of v ∈ C(Ω) and a ∈ R such that v is a

solution of (E). If (v, a) is such a pair, we call v an additive eigenfunction
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or ergodic function and a an additive eigenvalue or ergodic constant. We

denote Problem (E) with (4), (6) by (E-N) and (E-SC).

For the large-time asymptotics of solutions of (CD), as we see it later,

there are different cases which are treated either by using (E-SC) or the

stationary Dirichlet problems

(D)a

{

H(x,Dv(x)) = a in Ω, (11)

v(x) = g(x) on ∂Ω (12)

for a ∈ R. Since the existence of solutions of (E-N), (E-SC) and (D)a are

playing a central role, we first state the following result.

Theorem 1.2 (Existence of Solutions of Additive Eigenvalue Problems).

Assume that (BA) holds.

(i) There exists a solution (v, cn) ∈ W 1,∞(Ω) × R of (E-N). Moreover,

the additive eigenvalue is unique and is represented by

cn = inf{a ∈ R | (E-N) has a subsolution}. (13)

(ii) There exists a solution (v, csc) ∈ W 1,∞(Ω)×R of (E-SC). An additive

eigenvalue is unique and is represented by

csc = inf{a ∈ R | (9) has a subsolution}. (14)

(iii) There exists a solution v ∈ W 1,∞(Ω) of (D)a if and only if a ≥ csc.

Existence results of solutions of (E) have been established by P.-L.

Lions in [25] (see also [21]) for the Neumann/oblique derivative boundary

condition and by I. Capuzzo-Dolcetta and P.-L. Lions in [7] (see also

[28]) for the state constraint boundary condition. Additive eigenvalue

problems (E) and (D)a give the “stationary states” for solutions of (IB)

as our main result shows. A simple observation related to this is that,

for any (v, c) ∈ C(Ω), the function v(x) − ct is a solution of (IB) if and

only if (v, c) is a solution of (E) or (D)c.

As we suggested above, our main purpose is to prove that the solution

u of (IB) has, for the Neumann/oblique derivative or the state constraint

boundary condition, the following behavior

u(x, t)− (v(x)− ct) → 0 uniformly on Ω as t→ ∞, (15)

where (v, c) ∈ W 1,∞(Ω) × R is a solution of (E-N) or (E-SC) while,

for the Dirichlet boundary condition case, this behavior depends on the

sign of csc. We call such a function v(x) − ct an asymptotic solution of

(IB). It is worth mentioning that though we can relatively easily get the

convergence

u(x, t)

t
→ −c uniformly on Ω as t→ ∞



LARGE-TIME ASYMPTOTICS FOR BOUNDARY-VALUE PROBLEMS 5

as a result of Theorem 1.2 and the comparison principle for (IB) (see

Theorem 7.1), it is generally rather difficult to show (15), since (as we

already mention it above) additive eigenfunctions of (E) or solutions of

(D)c may not be unique.

Before stating our main result on the asymptotic behavior of solution

of (E), we recall that, in the last decade, the large time behavior of

solutions of Hamilton-Jacobi equation in compact manifold (or in R
N ,

mainly in the periodic case) has received much attention and general

convergence results for solutions have been established. G. Namah and

J.-M. Roquejoffre in [31] are the first to prove (15) under the following

additional assumption

H(x, p) ≥ H(x, 0) for all (x, p) ∈ M× R
N and max

M
H(x, 0) = 0, (16)

where M is a smooth compact N -dimensional manifold without bound-

ary. Then A. Fathi in [10] proved the same type of convergence result by

dynamical systems type arguments introducing the “weak KAM theory”.

Contrarily to [31], the results of [10] use strict convexity (and smoothness)

assumptions on H(x, ·), i.e., DppH(x, p) ≥ αI for all (x, p) ∈ M × R
N

and α > 0 (and also far more regularity) but do not require (16). Af-

terwards J.-M. Roquejoffre [32] and A. Davini and A. Siconolfi in [9]

refined the approach of A. Fathi and they studied the asymptotic prob-

lem for (1) on M or N -dimensional torus. We also refer to the articles

[3, 20, 16, 17, 18] for the asymptotic problems in the whole domain R
N

without the periodic assumptions in various situations. The first author

and P. E. Souganidis obtained in [4] more general results, for possibly

non-convex Hamiltonians, by using an approach based on partial differ-

ential equations methods and viscosity solutions, which was not using

in a crucial way the explicit formulas of representation of the solutions.

Later, the first author and J.-M. Roquejoffre provided results for un-

bounded solutions, for convex and non-convex equations, using partially

the ideas of [4] but also of [31]. In this paper, we follow the approach of

[4].

There also exists results on the asymptotic behavior of solutions of

convex Hamilton-Jacobi Equation with boundary conditions. The sec-

ond author [28] studied the case of the state constraint boundary con-

dition and then the Dirichlet boundary conditions [29, 30]. Roquejoffre

in [32] was also dealing with solutions of the Cauchy-Dirichlet problem

which satisfy the Dirichlet boundary condition pointwise (in the classical

sense) : this is a key difference with the results of [29, 30] where the so-

lutions were satisfying the Dirichlet boundary condition in a generalized

(viscosity solutions) sense. For Cauchy-Neumann problems, H. Ishii in
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[22] establishes very recently the asymptotic behavior. We point out that

all these works use a generalized dynamical approach similar to [10, 9],

which is very different from ours. Our results are more general since they

also hold also for non-convex Hamiltonians. It is worthwhile to mention

that our results on (15) include those in [28, 29, 22].

We also refer to the articles [32, 6] for the large time behavior of solu-

tions to time-dependent Hamilton-Jacobi equations and [13, 12] for the

convergence rate in (15). Recently the second author with Y. Giga and Q.

Liu in [14, 15] has gotten the large time behavior of solutions of Hamilton-

Jacobi equations with noncoercive Hamiltonian which is motivated by a

model describing growing faceted crystals.

To state our main result, we need the following assumptions on the

Hamiltonian. We denote by Ha(x, p) the Hamiltonian H(x, p) − a for

a ∈ R.

(A2)+a There exists η0 > 0 such that, for any η ∈ (0, η0], there exists

ψη > 0 such that if Ha(x, p + q) ≥ η and Ha(x, q) ≤ 0 for some

x ∈ Ω and p, q ∈ R
N , then for any µ ∈ (0, 1],

µHa(x,
p

µ
+ q) ≥ Ha(x, p+ q) + ψη(1− µ).

(A2)−a There exists η0 > 0 such that, for any η ∈ (0, η0], there exists

ψη > 0 such that if Ha(x, p+ q) ≤ −η and Ha(x, q) ≥ 0 for some

x ∈ Ω and p, q ∈ R
N , then for any µ ≥ 1,

µHa(x,
p

µ
+ q) ≤ Ha(x, p+ q)− ψη(µ− 1)

µ
.

Our main result is the following theorem.

Theorem 1.3 (Large-Time Asymptotics). Assume that (BA) holds.

(i) (Neumann/oblique derivative problem) If (A2)+cn or (A2)−cn holds,

then there exists a solution v ∈ W 1,∞(Ω) of (E-N) with c = cn such that

(15) holds with c = cn.

(ii) (State constraint problem) If (A2)+csc or (A2)
−
csc holds, then there

exists a solution v ∈ W 1,∞(Ω) of (E-SC) with c = csc such that (15) holds

with c = csc.

(iii) (Dirichlet problem) Assume that (A2)+csc or (A2)−csc holds.

(iii-a) If csc > 0, then there exists a solution v ∈ W 1,∞(Ω) of (E-SC) with

c = csc such that (15) holds with c = csc.

(iii-b) If csc ≤ 0, then there exists a solution v ∈ W 1,∞(Ω) of (D)0 such

that (15) holds with c = 0.

Assumption (A2)+a is introduced in [4] to replace the convexity as-

sumption : it mainly concerns the set {Ha ≥ 0} and the behavior of
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Ha in this set. Assumption (A2)−a is a modification of (A2)+a which, on

the contrary, concerns the set {Ha ≤ 0}. We can generalize them as in

[4] (see Remark 1 (ii)) but to simplify our arguments we only use the

simplified version in Theorem 1.3. It is worthwhile to mention that we

can deal with u0 ∈ C(Ω) and prove that uniform continuous solutions of

(IB) (instead of Lipschitz continuous solutions) have the same large-time

asymptotics given by Theorem 1.3. See Remark 1 (i). We also mention

that assumptions (A2)+c and (A2)−c are equivalent as (A7)+ and (A7)−
in [18] under the assumption that H is coercive and convex with respect

to p-variable, where c is the associated constant as in Theorem 1.3 (see

[16, Appencix C]).

This paper is organized as follows: in Section 2 we recall the proof of

Theorem 1.2. In Section 3 we present asymptotically monotone property,

which is a key tool to prove Theorem 1.3. Section 4 is devoted to the

proof of a key lemma to prove asymptotically monotone properties. In

Section 5, we give the proof of Theorem 1.3 and we give some remarks on

the large-time behavior of solutions of convex Hamilton-Jacobi equations

in Section 6. In Appendix we present the definition, existence, uniqueness

and regularity results for (IB).

Notations. Let RN denote the N -dimensional Euclidean space for some

k ∈ N. We denote by | · | the usual Euclidean norm. We write B(x, r) =

{y ∈ R
N | |x − y| < r} for x ∈ R

N , r > 0. For A ⊂ R
N , we denote by

C(A), BUC (A), LSC (A), USC (A) and Ck(A) the space of real-valued

continuous, bounded uniformly continuous, lower semicontinuous, upper

semicontinuous and k-th continuous differentiable functions on A for k ∈
N, respectively. We write a ∧ b = min{a, b} and a ∨ b = max{a, b} for

a, b ∈ R. We call a function m : [0,∞) → [0,∞) a modulus if it is

continuous and nondecreasing on [0,∞) and vanishes at the origin. For

any k ∈ N ∪ {0} we call Ω a domain with a Ck boundary if Ω is has a

boundary ∂Ω locally represented as the graph of a Ck function, i.e., for

each z ∈ ∂Ω there exist r > 0 and a function b ∈ Ck(RN−1) such that

—upon relabelling and re-orienting the coordinates axes if necessary—

we have

Ω ∩B(z, r) = {(x′, xN ) ∈ R
N−1 × R | x ∈ B(z, r), xN > b(x′)}.

2. Additive Eigenvalue Problem

Proof of Theorem 1.2. We just sketch the proof since it is an easy adap-

tation of classical arguments.
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We start with (E-N) and for any ε ∈ (0, 1), we consider
{

εuε +H(x,Duε) = 0 in Ω,

B(x, uε, Duε) = 0 on ∂Ω.
(17)

In order to apply Perron’s method, we first build a subsolution and a

supersolution.

We claim that u−1,ε = −M1/ε and u
+
1,ε =M1/ε are respectively sub and

supersolution of (17). This is obvious in Ω for a suitable large M1 > 0

since H(x, 0) is continuous, hence bounded, on Ω. If x ∈ ∂Ω, we recall

(see [25, 8] for instance) that the super-differential of u−1,ε at x consists

in elements of the form λn(x) with λ ≤ 0 and we have to show that

min{−M1 +H(x, λn(x)), λn(x) · γ(x)− g(x)} ≤ 0.

By (5) it is clear enough that there exists λ̄ < 0 such that, if λ ≤ λ̄, then

λn(x) · γ(x) − g(x) ≤ 0. Then choosing M1 ≥ max{H(x, λn(x)) | x ∈
∂Ω, λ̄ ≤ λ ≤ 0}, the above inequality holds. A similar argument shows

that u+1,ε is a supersolution of (17) for M1 large enough.

We remark that, because of (A1) and the regularity of the boundary

of Ω, the subsolutions w of (17) such that u−1,ε ≤ w ≤ u+1,ε on Ω satisfy

|Dw| ≤ M2 in Ω and therefore they are equi-Lipschitz continuous on Ω.

With these informations, Perron’s method provides us with a solution

uε ∈ W 1,∞(Ω) of (17). Moreover, by construction, we have

|εuε| ≤ M1 on Ω and |Duε| ≤M2 in Ω. (18)

Next we set vε(x) := uε(x) − uε(x0) for a fixed x0 ∈ Ω. Because

of (18) and the regularity of the boundary ∂Ω, {vε}ε∈(0,1) is a sequence

of equi-Lipschitz continuous and uniformly bounded functions on Ω. By

Ascoli-Arzela’s Theorem, there exist subsequences {vεj}j and {uεj}j such
that

vεj → v, εjuεj → −cn uniformly on Ω

as j → ∞ for some v ∈ W 1,∞(Ω) and cn ∈ R. By a standard stability

result of viscosity solutions we see that (v, cn) is a solution of (E-N).

We prove the uniqueness of additive eigenvalues. Let (va, a) ∈ W 1,∞(Ω)×
R be a subsolution of (E-N). Adding a positive constant to v if neces-

sary we may assume that va ≤ v on Ω. Note that v − cnt and va − at

are, respectively, a solution and a subsolution of (1) and (2). By the

comparison principle for (IB) (see Theorem 7.1), we have

va − at ≤ v − cnt on Ω× [0,∞).

Therefore we have

va − v ≤ (a− cn)t on Ω× [0,∞). (19)
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If a < cn, then (19) implies a contradiction for a large t > 0 since

(a − cn)t → −∞ as t → +∞. Therefore we obtain cn ≤ a and thus we

see that c can be represented by

cn = inf{a ∈ R | (E-N) has a subsolution}.
The uniqueness of additive eigenvalues follows immediately.

Next we consider (E-SC). The proof follows along the same lines, ex-

cept for the following point.

(i) For a subsolution, it is enough to choose the constant −m/ε, where
m = maxx∈ΩH(x, 0) since only the inequality in Ω is needed. For a su-

persolution, we choose M/ε, where M := −minΩ×RN H(x, p).

(ii) Since the boundary has only C0-regularity, the solutions are inW 1,∞(Ω)

but may not be Lipschitz continuous up to the boundary. But they are

equi-continuous (see [23, Proposition 8.1]) and this is enough to complete

the argument.

(iii) We have

csc = inf{a ∈ R | (9) has a subsolution},
by the same argument as above since, in the state-constraint case, there

are no boundary conditions for the subsolutions.

Finally we consider (D)a. In the case where csc > a, it is clear that

(D)a has no solutions due to the definition of csc. Thus we need only to

show that (D)a has a solution in the case where csc ≤ a.

Due to the coercivity ofH , there exists p0 ∈ R
N such thatH(x, p0) ≥ a

for all x ∈ Ω. We set ψ1(x) = p0 · x + C, where C > 0 is a constant

chosen so that ψ1(x) ≥ g(x) for all x ∈ ∂Ω. Since a ≥ csc, any solution

ψ2 ∈ C(Ω) of (E-SC) is a subsolution of (11) and subtracting a sufficiently

large constant from ψ2 if necessary, we may assume that ψ2(x) ≤ g(x)

on ∂Ω and ψ2 ≤ ψ1 on Ω. As a consequence of Perron’s method we see

that there exists a solution v of (D)a for any a ≥ csc. �

The following proposition shows that, taking into account the ergodic

effect, we obtain bounded solutions of (IB). This result is a straightfor-

ward consequence of Theorems 1.2 and 7.1.

Proposition 2.1 (Boundedness of Solutions of (IB)). Assume that (BA)

holds. Let cn and csc be the constants given by (13) and (14), respectively.

(i) Let u be the solution of (CN). Then u+ cnt is bounded on Ω× [0,∞).

(ii) Let u be the solution of (SC). Then u+ csct is bounded on Ω× [0,∞).

(iii) Let u be the solution of (CD).

(iii-a) If csc > 0, then u+ csct is bounded on Ω× [0,∞).

(iii-b) If csc ≤ 0, then u is bounded on Ω× [0,∞).
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3. Asymptotically Monotone Property

Following Proposition 2.1, it turns out that, in order to go further in

the study of the asymptotic behavior of the solutions u of (IB), we have

to consider uc := u + ct, where c is the associated additive eigenvalue:

c := cn for (CN), c := csc for (SC) and c := csc if csc > 0 and c := 0 if

csc ≤ 0 for (CD). A first step to prove the convergence of the uc’s is the

following result on their asymptotic monotonicity in time which can be

stated exactly in the same way for the three cases, namely (CN), (SC)

and (CD).

Theorem 3.1 (Asymptotically Monotone Property). Assume that (BA)

holds.

(i) (Asymptotically Increasing Property)

Assume that (A2)+c holds. For any η ∈ (0, η0], there exists δη : [0,∞) →
[0, 1] such that

δη(s) → 0 as s→ ∞ and

uc(x, s)− uc(x, t) + η(s− t) ≤ δη(s)

for all x ∈ Ω, s, t ∈ [0,∞) with t ≥ s.

(ii) (Asymptotically Decreasing Property)

Assume that (A2)−c holds. For any η ∈ (0, η0], there exists δη : [0,∞) →
[0,∞) such that

δη(s) → 0 as s→ ∞ and

uc(x, t)− uc(x, s)− η(t− s) ≤ δη(s)

for all x ∈ Ω, s, t ∈ [0,∞) with t ≥ s.

In the same way as for uc, we denote by vc a subsolution of (E) which

means, of course, either (E-N) or (E-SC). We keep the subscript “c” to

remind that it is associated to either cn or csc.

By Proposition 2.1 uc is bounded on Ω× [0,∞). Note that vc−M are

still subsolutions of (E) or (D)c for any M > 0. Therefore subtracting a

positive constant to vc if necessary, we may assume that

1 ≤ uc(x, t)−vc(x) ≤ C for all (x, t) ∈ Ω×[0,∞) and some C > 0 (20)

and we fix such a constant C. We define the functions µ+
η , µ

−
η : [0,∞) →

R by

µ+
η (s) := min

x∈Ω,t≥s

(uc(x, t)− vc(x) + η(t− s)

uc(x, s)− vc(x)

)

, (21)

µ−
η (s) := max

x∈Ω,t≥s

(uc(x, t)− vc(x)− η(t− s)

uc(x, s)− vc(x)

)
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for η ∈ (0, η0]. By the uniform continuity of uc and vc, we have µ±
η ∈

C([0,∞)). It is easily seen that 0 ≤ µ+
η (s) ≤ 1 and µ−

η (s) ≥ 1 for all

s ∈ [0,∞) and η ∈ (0, η0].

Proposition 3.2. Assume that (BA) holds.

(i) Assume that (A2)+c holds. We have µ+
η (s) → 1 as s → ∞ for any

η ∈ (0, η0].

(ii) Assume that (A2)−c holds. We have µ−
η (s) → 1 as s → ∞ for any

η ∈ (0, η0].

Proposition 3.2 is a consequence of the following lemma.

Lemma 3.3 (Key Lemma). Assume that (BA) holds. Let C be the

constant given by (20).

(i) Assume that (A2)+c holds. The function µ+
η is a supersolution of

max{w(s)− 1, w
′

(s) +
ψη

C
(w(s)− 1)} = 0 in (0,∞) (22)

for any η ∈ (0, η0].

(ii) Assume that (A2)−c holds. The function µ−
η is a subsolution of

max{w(s)− 1, w
′

(s) +
ψη

C
· w(s)− 1

w(s)
} = 0 in (0,∞) (23)

for any η ∈ (0, η0].

We first prove Proposition 3.2 and Theorem 3.1 by using Lemma 3.3

and we postpone to prove Lemma 3.3 in the next section.

Proof of Proposition 3.2. Fix η ∈ (0, η0]. We first notice that, by defini-

tion,

µ+
η (s) ≤ 1 ≤ µ−

η (s) ,

for any s ≥ 0. On the other hand, one checks easily that the functions

1 + (µ+
η (0)− 1) exp(−ψη

C
t) ,

and

1 + (µ−
η (0)− 1) exp(− ψη

Cµ−
η (0)

t) ,

are, respectively, sub and supersolution of (22) or (23) and they take

the same value as µ+
η and µ−

η for s = 0, respectively. Therefore, by

comparison, we have for any s > 0

1 + (µ+
η (0)− 1) exp(−ψη

C
t) ≤ µ+

η (s) ,
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and

µ−
η (s) ≤ 1 + (µ−

η (0)− 1) exp(− ψη

Cµ−
η (0)

t) ,

which imply the conclusion. �

Proof of Theorem 3.1. We only prove (i), since we can prove (ii) similarly.

For any x ∈ Ω and t, s ∈ [0,∞) with t ≥ s, we have

µ+
η (s)(uc(x, s)− vc(x)) ≤ uc(x, t)− vc(x) + η(t− s),

which implies

uc(x, s)− uc(x, t) + η(s− t) ≤ (1− µ+
η (s))(uc(x, s)− vc(x))

≤ C(1− µ+
η (s)) =: δη(s).

Therefore we have the conclusion. �

4. Proof of Lemma 3.3

In this section we divide into three subsections and we prove Lemma

3.3 for three types boundary problems. We only prove (i), since we can

prove (ii) similarly in any case.

4.1. Neumann Problem. In this subsection we normalize the additive

eigenvalue cn to be 0 by replacing H by H − cn, where cn is the constant

given by (13).

Proof of Lemma 3.3. Fix µ ∈ (0, η0] and let µ+
η be the function given by

(21). By abuse of notation we write µ for µ+
η . We recall that µ(s) ≤ 1

for any s ≥ 0.

Let φ ∈ C1((0,∞)) and σ > 0 be a strict local minimum of µ− φ, i.e.,

(µ − φ)(s) > (µ − φ)(σ) for all s ∈ [σ − δ, σ + δ] \ {σ} and some δ > 0.

Since there is nothing to check µ(σ) = 1, we assume that µ(σ) < 1. We

choose ξ ∈ Ω and τ ≥ σ such that

µ(σ) =
u(ξ, τ)− v(ξ) + η(τ − σ)

u(ξ, σ)− v(ξ)
.

We only consider the case where ξ ∈ ∂Ω in this proof.

Choose a positive definite symmetric matrix A which satisfies Aγ(ξ) =

n(ξ) (see [26, Lemma 4.1]) and define the quadratic function f : Ω → R

by

f(x) :=
1

2
Ax · x. (24)
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For ε, α ∈ (0, 1), we set K := Ω
3 × {(t, s) | t ≥ s, s ∈ [σ − δ, σ + δ]} and

define the function Ψ : K → R by

Ψ(x, y, z, t, s)

:=
u(x, t)− v(z) + η(t− s) + g(ξ)(d(x)− d(z))

u(y, s)− v(z) + g(ξ)(d(y)− d(z))
− φ(s)

+
1

ε2
(f(x− y) + f(x− z)) + |x− ξ|2 − α(d(x) + d(z)− 2d(y)),

where

d(x) := −γ(ξ) · x|γ(ξ)|2 . (25)

Let Ψ achieve its minimum over K at some (x, y, z, t, s). Set

µ1 := u(y, s)− v(z) + g(ξ)(d(y)− d(z)),

µ2 := u(x, t)− v(z) + η(t− s) + g(ξ)(d(x)− d(z)),

µ :=
µ2

µ1

.

Since Ω is compact, by taking a subsequence if necessary, we may

assume that

x, y, z → ξ and s→ σ as ε→ 0.

Moreover, we have

µ→ µ(σ) as ε → 0, (26)

|x− y|
ε2

+
|x− z|
ε2

≤ C1 for some C1 > 0. (27)

The second property is due to the Lipschitz continuity of u and v. From

(26), we may assume that µ < 1 for small ε > 0.

Derivating Ψ with respect to each variable x, t, y, s, z at (x, y, z, t, s)

formally, we get

Dxu(x, t) = µ1

( 1

ε2
A(y − x) +

1

ε2
A(z − x) + 2(ξ − x) + αDd(x)

)

− g(ξ)Dd(x),

ut(x, t) = −η,

Dyu(y, s) =
µ1

µ

( 1

ε2
A(y − x)− αDd(y)

)

− g(ξ)Dd(y)

us(y, s) = −1

µ
(η + µ1φ

′

(s)),

Dzv(z) =
µ1

1− µ

( 1

ε2
A(z − x)− αDd(z)

)

− g(ξ)Dd(z).
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We remark that we should interpret Dxu, ut, Dyu, us and Dzv as the

viscosity solution sense here.

We consider the case where x ∈ ∂Ω and then we obtain

Dxu(x, t) · γ(x) ≤ g(x) +m(ε)− αn(ξ) · γ(ξ)
for some modulus of continuity m by similar arguments in the proof of

Theorem 7.1. Therefore, if ε > 0 is suitable small compared to α > 0,

we have

Dxu(x, t) · γ(x) < g(x).

Similarly, if y ∈ ∂Ω and z ∈ ∂Ω, then we have

Dyu(y, s) · γ(y) > g(y) and

Dzv(z) · γ(z) > g(z),

respectively, for ε > 0 which is small enough compared to α > 0.

Therefore, by the definition of viscosity solutions of (CN), we have

−η +H(x,Dxu(x, t)) ≥ 0, (28)

−1

µ
(η + µ1φ

′

(s)) +H(y,Dyu(y, s)) ≤ 0, (29)

H(z,Dzv(z)) ≤ 0. (30)

In view of (27) we may assume that

1

ε2
A(y − x) → py,

1

ε2
A(z − x) → pz

as ε→ 0 for some py, pz ∈ R
N by taking a subsequence if necessary. Set

µ1 := u(ξ, σ)− v(ξ),

P :=
µ1

µ(σ)
py,

Q :=
µ1

1− µ(σ)
pz,

P̃ := µ(σ)(P −Q) and

Q̃ := Q− g(ξ)Dd(ξ).

Sending ε→ 0 and then α→ 0 in (28) and (30), we obtain

H(ξ, P̃ + Q̃) ≥ η and H(ξ, Q̃) ≤ 0. (31)

Therefore, since we have P̃ /µ(σ) + Q̃ = P − g(ξ)Dd(ξ), by using (A2)+0 ,

we obtain

H(ξ, P̃ + Q̃) ≤ µ(σ)H(ξ, P − g(ξ)Dd(ξ))− ψη(1− µ(σ)) (32)

for some ψη > 0.
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Sending ε → 0 and then α → 0 in (29), we have

− 1

µ(σ)
(η + µ1φ

′

(σ)) +H(ξ, P − g(ξ)Dd(ξ)) ≤ 0. (33)

Therefore by (31), (32) and (33) we obtain

η ≤ H(ξ, P̃ + Q̃) ≤ η + µ1φ
′

(σ) + ψη(µ(σ)− 1),

which implies the conclusion. �

4.2. State Constraint Problem. In this subsection we normalize the

additive eigenvalue csc is 0 by replacing H by H − csc, where csc is the

constant given by (14).

Proof of Lemma 3.3. Fix η ∈ (0, η0] and let µ+
η be the function given by

(21). By abuse of notation we write µ for µ+
η . Let µ − φ take a strict

local minimum at σ > 0 and for some φ ∈ C1((0,∞)), i.e., (µ− φ)(t) >

(µ − φ)(σ) for all t ∈ [σ − δ, σ + δ] \ {σ} and some δ > 0. Since there is

nothing to check in the case where µ(σ) = 1, we assume that µ(σ) < 1.

We choose ξ ∈ Ω and τ ≥ σ such that

µ(σ) =
u(ξ, τ)− v(ξ) + η(τ − σ)

u(ξ, σ)− v(ξ)
.

We only consider the case where ξ ∈ ∂Ω.

Since Ω is a domain with a C0-boundary, after relabelling and re-

orienting the coordinates axes if necessary, we may assume that B(ξ, r)∩
Ω = B(ξ, r) ∩ {(x′, xN ) ∈ R

N−1 × R | xN > b(x′)} for some constant

r > 0 and some continuous function b on R
N−1. Replacing r by a smaller

positive number if necessary, we may assume that there is an a0 > 0

such that if 0 < a ≤ a0, then we have B(ξ, r) ∩ Ω ⊂ −aeN + Ω, where

eN := (0, ..., 0, 1) ∈ R
N . Henceforth we assume that 0 < a ≤ a0. We

may choose a bounded open neighborhood Wa of B(ξ, r) ∩ Ω such that

W a ⊂ −aeN + Ω.

Set

ua(x, t) := u(x+ aeN , t) and v
a(x) := v(x+ aeN)

for x ∈ −aeN + Ω and t ∈ [0,∞). It is clear to see that

(ua)t +H(x+ aeN , Du
a(x, t)) = 0 in Wa × (σ − δ, σ + δ),

H(x+ aeN , Dv
a(x, t)) = 0 in Wa

in the viscosity sense. We set

µa(s) := min
x∈Ω,t≥s

(u(x, t)− va(x) + η(t− s)

ua(x, s)− va(x)

)
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and let µa − φ take a minimum at some σa ∈ [σ − δ, σ + δ] and then

we have σa → σ and µa(σa) → µ(σ) as a → 0. We choose ξa ∈ Ω and

τa ≥ σa such that

µa(σ) =
u(ξa, τa)− va(ξa) + η(τa − σa)

ua(ξa, σa)− va(ξa)
.

We set K = (B(ξ, r)∩Ω)×W
2

a×{(t, s) | t ≥ s, s ∈ [σ− δ, σ+ δ]} and

define the function Ψ : K → R by

Ψ(x, y, z, t, s) :=
u(x, t)− va(z) + η(t− s)

ua(y, s)− va(z)

+
1

2ε2
(|x− y|2 + |x− z|2) + |x− ξa|2 + |s− σa|2 − φ(s).

Let Ψ achieve its minimum on K at some (x, y, z, t, s) and set

µ1a := ua(y, s)− va(z),

µ2a := u(x, t)− va(z) + η(t− s),

µa :=
µ2a

µ1a

.

Since we may assume by taking a subsequence if necessary that

x, y, z → ξa, s→ σa, and µa → µa(σa) as ε → 0,

we have y, z ∈ Wa if ε is small enough.

Therefore, by the definition of viscosity solutions we have

−η +H(x,Dxu(x, t)) ≥ 0, (34)

− 1

µa

(

η + µ1a(φ
′

(s)− 2(s− σa)) +H(y + aeN , Dyu
a(y, s)) ≤ 0, (35)

H(z + aeN , Dzv
a(z)) ≤ 0, (36)

where

Dxu(x, t) =µ1a

(y − x

ε2
+
z − x

ε2
+ 2(ξa − x)

)

,

Dyu
a(y, s) =

µ1a

µa

· y − x

ε2
,

Dzv
a(z) =

µ1a

1− µa

· z − x

ε2
.



LARGE-TIME ASYMPTOTICS FOR BOUNDARY-VALUE PROBLEMS 17

In view of the Lipschitz continuity of ua on W a, we see that
{

y−x
ε2

}

ε
,

{

z−x
ε2

}

ε
are bounded uniformly in ε > 0. Thus we may assume that

y − x

ε2
→ pay,

z − x

ε2
→ paz ,

µ1a → µ1a := ua(ξa, σa)− va(ξa),

µa → µa(σa)

as ε→ 0 for some pay, p
a
z ∈ R

N by taking a subsequence if necessary. Set

Pa :=
µ1a

µa(σa)
pay,

Qa :=
µ1a

1− µa(σa)
paz and

P̃a := µa(σa)(Pa −Qa).

Sending ε → 0 in inequalities (34), (35) and (36) yields

−η +H(ξa, P̃a +Qa) ≥ 0,

− 1

µa(σa)
(η + µ1aφ

′

(σa)) +H(ξa + aeN , Pa) ≤ 0, (37)

H(ξa + aeN , Qa) ≤ 0.

Note that |Pa| + |Qa| ≤ R for some R > 0 which is independent of a.

There exists a modulus ωR such that

H(ξa + aeN , P̃a +Qa) ≥ η − ωR(a). (38)

For small a > 0 we have

H(ξa + aeN , P̃a +Qa) ≥
η

2
.

Since we have P̃a/µa(σa) + Q̃a = Pa, by using (A2)+0 , we obtain

µa(σa)H(ξa + aeN , Pa) ≥ H(ξa + aeN , P̃a +Qa) + ψη(1− µa(σa)) (39)

for a constant ψη > 0.

By (38), (39) and (37) we get

η − ωR(a) ≤H(ξa + aeN , P̃a +Qa)

≤µa(σa)H(ξa + aeN , Pa)− ψη(1− µa(σa))

≤ η + µ1aφ
′

(σa)− ψη(1− µa(σa)).

We divide by µ1a > 0 and then we obtain

0 ≤ φ
′

(σa) +
ψη

µ1a
(µa(σa)− 1) +

ωR(a)

µ1a

≤ φ
′

(σa) +
ψη

C
(µa(σa)− 1) + ωR(a).
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Sending a→ 0 yields

φ
′

(σ) +
ψη

C
(µ(σ)− 1) ≥ 0,

which is the conclusion. �

4.3. Dirichlet Problem. Let u be the solution of (CD) and csc be the

constant defined by (14).

We first treat the case where csc > 0. Set ucsc(x, t) = u(x, t) + csct

for (x, t) ∈ Ω × [0,∞) and gcsc(x, t) = g(x) + csct for (x, t) ∈ ∂Ω ×
(0,∞). Since ucsc is bounded on Ω× [0,∞) by Proposition 2.1 (iii-a) and

gcsc(x, t) → ∞ uniformly for x ∈ ∂Ω as t → ∞, there exists a constant

t > 0 such that gcsc(x, t) > ucsc(x, t) for all (x, t) ∈ (t, ∞). As ucsc
satisfies

{

(ucsc)t +H(x,Ducsc) = csc in Ω× (0,∞),

ucsc(x, t) = gcsc(x, t) on ∂Ω × (0,∞)

in the viscosity sense, we see easily that ucsc is a solution of
{

(ucsc)t +H(x,Ducsc) ≤ csc in Ω× (t,∞),

(ucsc)t +H(x,Ducsc) ≥ csc on Ω× (t,∞).

Therefore the large-time asymptotic behavior of ucsc is same as the large-

time asymptotic behavior of solutions of (SC).

Next we consider the case where csc ≤ 0. Let v be a subsolution of

(D)0. Since u is bounded on Ω × [0,∞) by Proposition 2.1 (iii-b) and

v − M are still subsolutions of (D)0 for any M > 0, by subtracting a

positive constant to v if necessary, we may assume that u − v satisfies

(20).

Let µ+
η be the function defined by (21) for η ∈ (0, η0]. By abuse of

notation we write µ for µ+
η . We prove that µ satisfies (22). We first

notice that, in view of the coercivity of H , we have

u(x, t) ≤ g(x) and (40)

v(x) ≤ g(x) for all (x, t) ∈ ∂Ω × (0,∞)

by Proposition 7.2.

Let ε > 0, ξ ∈ Ω, σ, τ ∈ (0,∞) and (x, t) ∈ Ω× [0,∞) be the same as

those in the proof of Lemma 3.3 in the case of (SC). We only consider

the case where µ(τ) < 1 and ξ ∈ ∂Ω. Since we have

0 ≤ µ(τ) =
u(ξ, τ)− v(ξ) + η(τ − σ)

u(ξ, σ)− v(ξ)
< 1

and u(ξ, σ)− v(ξ) > 0, we obtain

u(ξ, τ)− v(ξ) + η(τ − σ) < u(ξ, σ)− v(ξ) ≤ g(ξ)− v(ξ),
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which implies u(ξ, τ) < g(ξ). Therefore we have u(x, t) − g(x) < 0 for

small ε > 0. The rest of the proof follows by the same method as in

subsection 4.2.

5. Convergence

In this section, we prove Theorem 1.3 by using Theorem 3.1.

Proof of Theorem 1.3. Let c be the associated additive eigenvalue. When

we consider (CD), let us set c := csc if csc > 0 and c := 0 if csc ≤ 0.

Since {uc(·, t)}t≥0 is compact in W 1,∞(Ω), there exists a sequence

{uc(·, Tn)}n∈N which converges uniformly on Ω as n → ∞. The max-

imum principle implies that we have

‖uc(·, Tn + ·)− uc(·, Tm + ·)‖L∞(Ω×(0,∞)) ≤ ‖uc(·, Tn)− uc(·, Tm)‖L∞(Ω)

for any n,m ∈ N. Therefore, {uc(·, Tn + ·)}n∈N is a Cauchy sequence

in BUC (Ω × [0,∞)) and it converges to a function denoted by u∞c ∈
BUC (Ω× [0,∞)).

Fix any x ∈ Ω and s, t ∈ [0,∞) with t ≥ s. By Theorem 3.1 we have

uc(x, s+ Tn)− uc(x, t+ Tn) + η(s− t) ≤ δη(s+ Tn)

or

uc(x, t+ Tn)− uc(x, s+ Tn)− η(t− s) ≤ δη(s+ Tn)

for any n ∈ N and η > 0. Sending n → ∞ and then η → 0, we get, for

any t ≥ s

u∞c (x, s) ≤ u∞c (x, t).

or

u∞c (x, t) ≤ u∞c (x, s).

Therefore, we see that the functions x 7→ u∞c (x, t) are uniformly bounded

and equi-continuous which are also monotone in t. This implies that

u∞c (x, t) → w(x) uniformly on Ω as t → ∞ for some w ∈ W 1,∞(Ω).

Moreover, by a standard stability property of viscosity solutions, w is a

solution of either (E) or (D)0.

Since uc(·, Tn + ·) → u∞c uniformly in Ω× [0,∞) as n→ ∞, we have

−on(1) + u∞c (x, t) ≤ uc(x, Tn + t) ≤ u∞c (x, t) + on(1),

where on(1) → ∞ as n → ∞, uniformly in x and t. Taking the half-

relaxed semi-limits as t→ +∞, we get

−on(1) + v(x) ≤ liminf∗
t→∞

[uc](x, t) ≤ limsup∗
t→∞

[uc](x, t) ≤ v(x) + on(1).

Sending n→ ∞ yields

v(x) = liminf∗
t→∞

[uc](x, t) = limsup∗
t→∞

[uc](x, t)
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for all x ∈ Ω. �

Remark 1.

(i) The Lipschitz regularity assumption on u0 is convenient to avoid tech-

nicalities but it is not necessary. We can remove it as follows. We may

choose a sequence {uk0}k∈N ⊂ W 1,∞(Ω) ∩C(Ω) so that ‖uk0 − u0‖L∞(Ω) ≤
1/k for all n ∈ N. By the maximum principle, we have

‖u− uk‖L∞(Ω×(0,∞)) ≤ ‖uk0 − u0‖L∞(Ω) ≤ 1/k

and therefore

uk(x, t)− 1/k ≤ u(x, t) ≤ uk(x, t) + 1/k for all (x, t) ∈ Ω× [0,∞),

where u is the solution of (IB) and uk are the solutions of (IB) with

u0 = uk0. Therefore we have

uk∞(x)− 1/k ≤ liminf∗
t→∞

u(x, t) ≤ limsup∗
t→∞

u(x, t) ≤ uk∞(x) + 1/k

for all x ∈ Ω, where uk∞(x) = limt→∞ uk(x, t). Thus, | liminf∗t→∞ u(x, t)−
limsup∗t→∞ u(x, t)| ≤ 2/k for all k ∈ N and x ∈ Ω, which implies that

liminf∗
t→∞

u(x, t) = limsup∗
t→∞

u(x, t)

for all x ∈ Ω. We note that, by the same argument, we can obtain the

asymptotic monotone property, Theorem 3.1, of solutions of (IB) without

the Lipschitz continuity of solutions.

(ii) We remark that modifying (A2)±a as in [4], we can generalize Theorem

1.3. We use the following assumptions instead of (A2)±a . We denote H−a
by Ha.

(A3)+a There exists a closed set K ⊂ Ω (K is possibly empty) having

the properties

(i) minp∈RN Ha(x, p) = 0 for all x ∈ K,

(ii) for each ε > 0 there exists a modulus ψε(r) > 0 for all r > 0

and ηε0 > 0 such that for all η ∈ (0, ηε0] if dist (x,K) ≥ ε,

Ha(x, p + q) ≥ η and Ha(x, q) ≤ 0 for some x ∈ Ω and

p, q ∈ R, then for any µ ∈ (0, 1],

µHa(x,
p

µ
+ q) ≥ Ha(x, p+ q) + ψε(η)(1− µ).

(A3)−a There exists a closed set K ⊂ Ω (K is possibly empty) having

the properties
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(i) minp∈RN Ha(x, p) = 0 for all x ∈ K,

(ii) for each ε > 0 there exists a modulus ψε(r) > 0 for all r > 0

and ηε0 > 0 such that for all η ∈ (0, ηε0] if dist (x,K) ≥ ε,

Ha(x, p + q) ≤ −η and Ha(x, q) ≥ 0 for some x ∈ Ω and

p, q ∈ R, then for any µ ∈ (0, 1],

µHa(x,
p

µ
+ q) ≤ Ha(x, p+ q)− ψε(η)(µ− 1)

µ
.

Theorem 5.1. The results of Theorem 1.3 still hold if we replace assump-

tions (A2)+c or (A2)+c by (A3)+c or (A3)+c where c is defined as in Theorem

1.3.

6. Remarks on Convex Hamilton-Jacobi Equations

In this section we deal with convex Hamilton-Jacobi equations, i.e.,

(A4) p 7→ H(x, p) is convex for any x ∈ Ω.

6.1. The Namah-Roquejoffre Case. We use the following assump-

tions in this subsection. We consider the HamiltonianH(x, p) = F (x, p)−
f(x), where F and f are assumed to satisfy

(A5) F (x, p) ≥ F (x, 0) = 0 for all (x, p) ∈ Ω× R
N ,

(A6) f(x) ≥ 0 for all x ∈ Ω and Af := {x ∈ Ω | f(x) = 0} 6= ∅.
(A7) g(x) ≥ 0 for all x ∈ ∂Ω.

A typical example of this Hamiltonian is H(x, p) = |p|−f(x) with f ≥ 0

on Ω and in this case, it is clearly seen that H does not satisfy (A2)+0 and

(A2)−0 . Meanwhile, Hamiltonian has a simple structure and therefore in

a relatively easy way we can obtain

Theorem 6.1. Assume that (BA) and (A4)-(A6) hold.

(i) (Neumann/oblique derivative problem) Assume that (A7) holds.

For the solution u of (CN), (15) holds with a solution (v, 0) of (E-N).

(ii) (State constraint problem or Dirichlet problem) For the so-

lution u of (SC) or (CD), (15) holds with a solution (v, 0) of (E-S) or

(D)0.

Sketch of Proof. It is easy to see that

cn = 0 and csc = 0.

Indeed, on one hand, in view of (A5)-(A7), any constant is a subsolution

of (E-N) and (E-SC) with a = 0, which implies that cn, csc ≤ 0. On the

other hand, if we assume cn < 0 or csc < 0, then (A5), (A6) yields a

contradiction since H(x, p) = F (x, p)− f(x) ≥ 0 for all x ∈ Af .
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We have ut = −F (x,Du) + f(x) ≤ 0 in Af × (0,∞) and therefore

we can get the monotonicity of the function t 7→ u(x, t) at least for-

mally (see [31, Lemma 2.4] and [14, Lemma 4.4] for a rigorous proof).

Thus, taking into account the uniform Lipschitz continuity of u, we

have liminf∗t→∞ u(x, t) = limsup∗t→∞ u(x, t) for any x ∈ Af . By [21,

Theorem 6.6] for Neumann problems, [23, Theorem 7.3] for state con-

straint problems and [29, Theorem 5.3], we obtain liminf∗t→∞ u(x, t) =

limsup∗t→∞ u(x, t) for any x ∈ Ω, since, outside Af , one has a strict sub-

solution, which is a key tool to obtain the comparison of the half-relaxed

limits. �

Remark 2. We remark that the result of Theorem 6.1 is included in

Theorem 5.1, since (A3)+0 holds with K = {x ∈ R
N | f(x) = 0}.

6.2. Asymptotic Profile. In this subsection we give representation for-

mulas for the asymptotic solutions in each case. We define the functions

φ−, φ∞ ∈ C(Ω) by

φ−(x) := sup{v(x) | v ∈ C(Ω) is a subsolution of (E), v ≤ u0 on Ω},
φ∞(x) := inf{v(x) | v ∈ C(Ω) is a solution of (E), v ≥ φ− on Ω}.

We denote φ− associated with (E-N) and (E-SC) by φ−
n and φ−

s , respec-

tively and φ∞ associated with (E-N) and (E-SC) by φ∞
n and φ∞

s , respec-

tively. In view of (A4) we see that φ∞
n and φ∞

s are a solution of (E-N),

(E-SC), respectively. We refer to the articles [5, 23, 21] for a stability

result under infimum operation. When csc ≤ 0, we define the functions

φ−
d , φ

∞
d ∈ C(Ω) by

φ−
d (x) := sup{v(x) ∈ C(Ω) | v ∈ C(Ω) is a subsolution of (D)0},

φ∞
d (x) := inf{v(x) | v ∈ C(Ω) is a solution of (D)0, v ≥ φ−

s ∧ φ−
d on Ω}.

Theorem 6.2 (Asymptotic Profile). Assume that (BA) and (A4) hold.

(i) (Neumann/oblique derivative problem) Let u be the solution of

(CN) and then we have

lim
t→∞

(u(x, t) + cnt) = φ∞
n (x) uniformly for all x ∈ Ω. (41)

(ii) (State constraint problem) Let u be the solution of (SC) and then

we have

lim
t→∞

(u(x, t) + csct) = φ∞
s (x) uniformly for all x ∈ Ω. (42)

(iii) (Dirichlet problem) Let u be the solution of (CD).

(iii-a) If csc > 0, then

lim
t→∞

(u(x, t) + csct) = φ∞
s (x) uniformly for all x ∈ Ω. (43)
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(iii-b) If csc = 0, then

lim
t→∞

u(x, t) = φ∞
d (x) uniformly for all x ∈ Ω. (44)

(iii-c) If csc < 0, then

lim
t→∞

u(x, t) = φ−
d (x) uniformly for all x ∈ Ω.

Proof. We prove (i), (ii), (iii-a) and (iii-b) at the same time in order to

avoid duplication of explanations. We denote φ−
n , φ

−
s and φ−

s ∧ φ−
d by

φ−, and φ∞
s , φ∞

n and φ∞
d by φ∞ in any case. We write u∞(x) for the left

hand side of (41), (42), (43) and (44) in any case. Let c denote cn and

csc in any case and set uc := u+ ct on Ω× [0,∞).

Since φ− is a subsolution of (E-N), (E-SC) or (D)c, respectively, φ
−

is a subsolution of (IB) too. By the comparison principle for (IB) (cf.

Theorem 7.1) we have

φ−(x) ≤ uc(x, t) for all (x, s) ∈ Ω× [0,∞). (45)

Therefore, we get

φ−(x) ≤ u∞(x) for all x ∈ Ω.

Note that u∞ is a solution of (E-N), (E-SC) or (D)c. By the definition

of φ∞ we get φ∞ ≤ u∞ on Ω.

We define the functions vc ∈ BUC (Ω×[0,∞)) by vc(x, t) := infs≥t uc(x, s).

By (45) we have particularly φ− ≤ vc(·, 0) on Ω. Note that vc(·, 0) is a

subsolution of (E-N), (E-SC) or (D)c and vc(·, 0) ≤ u0 on Ω. Indeed, vc
satisfies (vc)t +H(x,Dvc(x, t)) = 0 in Ω× (0,∞) (see [5, 23, 21]) and it

is clear that vc(x, ·) is non-decreasing, from which we have (vc)t(x, t) ≥ 0

in Ω × (0,∞) in the viscosity sense. Therefore H(x,Dvc(x, t)) ≤ 0 in Ω

for any t ≥ 0. Since vc(x, t) → vc(x, 0) uniformly on Ω as t → 0, we see

that H(x,Dvc(x, 0)) ≤ 0 in Ω in the viscosity sense. It is easily seen that

vc(·, 0) ≤ u0 on Ω. Thus by the definition of φ−, we have vc(·, 0) ≤ φ−

on Ω. Therefore we obtain vc(·, 0) = φ− on Ω.

Note that φ∞ is a solution of (1), (2) and satisfies that φ∞(x) ≥
φ−(x) = vc(x, 0) on Ω. By the comparison principle for (IB) (cf. Theorem

7.1, again) we have for all x ∈ Ω,

u∞(x) = lim
t→∞

uc(x, t) = lim inf
t→∞

uc(x, t) = lim
t→∞

vc(x, t) ≤ φ∞(x),

which establishes formulas.

We finally consider (iii-c). In this case Problem (D)0 has the unique

solution. Since u∞ and φd are solutions of (D)0, we see that u∞ = φd on

Ω. �

We finally give another formulas for φ−
n , φ

−
s , φ

−
d , φ

∞
n , φ

∞
s and φ∞

d .
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Proposition 6.3. Assume that (BA) and (A4) hold. We have

φ−
n (x) = min{dn(x, y) + u0(y) | y ∈ Ω}, (46)

φ∞
n (x) = min{dn(x, y) + φ−

n (y) | y ∈ An}, (47)

φ−
s (x) = min{ds(x, y) + u0(y) | y ∈ Ω}, (48)

φ∞
s (x) = min{ds(x, y) + φ−

s (y) | y ∈ As}, (49)

φ−
d (x) = min{d0(x, y) + g(y) | y ∈ ∂Ω}, (50)

φ∞
d (x) = min{d0(x, y) + φ−

s (y) ∧ φ−
d (y) | y ∈ As} (51)

for any x ∈ Ω, where

dn(x, y) := sup{v(x)− v(y) | v is a subsolution of (9), (10) with a = cn},
ds(x, y) := sup{v(x)− v(y) | v is a subsolution of (9) with a = csc},
d0(x, y) := sup{v(x)− v(y) | v is a subsolution of (11) with a = 0},
An := {y ∈ Ω | dn(·, y) is a solution of (E-N)},
As := {y ∈ Ω | ds(·, y) is a solution of (E-SC)}.

Proof. We first see that (50) holds. We denote by wd the right hand

side of (50). By a standard stability result of viscosity solution φ−
d is a

subsolution of (D)0. By Proposition 7.2 we have φ−
d ≤ g on ∂Ω. Therefore

we have φ−
d (x) ≤ d0(x, y)+φ

−
d (y) ≤ d0(x, y)+g(y) for any x, y ∈ Ω, which

implies that φ−
d ≤ wd on Ω. It is easily seen that wd is a subsolution of

(D)0 and therefore wd ≤ φ−
d on Ω.

We next prove (46) and (48). We denote φ−
n , φ

−
s and φ−

s ∧ φ−
d by φ−

and denote by w− the right hand side of (46) and (48) in any case. Let

d denote dn or ds in any case. By the definition of φ− we see that φ−

is a subsolution of (E-N), (E-SC) or (D)0 and φ− ≤ u0 on Ω. By the

definition of d we have φ−(x) ≤ d(x, y) + φ−(y) ≤ d(x, y) + u0(y) for all

x, y ∈ Ω, which implies φ− ≤ w− on Ω. Note that w− is a subsolution

of (E-N), (E-SC) or (D)0 and w−(x) ≤ d(x, x) + u0(x) = u0(x) for all

x ∈ Ω. By the definition of φ− we obtain φ− = w− on Ω.

We finally prove (47), (49) and (51). We denote φ∞
n , φ∞

s and φ∞
d by

φ∞ and denote by w∞ the right hand side of (47), (49) and (51) in any

case. Let A denote An or As in any case.

It is easy to see that w∞(x) = φ−(x) for all x ∈ A. By [21, Theorem

6.6], [23, Theorem 7.3] and [29, Theorem 5.3] we get w∞ ≥ φ− on Ω. By

the definition of φ∞ we obtain w∞ ≥ φ∞ on Ω. Note that φ− ≤ φ∞ on

Ω. Then, we have

w∞(x) = φ−(x) ≤ φ∞(x) for all x ∈ A.
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Therefore we get w∞ ≤ φ∞ on Ω by [21, Theorem 6.6], [23, Theorem 7.3]

and [29, Theorem 5.3]. �

6.3. On the compatibility condition (8). In this subsection we con-

sider (CD) under assumptions (A1), (A4) and (A2)+c or (A2)−c and we

remove the compatibility condition (8), where c := csc if csc > 0 and

c := 0 if csc ≤ 0. Let u be a solution of (CD). We notice that, if we do

not assume (8), then u may be discontinuous and therefore we interpret

solutions as discontinuous viscosity solutions introduced in [19].

We consider the following approximate problems of (CD)

(CD)1k











ut +H(x,Du) = 0 in Ω× (0,∞),

u(x, t) = g(x) on ∂Ω × (0,∞),

u(x, 0) = uk0(x) on Ω,

and

(CD)2k











ut +H(x,Du) = 0 in Ω× (0,∞),

u(x, t) = gk(x, t) on ∂Ω × (0,∞),

u(x, 0) = u0(x) on Ω,

where

uk0(x) := min
y∈Ω

{ug0(y) + k|x− y|2},

ug0(x) :=

{

u0(x) for x ∈ Ω,

u0(x) ∧ g(x) for x ∈ ∂Ω,

gk(x, t) := max{g(x), u0(x)− kt}
for all x ∈ Ω, g ≥ 0 and k ∈ N. Note that

uk0(x) ≤ g(x) and u0(x) ≤ gk(x, t)

for all (x, t) ∈ ∂Ω× [0,∞) and k ∈ N.

Let u1k and u2k be the solution of (CD)1k and (CD)2k, respectively. By

Theorem 6.2 we have for any k ∈ N







if csc > 0, u1k(·, t) + csct→ min{ds(·, y) + φ−
k (y) | y ∈ As}

if csc = 0, u1k(·, t) → min{ds(·, y) + φ−
k (y) ∧ φ−

d (y) | y ∈ As},
if csc < 0, u1k(·, t) → φ−

d

uniformly on Ω as t→ ∞, where

φ−
k (x) := min{ds(x, y) + uk0(y) | y ∈ Ω} for all x ∈ Ω.

By [30, Theorem 6.1] we have for any k ∈ N

{

if csc ≥ 0, u2k(·, t) + csct→ min{ds(·, y) + φ−
s (y) ∧ φ−

gk
(y) | y ∈ As}

if csc < 0, u2k(·, t) → φ−
d
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uniformly on Ω as t→ ∞, where

φ−
gk
(x) := inf{ds(x, y) + g

k
(y) | y ∈ ∂Ω} for all x ∈ Ω,

g
k
(x) := inf{gk(x, s) + cscs | s ≥ 0} for all x ∈ ∂Ω.

Proposition 6.4. We have φ−
k → φ−

s uniformly on Ω as k → ∞.

Proof. It is easy to see that φ−
k (x) is nondecreasing as k → ∞ for any

x ∈ Ω. We prove that φ−
k (x) converges to φ−

s (x) ∧ φ−
d (x) as k → ∞ for

any x ∈ Ω. Fix x ∈ Ω. First, we can easily see that lim supk→∞ φ−
k (x) ≤

φ−
s (x) ∧ φ−

d (x), since φ
−
k ≤ uk0 ≤ ug0 on Ω.

Choose yk, zk ∈ Ω such that

φ−
k (x) = ds(x, yk) + uk0(yk) and

uk0(yk) = ug0(zk) + k|yk − zk|2.

Since Ω is compact, we may assume that yk, zk → y0 ∈ Ω as k → ∞ if

taking a subsequence if necessary. We have

lim inf
k→∞

φ−
k (x) = lim inf

k→∞

(

ds(x, yk) + uk0(yk)
)

≥ lim inf
k→∞

(

ds(x, yk) + ug0(zk)
)

≥ ds(x, y0) + ug0(y0)

≥ φ−
s (x) ∧ φ−

d (x).

Therefore we obtain lim supk→∞ φ−
k (x) = lim infk→∞ φ−

k (x) = φ−
s (x) ∧

φ−
d (x). Since φ

−
s ∧φ−

d ∈ C(Ω), in view of Dini’s theorem, we see that the

convergence is uniform for all x ∈ Ω. �

Proposition 6.5. We have φ−
gk

→ φ−
d uniformly on Ω as k → ∞.

Proof. We only need to consider csc ≥ 0 and prove that g
k
→ g uniformly

on ∂Ω as k → ∞. Fix x ∈ ∂Ω. Since gk(x, s) ≥ g(x) for all x ∈ ∂Ω and

s ≥ 0, we have g
k
(x) = infs≥0{gk(x, s) + cscs} ≥ g(x). Thus we have

lim infk→∞ g
k
(x) ≥ g(x) for all x ∈ ∂Ω.

Fix any s ∈ (0,∞). Then there exists k0 ∈ N such that for all k ≥ k0,

gk(x, s) = g(x). We get g
k
(x) ≤ gk(x, s) + cscs = gk(x) + cscs. Therefore

we have lim supk→∞ g
k
(x) ≤ g(x) + cscs. Sending s → 0, we obtain

lim supk→∞ g
k
(x) ≤ g(x). Noting that g ∈ C(∂Ω) and g

k
is nonincreasing

as k → ∞, in view of Dini’s theorem we get a conclusion. �

By the comparison principle for (IB) we have

u1k ≤ u ≤ u2k on Ω× [0,∞) for all k ∈ N.



LARGE-TIME ASYMPTOTICS FOR BOUNDARY-VALUE PROBLEMS 27

By Propositions 6.4, 6.5 we obtain

limsup∗
t→∞

u = liminf∗
t→∞

u = lim
k→∞

u1k = lim
k→∞

u2k on Ω.

7. Appendix : Existence, Uniqueness and Regularity

Results for (IB)

All the results presented in this appendix may appear at first glance

as being well-known and covered by the standard results of the theory of

viscosity solutions (see for instance [25, 21, 1, 7]). But some of them are

not completely standard because we are dealing with an oblique vector

field γ which is only continuous (and not Lipschitz continuous as in the

standard cases) and with a domain Ω which is not very regular. Of course,

we can extend the classical results to this more general framework because

the solutions of (IB) are expected to be in W 1,∞ since the Hamiltonian is

coercive. But we have also to prove directly the existence of such W 1,∞

-solutions, by using only comparison results which hold for W 1,∞ sub

and supersolutions, which is a little bit unusual in the theory of viscosity

solutions.

Also, we remark that the calculations in the proof of comparison prin-

ciples are used in the proofs of a key ingredient, Lemma 3.3, in order to

prove the asymptotic monotone property, Theorem 1.3. Therefore, re-

minding the proofs of the comparison principles helps us to understand

them.

Before providing these results and their proofs, we recall, for the

reader’s convenience, the definition of viscosity solutions for (IB), and

in particular of boundary conditions in the viscosity sense (see [8] for

instance).

Definition 1. An upper-semicontinuous function u (resp., a lower semi-

continuous function u) is a subsolution (resp., supersolution) of (IB) if

the following conditions hold:

(i) u is a (viscosity) subsolution (resp., (viscosity) supersolution) of (1),

(ii) u(x, 0) ≤ u0(x) (resp., u(x, 0) ≥ u0(x)) for all x ∈ Ω, and

(iii) for any φ ∈ C1(Ω× [0,∞)) and any (x0, t0) ∈ ∂Ω× (0,∞) such that

u− φ takes a local maximum (resp., minimum) at (x0, t0),

min{φt(x0, t0) +H(x0, Dφ(x0, t0)), B(x0, u(x0, t0), Dφ(x0, t0))} ≤ 0

(resp.,

max{φt(x0, t0) +H(x0, Dφ(x0, t0)), B(x0, u(x0, t0), Dφ(x0, t0))} ≥ 0).

We call u a solution of (IB) if it is a subsolution and a supersolution of

(IB).
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7.1. Comparison Results for (IB).

Theorem 7.1. Assume that (BA) holds.

(i) (Neumann/oblique derivative problem) Let u ∈ C(Ω× [0,∞)),

v ∈ LSC (Ω × [0,∞)) be a subsolution and a supersolution of (CN),

respectively. If u(·, 0) ≤ v(·, 0) on Ω, then u ≤ v on Ω× [0,∞).

(ii) (State constraint or Dirichlet problem) Let u ∈ C(Ω× [0,∞)),

v ∈ LSC (Ω × [0,∞)) be a subsolution and a supersolution of (SC) or

(CD), respectively. If u(·, 0) ≤ v(·, 0) on Ω, then u ≤ v on Ω× [0,∞).

Remark 3. It is worth mentioning that it is well known that there exists

a discontinuous solution of (SC) and (CD), which implies that in the

comparison principle for (SC) and (CD), we can not replace requirements

of continuity of u by that of semicontinuity.

Proof of Theorem 7.1 (i). We argue by contradiction assuming that there

would exist T > 0 such that maxQT
(u − v)(x, t) > 0, where QT :=

Ω× (0, T ).

Let uδ denote the function

uδ(x, t) := max
s∈[0,T+2]

{u(x, s)− (1/δ)(t− s)2} ,

for any δ > 0. This sup-convolution procedure is standard in the theory

of viscosity solutions (although, here, it acts only on the time-variable)

and it is known that, for δ small enough, uδ is a subsolution of (CN)

in Ω × (aδ, T + 1), where aδ := (2δmaxQT+2
|u(x, t)|)1/2 (see [1, 8] for

instance).

Moreover, it is easy to check that |uδt | ≤ Cδ in Ω × (aδ, T + 1) and

therefore by the coercivity of H and the C1-regularity of ∂Ω we have, for

all x, y ∈ Ω, t, s ∈ [aδ, T + 1]

|uδ(x, t)− uδ(y, s)| ≤ Cδ(|x− y|+ |t− s|) (52)

for some Cδ > 0. Finally, as δ → 0, maxQT
(uδ − v)(x, t) → maxQT

(u −
v)(x, t) > 0.

Therefore it is enough to consider maxQT
(uδ − v)(x, t) for δ > 0 small

enough, and we follow the classical proof by introducing

max
QT

{(uδ − v)(x, t)− ηt} ,

for 0 < η ≪ 1. This maximum is achieved at (ξ, τ) ∈ Ω× [0, T ], namely

(uδ − v)(ξ, τ)− ηt = maxQT
{(uδ − v)(x, t)− ηt}. Clearly τ depends on η

but we can assume that it remains bounded away from 0, otherwise we

easily get a contradiction.
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We only consider the case where ξ ∈ ∂Ω. We define the function

Ψ : Ω
2 × [0, T ] → R by

Ψ(x, y, t) :=uδ(x, t)− v(y, t)− ηt− 1

ε2
f(x− y)

+ g(ξ)(d(x)− d(y)) + α(d(x) + d(y))− |x− ξ|2 − (t− τ)2,

where f and d are given by (24) and (25). Let Ψ achieve its maximum

at (x, y, t) ∈ Ω
2 × [0, T ]. By a standard arguments, we have

x, y → ξ and t→ τ as ε → 0 (53)

by taking a subsequence if necessary and, because of the Lipschitz con-

tinuity (52) of uδ, we have

|x− y|
ε2

≤ Cδ (54)

Derivating (formally) Ψ with respect to each variable x, y at (x, y, t),

we have

Dxu
δ(x, t) =

1

ε2
A(x− y) + 2(x− ξ)− αDd(x)− g(ξ)Dd(x),

Dyv(y, t) =
1

ε2
A(x− y) + αDd(y)− g(ξ)Dd(y).

We remark that we should interpret Dxu
δ and Dyv in the viscosity solu-

tion sense here. We also point out that the viscosity inequalities we are

going to write down below, hold up to time T , in the spirit of [1], Lemma

2.8, p. 41.

Since Ω is a domain with a C1-boundary, we first observe that for any

x ∈ ∂Ω and y ∈ Ω

(x− y) · n(x) ≥ o(|x− y|),
where o : [0,∞) → R is a continuous function such that |o(r)|/r → 0 as

r → 0.

Moreover, we have

A(x− y) · γ(x)
≥ (x− y) · Aγ(ξ)− |y − x|mγ(|x− ξ|)
= (x− y) · n(ξ)− |y − x|mγ(|x− ξ|)
≥ (x− y) · n(x)− |y − x|

(

mγ(|x− ξ|) +mn(|x− ξ|)
)

≥ o(|x− y|)− |y − x|
(

mγ(|x− y|) +mn(|x− ξ|)
)

,

where mγ and mn are modulus of continuity of γ, n on Ω, respectively.

Setting md := |o(r)|/r, by (54), we obtain

1

ε2
A(x− y) · γ(x) ≥ −Cδ

(

md(Cδε
2) +mγ(Cδε

2) +mn(|x− ξ|)
)

. (55)



30 G. BARLES AND H. MITAKE

Moreover, we have

αDd(x) · γ(x) ≤ −α + αmγ(|x− ξ|)
and

g(ξ)Dd(x) · γ(x) ≤ −g(x) +mg(|x− ξ|),
where mg is a modulus of continuity of g on ∂Ω. Therefore we have

Dxu(x, t) · γ(x) ≥ g(x)−m(ε) + α,

for a modulus m. Therefore, if ε > 0 is suitable small compared to α > 0,

we have

Dxu(x, t) · γ(x) > g(x).

Similarly, if y ∈ ∂Ω, then we have

Dyu(y, t) · γ(y) < g(y)

for ε > 0 which is suitable small compared to α > 0.

Therefore, by the definition of viscosity solutions of (CN), using the

arguments of the User’s guide to viscosity solutions [8], there exists

a1, a2 ∈ R such that

a1 +H(x,
1

ε2
A(x− y) + 2(x− ξ)− αDd(x)− g(ξ)Dd(x)) ≤ 0,

a2 +H(y,
1

ε2
A(x− y) + αDd(x)− g(ξ)Dd(y)) ≥ 0

with a1 − a2 = η + 2(t− τ). By (54) we may assume that

1

ε2
A(x− y) → p

as ε→ 0 for some p ∈ R
N by taking a subsequence if necessary. Sending

ε → 0 and then α→ 0 in the above inequalities, we have a contradiction

since a − b → η > 0 while the H-terms converge to the same limit.

Therefore τ cannot be assumed to remain bounded away from 0 and the

conclusion follows. �

Proof of Theorem 7.1 (ii). We only prove the comparison principle for

(CD), since we can regard (SC) as a problem of (CD) with the extreme

form “g(x) ≡ +∞”.

To justify this choice, we first prove the

Proposition 7.2. (Classical Dirichlet Boundary Conditions) As-

sume that (BA) holds. If u ∈ USC (Ω× [0,∞)) is a subsolution of (CD),

then u(x, t) ≤ g(x) for all (x, t) ∈ ∂Ω × (0,∞).

In the same way we can prove that, if u ∈ USC (Ω) is a subsolution of

(D)a for any a ≥ csc, then u(x) ≤ g(x) for all x ∈ ∂Ω.
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Proof. Fix (x0, t0) ∈ ∂Ω×(0,∞). Fix r ∈ (0, t0) and set K :=
(

B(x0, r)∩
Ω
)

× [t0 − r, t0 + r]. Choose a sequence {xk}k∈N ⊂ R
N \ Ω such that

|x0 − xk| = 1/k2. We define the function φ : K → R by

φ(x, t) = u(x, t)− k|x− xk| − αk(t− t0)
2,

where {αk}k∈N ⊂ (0,∞) is a divergent sequence which will be fixed later.

Let (ξk, τk) ∈ K be a maximum point of φ on K. Noting that φ(ξk, τk) ≥
φ(x0, t0), we have

k|ξk − xk|+ αk(τk − t0)
2 ≤ u(ξk, τk)− u(x0, t0) + k|x0 − xk| ≤ C, (56)

where C > 0 is a constant independent of k. From the above, we see

that ξk → x0, τk → t0 as k → ∞.

By the viscosity property of u, we have

qk +H(ξk, pk) ≤ 0 or u(ξk, τk) ≤ g(ξk),

if k ∈ N is sufficiently large, where pk = k(ξk − xk)/|ξk − xk| and qk =

2αk(τk − t0). Set f(k) := minx∈B(x0,r)∩Ω
H(x, pk). Noting that |pk| = k,

by the coercivity of H , f(k) → ∞ as k → ∞. Choose {αk}k∈N ⊂ (0,∞)

such that

αk → ∞ as k → ∞ and 2
√

Cαk + 1 ≤ f(k) for sufficinetly large k ∈ N.

Since we have αk|τk − t0| ≤
√
Cαk for all k ∈ N by (56),

qk +H(xk, pk) ≥ −2αk|τk − t0|+ f(k) ≥ −2
√

Cαk + f(k) ≥ 1 > 0

for sufficiently large k ∈ N, we must have u(ξk, τk) ≤ g(ξk). Sending

k → ∞, we obtain u(x0, t0) ≤ g(x0). �

Now we return to the proof of the comparison result for (CD). We argue

by contradiction, exactly in the same way as for (CN), introducing QT

and the function uδ which is a subsolution of (CD) in Ω× (aδ, T +1). We

still denote by (ξ, τ) ∈ Ω× [0, T ], a maximum point of (uδ − v)(x, t)− ηt,

namely

(uδ − v)(ξ, τ)− ητ = max
QT

{(uδ − v)(x, t)− ηt} .

Again we may assume that τ remains bounded away from 0, otherwise

the result would follow.

We only consider the case where ξ ∈ ∂Ω. Since Ω is a domain with

a C0-boundary, there exist r > 0, b ∈ C(RN−1,R) such that, after rela-

belling and re-orienting the coordinates axes if necessary, we may assume

B(ξ, r) ∩ Ω = B(ξ, r) ∩ {(x′, xN) | xN > b(x′)}. There exists a0 > 0 such

that for any a ∈ (0, a0), there exists a bounded open neighborhood Wa

of B(ξ, r) ∩ Ω such that Wa ⊂ −aeN + Ω := {−aeN + x | x ∈ Ω}, where
eN := (0, . . . , 0, 1) ∈ R

N .



32 G. BARLES AND H. MITAKE

Since (uδ − g)(ξ, τ) ≤ 0 in view of Proposition 7.2 and uδ(ξ, τ) −
v(ξ, τ) > 0, we have v(ξ, τ)− g(ξ) < 0.

For any a ∈ (0, a0) and (x, t) ∈ W a × [0, T ], set uδa(x, t) := uδ(x +

aeN , t). Then, it is easily seen that uδa satisfies

(uδa)t(x, t) +H(x+ aeN , Du
δ
a(x, t)) ≤ 0 in Wa × (aδ, T + 1)

in the viscosity sense.

Let ε > 0 and define the function Ψ : W a × (B(ξ, r)∩Ω)× [0, T ] → R

by

Ψ(x, y, t, s) := uδa(x, t)− v(y, t)− ηt

− 1

2ε2
|x− y|2 − |y − ξ|2 − (t− τ)2.

Set V := W a×(B(ξ, r)∩Ω)×[0, T ] and let (x, y, t) ∈ V be a maximum

point of Ψ on V . By the compactness of V we may assume that x, y → xa
and t → ta as ε → 0 by taking a subsequence if necessary. Taking the

limit as ε→ 0 in the inequality Ψ(x, y, t) ≥ Ψ(ξ, ξ, τ) yields

|xa − ξ|2 + |ta − τ |2 ≤ (uδa − v)(xa, ta)− ηta − {(uδa − v)(ξ, τ)− ητ}
≤ (uδ − v)(xa, ta)− ηta − {(uδ − v)(ξ, τ)− ητ}

+ 2mu(a)

≤ 2mu(a),

where mu be a modulus of continuity of uδ on QT . We notice that we

use the continuity of u here.

Fix a small a ∈ (0, a0) so that v(xa, ta) − g(xa) < 0 and moreover we

may assume that v(y, t)− g(y) < 0 for y ∈ ∂Ω if ε is sufficiently small.

By the viscosity property of uδa and v and using classical arguments,

there exist b1, b2 ∈ R such that

b1 +H(x+ aeN ,
x− y

ε2
) ≤ 0, (57)

b2 +H(y,
x− y

ε2
− 2(y − ξ)) ≥ 0 (58)

with b1 − b2 = η + 2(t− τ). In view of the Lipschitz continuity of uδa on

W a× [0, T ], we have (x−y)/ε2 is bounded uniformly ε > 0 and therefore,

by sending ε→ 0 we may assume (x−y)/ε2 → pδ,a ∈ B(0, Cδ,a) for some

Cδ,a > 0. Noting that H is uniformly continuous on Ω × B(0, Cδ,a + 1),

we see that there exists a modulus mδ such that

H(x+aeN , p) ≥ H(x, p)−mδ(a) for any (x, p) ∈ Ω×B(0, Cδ+1). (59)
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Combining (57) and (58) with (59), if a > 0 is small enough, we get

mδ(a) ≥ η + 2(t− τ) +H(x,
x− y

ε2
)−H(y,

x− y

ε2
− 2(y − ξ)).

After taking the limit as ε → 0, send a → 0 and then we get η ≤ 0,

which is a contradiction. We have thus completed the proof. �

7.2. Existence of Solutions of (IB).

Proof of Theorem 1.1. We present the proof of the existence of Lipschitz

continuous solutions of (IB).

Following similar arguments as in the proof of Theorem 1.2, it is easy

to prove that, for C > 0 large enough −Ct + u0(x) and Ct + u0(x) are,

respectively, viscosity subsolution and a supersolution of (CN) or (SC)

or (CD) with, of course, different constant C in each case.

By Perron’s method (see [19]) and Theorem 7.1 we obtain continuous

solutions of (IB) for (CN), (SC) and (CD) that we denote by u1, u2 and

u3, respectively. As a consequence of Perron’s method, we have

−Ct+ u0(x) ≤ ui(x, t) ≤ Ct + u0(x) on Ω× [0,∞) ,

for i = 1, 2, 3.

To conclude, we use a standard argument : comparing the solutions

ui(x, t) and ui(x, t+ h) for some h > 0 and using the above property on

the ui, we have

‖ui(·, ·+ h)− ui(·, ·)‖∞ ≤ ‖ui(·, h)− ui(·, 0)‖∞ ≤ Ch .

As a consequence we have ‖(ui)t‖∞ ≤ C and, by using the equation

together with (A1), we obtain that Du is also bounded. This completes

the proof. �

We finally remark that we can deduce the uniform continuity of so-

lutions of (IB) under the assumption u0 ∈ C(Ω). We may choose a

sequence {uk0}k∈N ⊂ W 1,∞(Ω) ∩ C(Ω) so that ‖uk0 − u0‖L∞(Ω) ≤ 1/k for

all n ∈ N. Let uk be a solution of (IB) with u0 = uk0 and by the above

argument we see uk ∈ UC (Ω × [0,∞)) for all k ∈ N. The maximum

principle for (IB) implies that uk uniformly converges to u on Ω× [0,∞).

Thus we obtain u ∈ UC (Ω× [0,∞)).
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