
HAL Id: hal-00542208
https://hal.science/hal-00542208

Preprint submitted on 1 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Results on the Slack of a Periodic Task Set
Maryline Chetto

To cite this version:

Maryline Chetto. Results on the Slack of a Periodic Task Set. 2008. �hal-00542208�

https://hal.science/hal-00542208
https://hal.archives-ouvertes.fr

Rapport interne IRCCyN

RI 2008_5

Results on the Slack of a Periodic Task Set

Maryline CHETTO

Juin 2008

Institut de Recherche en Communications et en Cybernétique de Nantes

IRCCyN - 1, rue de la Noë - BP 92 101 - 44321 Nantes CEDEX 03 - Fax : 02 40 37 69 30

Results on the slack of a periodic task set

Maryline Chetto

IRCCyN / CNRS - University of Nantes

1 Rue de la Noë, F-44321 Nantes FRANCE

Abstract

Key words: real time systems, scheduling, periodic tasks, slack, earliest deadline

1 Introduction

In many real-time applications, the computer is required to execute preempt-

able periodic tasks (e.g sensory processing) with strict deadlines.

A periodic task set can be denoted as follows: T = {Ti(Ci, Ri, Pi), i = 1 to n}.

In this characterization, every task Ti makes its initial request at time 0 and

its subsequent requests at times kPi, k = 1, 2, ... The execution time required

for each request of Ti is Ci time units and a deadline for Ti occurs Ri units

after each request by which task Ti must have completed its execution. We

assume that 0 < Ci ≤ Ri ≤ Pi for each 1 ≤ i ≤ n. A schedule Γ for T is said

to be valid if the deadlines of all tasks of T are met in Γ. A task set is said

to be feasible on one processor if there exists a valid schedule for T on one

processor. A scheduling algorithm is said to be optimal if it produces a valid

schedule for every task set which is feasible.

Preprint submitted to Elsevier 19 June 2008

The problem of scheduling periodic tasks on one processor has been an active

area of research (see, e.g., [1]). Liu and Layland have shown that ED is optimal

[3]. ED schedules at each instant of time t, the ready task (i.e the task that

may be processed and is not yet completed) whose deadline is closest to t.

Deciding if a task set T is feasible requires to construct the ED schedule

and to see if the deadlines of all the requests are met from 0 to P where P

(called the hyperperiod) is the least common multiple of P1, P2, . . . , Pn since

the processor does exactly the same thing at time t (t ≥ 0) that it does at

times t + kP (k = 2, 3, . . .) [4]. We define the slack of T at current time

t, denoted by δ(t), as the maximum time for defering the execution of the

periodic requests from t without comprimising the validity of the ED schedule.

Computation at run time of the slack can be used to authorize or forbid the

execution of a nonpreemptable task that requires to be run upon arrival from

start to completion without interruption (e.g. interrupt handling or exception

handling).

At this point, two fundamental questions arise:

(1) how to determine the slack at run time?

(2) are there lower bounds to the slack?

2 Background materials

Two versions of ED, namely EDS and EDL are proposed by the author [2].

Under EDS, the ready tasks are processed as soon as possible, whereas under

EDL they are processed as late as possible. Let S be a sporadic task set defined

as follows: S = {Si(ri, Ci, di), i = 1 to m}. In this characterization, task Si

becomes ready at time ri, requires Ci units of time and a deadline occurs at di.

2

Let D = max{di;Si ∈ S}. For any instants t1 and t2, let denote by ΩX
S (t1, t2)

the total processor idle time available in [t1, t2] when S is scheduled according

to algorithm X. We now recall fundamental properties of EDS and EDL.

Theorem 1 For any instant t such that t ≤ D,

ΩEDS
S (0, t) ≤ ΩX

S (0, t) ≤ ΩEDL
S (0, t) (1)

Proof: See [2]

Theorem 1 says that applying EDS (respectively EDL) to a task set S guar-

antees the minimum (respectively maximum) available idle time within any

time interval [0, t], 0 ≤ t ≤ D. Given that at current time t, the set of periodic

requests available from t up to the end of the current hyperperiod behaves like

a sporadic task set, Theorem 1 gives us theoretical basis of an algorithm for

computing the slack. This is done by mapping out the EDL schedule which

can be represented by means of two arrays. The first, K = (k0, k1, ...kp), rep-

resents the times at which idle times occur, necessarily after the deadline of

a periodic request. The second, D = (∆0,∆1, ...∆p) represents the lengths of

these idle times. Details of computation are given in [5].

The complexity of the algorithm is O(K.n) where K is equal to bR/pc, where R

and p are respectively the longest deadline and the shortest period of current

ready tasks. So, it may vary from O(n) to O(N) where N is the number of

distinct periodic requests that occur in the hyperperiod. As the overhead can

be very large, we are interested in providing properties on the variation in

slack over time so as to avoid unnecessary on-line computations of the exact

value.

3

3 Slack of a periodic task set

First, let compute the length of the initial slack, δ(0), obtained by applying

EDL to T at time 0. Consequently, δ(0) = ∆0. Let xj = Pj −Rj for j=1 to n.

Proposition 1 ∆0 = min
0≤i≤p

ki −
n∑
j=1

dki + xj
Pj

eCj (2)

Proof: Consider the schedule produced by EDL for T from 0 to P . Let k be the

first instant between 0 and P such that there is no idle time within [0 + ∆0, k]

and all the tasks with a deadline greater than k are entirely processed within

[k,P]. It follows that ∆0 is equal to the length of the time interval [0, k] minus

the total quantity of processor time assigned to the requests with a deadline

less than or equal to k. All the requests of every task Tj whose ready time is

greater than k+xj must then be rejected. It comes that ∆0 = k−∑n
j=1d

k+xj

Pj
eCj

Let t be any time instant in K and α(t) = t −∑n
j=1d

t+xj

Pj
eCj . Let us prove

that ∀t 6= k, α(t) ≥ ∆0 .

Case 1: t < k. From definition of k, we know that there exist some requests with

a deadline posterior to t which are processed within [0, t]. Let Q(t) be the

processor time reserved to these tasks. It comes that ∆0 = α(t)−Q(t) and

consequently ∆0 < α(t).

Case 2: t > k. There may exist some idle time within [0+∆0, t] and there may exist

some requests with a deadline posterior to t which are processed within

[0 + ∆0, t]. Then, ∆0 = α(t) − Q(t) − ϕ(t) where ϕ(t) denotes the total

idle time within [0 + ∆0, t]. Consequently, ∆0 < α(t). Finally, it comes that

∆0 = min{α(t); t ∈ K} which corresponds to (2). 2

4

We show first a lemma which is used later to a derive lower bound to the slack

at any time.

Lemma 1 For any released time e that concides with the end of an idle time

interval, δ(e) ≥ ∆0

Proof: At time e, all the available tasks released before e have been processed.

Consider the set of requests available from time e to time P and form the

associated set of sporadic tasks. Let S be this set and consider time e as

a new time zero. From theorem 1, applying EDL to S from e will produce a

schedule where the total idle time that follows e is maximized and corresponds

to the slack, δ(e) . Now, we show that ∆0 provides a lower bound to the length

of this idle time. For this purpose, let t be the first deadline after e such that t

is followed by an idle time interval and the processor is fully utilized between

e + δ(e) and t. Assume that time t coincides with the deadline of a request,

for every task in T . In particular, t coincides with the deadline of the request

that is released at time e. Let Tl be this task. Then, ∃k, k′ ∈ N; e = kPl and

t = k′Pl−xl. This assumption takes care of the worst possible case in the sense

that the processor is required to provide maximum service in the time interval

[kPl, k
′Pl−xl]. Let ζ = (k′−k)Pl−xl.It comes that δ(e) ≥ ζ−∑n

j=1d
ζ+xj

Pj
eCi.

Since ζ ∈ K, proposition 1 enables us to conclude that δ(e) ≥ ∆0. 2

Theorem 2 For any time t, δ(t) ≥ ∆0

Proof: Without loss of generality,, we assume that t ∈ {0, 1, 2, ...,P} since

the schedule is periodic, and consequently δ(t) = δ(t + kP), k = 1, 2, . . . The

theorem is proved by induction on the units of time t. The basis of induction

corresponds to t = 0. To carry out the induction step, we assume that the

theorem is true at t i.e δ(t) ≥ ∆0 and prove that δ(t+ 1) ≥ δ0. Introduce Γ(t)

5

to be the schedule produced by EDS from 0 to t and by EDL from t to P on

T . δ(t) is then given by the length of the idle time that follows time t in Γ(t).

Now, consider the schedule Γ(t+ 1). We examine three cases.

Case 1: The processor is processing a task T with a current deadline d in [t, t+1]

and there is no task released after t with a deadline anterior to d. As

tasks are scheduled by EDS, T has the earliest deadline among the ready

tasks at t. This implies that this task is the first one to be scheduled after

t in Γ(t), according to EDL. It follows that Γ(t+ 1) is obtained from Γ(t)

by a permutation of the quantum of idle time between t and t + 1 and

the quantum of processor time for T between t + δ(t) and t + δ(t) + 1.

Then, δ(t) = δ(t+ 1) and consequently δ(t+ 1) ≥ ∆0.

Case 2: The processor is processing a task T with a current deadline d and there

is at least one task released after t with a current deadline anterior to d.

Let ei and di be the release time and the deadline of the first request

after t that verifies ei > t and di ≤ d.We have to examine two subcases:

Subcase 1: T is not scheduled before time di in Γ(t+ 1). Consequently, T is not

scheduled within [ei, di] in Γ(ei). As there is no ready task with a

deadline less than d between t + 1 and ei , this means that there is

no task scheduled by EDL within [t+ 1, ei] and so, δ(t+ 1) = δ(ei) +

(ei − (t+ 1)). Since δ(ei) ≥ ∆0 from Lemma 1, then δ(t+ 1) ≥ ∆0.

Subcase 2: T is partially scheduled before time di in Γ(t+ 1). As T is scheduled

after Ti in [ei, di], Γ(t + 1) is obtained from Γ(t) by a permutation

of the quantum of idle time between t and t+ 1 and the quantum of

processor time for Ti between t+ δ(t) and t+ δ(t) + 1.

Case 3: The processor is not occupied in [t, t + 1]. The processor will remain

inactive until the next release time. Let ei be this time instant. It comes

6

that δ(t + 1) = ei − t + δ(ei). Since δ(ei) ≥ ∆0 from Lemma 1, then

δ(t+ 1) ≥ ∆0. 2

From demonstration of theorem 2, we conclude that δ(t) has local maximum

at the beginning of every idle time interval, is linear decreasing within any

idle time interval,and non increasing in any busy time interval. Besides, δ(t)

is never less than ∆0.

4 Slack with additional tasks

Consider once again the periodic task set T defined previously. And assume

that sporadic tasks have been accepted for execution between 0 and t without

comprimising the validity of the resulting ED schedule. We have now estab-

lished the two following theorems:

Theorem 3 For any time t such that δ(t) ≥ ∆0 and for any length q such

that no additional task has been accepted within [t, t+ q], then δ(t+ q) ≥ ∆0.

Proof: We prove that the existence of a time instant t such that δ(t) = ∆0

implies δ(t + 1) ≥ ∆0 . Let Γ(t + 1) be defined as in the proof of theorem 2

and examine the two possible situations:

Case 1: the processor is idle within [t, t+ 1] in Γ(t+ 1). So, there is no ready task

to be processed at time t. Time interval [t, t + 1] is then included in an

idle time interval and schedule Γ(t+1) from t+1 does not depend on the

execution of sporadic tasks within [0, t+ 1]. From theorem 2, δ(t) ≥ ∆0.

Case 2: the processor is active within [t, t+1] in Γ(t+1). Let d be the deadline of

the sporadic task or the request of the periodic task which is processed

7

between t and t+ 1. Then, two situations are possible:

Case 2-a: there is at least one idle time in [t + 1 + δ(t + 1), d]. The end of this

idle time coincides with a deadline which necessarily belongs to a request

of a periodic task, ready to be executed at or after t + 1. The existence

of an idle time after dj means that the schedule Γ(t + 1) restricted to

[t + 1, dj] does not depend on the execution of sporadic tasks within

[0, t+ 1]. Therefore, according to theorem 2, δ(t+ 1) ≥ ∆0

Case 2-b: there is no idle time in [t+ 1 + σ(t+ 1), d] Consequently, there is no idle

time in [t + δ(t + 1), d]. The quantity of processor idle time between t

and d respectively in Γ(t) and Γ(t+ 1) are identical. As a result, we have

δ(t+ 1) = δ(t)− ((t+ 1)− t) + 1, i.e δ(t+ 1) = δ(t). Since δ(t) = ∆0 by

hypothesis, it follows that δ(t+ 1) = ∆0. 2

Theorem 3 says that if periodic tasks are jointly scheduled with sporadic tasks

and if at a given time instant, the slack is greater than or equal to ∆0 (notably

whenever the processor is idle), the slack will never decrease below ∆0 as long

as no additional task is accepted. Consequently, without any test, we may

accept in the future any preemptable or nonpreemptable sporadic task whose

execution time is less than or equal to ∆0.

Theorem 4 For any time t such that δ(t) < ∆0 and for any length q such

that no additional task has been accepted within [t, t+ q], then δ(t+ q) ≥ δ(t).

Proof: Let us prove that, if at time t, δ(t) < ∆0 then δ(t + 1) ≥ δ(τ). This

proof is obvious when one considers the different cases of Proposition 8:

In cases 1 and 2.1, we have δ(t+1) ≥ ∆0. Since δ(t) < ∆0 by hypothesis, then

δ(t+ 1) ≥ δ(t).

In case 2.2, we have δ(t+ 1) = δ(t). Consequently, δ(t+ 1) ≥ δ(t). 2

8

Theorem 4 states the non decreasing variation of the slack from any time

where its value is less than ∆0.

5 Summary

A first result was to show that a lower bound to the slack of a periodic task set

is the slack at time zero, obtained by an off-line computation in O(N). Prop-

erties on the slack stated in theorems 3 and 4 are used to improve efficiency

and predictivity of the scheduler in the on-line acceptance of sporadic tasks. It

will be interesting to determine similar properties under resource constraints.

References

[1] G.C. Buttazzo, Hard real-time computing systems, Springer (2005)

[2] H. Chetto and M.Chetto, Some Results of the Earliest Deadline Scheduling

Algorithm, IEEE Transactions on Software Engineering, 15 (10), pp 1261-1269

(1989).

[3] C.L. Liu and J.W. Layland, Scheduling algorithms for multiprogramming in a

hard-real-time environment, J.ACM 20 (1) (1973).

[4] J.Y.K. Leung and M.L. Merril, A note on preemptive scheduling of periodic

real-time tasks, Information Processing Letters, 20 (30), pp 115-118 (1980).

[5] M. Silly-Chetto, The EDL server for scheduling periodic and soft aperiodic tasks

with resource constraints, Journal of Real-Time Systems, 17 (1), pp 1-25 (1999).

9

