
HAL Id: hal-00542201
https://hal.science/hal-00542201

Submitted on 1 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Scheduling of Skippable Periodic Tasks: Issues
and Proposals

Maryline Chetto, Audrey Marchand

To cite this version:
Maryline Chetto, Audrey Marchand. Dynamic Scheduling of Skippable Periodic Tasks: Issues and
Proposals. Journal of Software, 2007, 2 (5), pp.44-51. �hal-00542201�

https://hal.science/hal-00542201
https://hal.archives-ouvertes.fr

Dynamic Scheduling of Skippable Periodic
Tasks: Issues and Proposals

Maryline Silly-Chetto and Audrey Marchand
IRCCyN, University of Nantes, Nantes, FRANCE

Email: {maryline.chetto, audrey.marchand}@univ-nantes.fr

Abstract— This paper deals with dynamic scheduling in real-
time systems that have Quality of Service requirements.
We assume that tasks are periodic and may miss their
deadlines, occasionally, as defined by the so-called Skip-
Over model. In this paper, we present a dynamic scheduling
algorithm, called RLP (Red as Late as possible, a variant of
Earliest Deadline to make slack stealing and to get better
performance in terms of ratio of periodic task instances
which complete before their deadline). Simulation results
show that RLP outperforms the two conventional skip-over
algorithms, namely RTO and BWP, introduced about ten
years ago. Then, we investigate a second criteria called
fairness, aiming to balance individual success ratios of tasks.
We present variants of RLP to improve fairness and report
comparative simulation results. Finally, we present the inte-
gration of these QoS scheduling services into CLEOPATRE1,
a free open-source library which offers selectable real-time
facilities on shelves.

Index Terms— Real-time scheduling, Earliest Deadline, Fair-
ness, Component-based architectures, Operating systems,
Real-time Linux.

I. I NTRODUCTION

Real-time systems are computer systems in which the
correctness of the system depends not only on the logical
correctness of the computations performed, but also on
time factors. Real-time systems can be classified in three
categories: hard, soft and weakly-hard.

In hard real-time systems, all instances must be gua-
ranteed to complete within their deadlines. In those crit-
ical control applications, missing a deadline may cause
catastrophic consequences on the controlled system. For
soft real-time systems, it is acceptable to miss some of the
deadlines occasionally. It is still valuable for the system
to finish the task, even if it is late.

In weakly-hard real-time systems, tasks are allowed to
miss some of their deadlines, but there is no associated
value if they finish after the deadline. Typical illustrating
examples of systems with weakly-hard real-time require-
ments are multimedia systems in which it is not necessary
to meet all the task deadlines as long as the deadline
violations are adequately spaced.

This paper is based on “Dynamic Scheduling of Skippable Periodic
Tasks in Weakly-Hard Real-Time Systems,” by M. Silly-Chetto,and A.
Marchand, which appeared in the Proceedings 14th IEEE International
Conference and Workshop on the Engineering of Computer Based
Systems (ECBS’07), Tucson, Arizona, USA, March 2007.c© 2007
IEEE.

1work supported by the French research office, grant number 01 K
0742

There have been some previous approaches to the spe-
cification and design of real-time systems that tolerate oc-
casional losses of deadlines. Hamdaoui and Ramanathan
in [1] introduced the idea of (m,k)-firm deadlines to model
tasks that have to meet m deadlines every k consecutive
invocations. The Skip-Over model was introduced by
Koren and Shasha [2] with the notion of skip factor. It is
a particular case of the (m,k)-firm model. They reduce
the overload by skipping some task invocations, thus
exploiting skips to increase the feasible periodic load.

In this paper, we address the problem of the dynamic
scheduling of periodic task sets with skip constraints. In
this context, the objective of a scheduling algorithm is
to maximize the effective QoS (Quality of Service) of
periodic tasks defined as the number of task instances
which complete before their deadline.

The remainder of this paper is organized as follows:
Section 2 presents relevant background materials about
the Skip-Over model. We describe two basic scheduling
algorithms, namely RTO and BWP which are based on
this model. In section 3, we recall the foundation of EDL
(Earliest Deadline as Late as possible) algorithm, a spe-
cific method to optimize system slack by running the hard
deadline tasks at the latest time while still guaranteeing
their timing requirements [3]. Then, we show how to
use EDL for providing an efficient scheduling algorithm
called RLP (Red as Late as Possible) for the Skip-Over
model. In Section 4, we provide an illustrative example.
Simulation results are reported in section 5 in order to
show RLP performances compared to RTO and BWP.
In section 6, we provide an algorithmic description of
the RLP scheduler. In section 7, we briefly describe the
main results of an experiment that show improvements
in terms of fairness thanks to two dynamic scheduling
strategies, namely RLP-LF and RLP-MS. We present,
in section 8 the integration of these QoS scheduling
services into CLEOPATRE, a free open-source library
which offers selectable real-time facilities on shelves
and we report measures in terms of footprint and time
overheads. Section 9 summarizes our contribution and
gives directions for future works.

II. BACKGROUND AND RELATED WORK

A. The skip-over model

In what follows, we consider the problem of scheduling
periodic tasks which allow occasional deadline violations

44 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

(i.e., skippable periodic tasks), on a uniprocessor system.
We assume that tasks can be preempted at any time and
they do not have precedence constraints. A taskTi is
characterized by a worst-case computation timeCi, a
period Pi, a relative deadline equal to its period, and a
skip parametersi. This parameter represents the tolerance
of this task to miss deadlines. That means that the distance
between two consecutive skips must be at leastsi periods.
Whensi equals to infinity, no skips are allowed andTi is
a hard periodic task. So, the skip parameter can be viewed
as a QoS metric (the highersi, the better the quality of
service).

Every taskTi is divided into instances where each
instance occurs during a single period of the task. Every
instance of a task is either red or blue [2]. A red task
instance must complete before its deadline; A blue task
instance can be aborted at any time. However, if a blue
instance completes successfully, the next task instance is
still blue.

B. RTO and BWP algorithms

Two scheduling algorithms were introduced about ten
years ago by Koren and Shasha [2]. Under theRed Tasks
Only (RTO) algorithm, red instances are scheduled as
soon as possible according toEarliest Deadline First
(EDF) algorithm [5], while blue ones are always rejected.

The Blue When Possible(BWP) algorithm is an im-
provement of RTO. Indeed, BWP schedules blue instances
whenever their execution does not prevent the red ones
from completing within their deadlines. In other words,
blue instances are served in background relatively to red
instances.

III. T HE RLP ALGORITHM

A. Earliest Deadline as Late as possible

Let us review the fundamental properties of EDF algo-
rithm, stated in [3] and [7] which are the basic foundation
of our approach for scheduling tasks in the skip-over
model. In general, the implementation of EDF consists
in executing tasks according to their urgency, as soon as
possible with no inserted idle time. Such implementation
is known as EDS (Earliest Deadline as Soon as possible).

Nevertheless, in some applications, this implementation
presents drawbacks, for example when soft aperiodic tasks
need to be served with minimal response times. In that
case, it is preferable to postpone execution of periodic
tasks, executing them by the so called EDL (Earliest
Deadline as Late as possible) strategy. Such approach
is known as Slack Stealing since it makes any spare
processing time available as soon as possible. In doing so,
it effectively steals slack from the hard deadline periodic
tasks.

A means of determining the maximum amount of slack
which may be stolen, without jeopardizing the hard timing
constraints, is thus key to the operation of the EDL
algorithm. In [3], we described how the slack available at
any current time can be found. This is done by mapping

out the processor schedule produced by EDL for the
periodic tasks from the current time up to the end of
the current hyper-period (the least common multiple of
task periods). This schedule is constructed dynamically
whenever necessary and is computed from a static EDL
schedule which is constructed off-line and memorized by
means of the two following vectors:

• K, called static deadline vector.K represents the
time instants from 0 to the end of the first hyper-
period, at which idle times occur and is constructed
from the distinct deadlines of periodic tasks.

• D, called static idle time vector.D represents the
lengths of the idle times which start at time instants
of K.

The complexity for computing the EDL static schedule
is O(N) where N is the total number of periodic instances
in the hyperperiod.

At run time, the dynamic EDL schedule is updated from
the static one by taking into account the execution of
current ready tasks. It is described by means of the two
following vectors:

• Kt, called dynamic deadline vector.Kt represents
the time instants posterior tot in the current hyper-
period ,at which idle times occur.

• Dt, called dynamic idle time vector.Dt represents
the lengths of the idle times that start at time instants
given byKt.

The complexity for computing the EDL dynamic sched-
ule is O(K.n) where n is the number of periodic tasks, and
K is equal to⌊R/p⌋, where R and p are respectively the
longest deadline and the shortest period of current ready
tasks [7].

B. Principles of RLP algorithm

The objective of RLP algorithm is to bring forward the
execution of blue task instances so as to minimize the
ratio of aborted blue instances, thus enhancing the QoS
(i.e., the total number of task completions) of periodic
tasks. From this perspective, RLP scheduling algorithm,
which is a dynamic scheduling algorithm, is specified by
the following behavior:

• if there are no blue task instances in the system,
red task instances are scheduled as soon as possi-
ble according to the EDF (Earliest Deadline First)
algorithm.

• if blue task instances are present in the system, they
are scheduled as soon as possible according to the
EDF algorithm (note that it could be according to
any other heuristic), while red task instances are
processed as late as possible according to the EDL
algorithm. Deadline ties are always broken in favor
of the task with the earliest release time.

The main idea of this approach is to take advantage of
the slack of red periodic task instances. Determination of
the latest start time for every red request of the periodic
task set requires preliminary construction of the schedule
as described previously and taking skips into account [8].

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 45

© 2007 ACADEMY PUBLISHER

In the EDL schedule established at time t, we assume that
the instance following immediately a blue instance which
is part of the current periodic instance set at time t, is red.
Indeed, none of the blue task instances is guaranteed to
complete within its deadline.

Moreover, in [7] it was proved that the online compu-
tation of the slack time is required only at time instants
corresponding to the arrival of a request while no other is
already present on the machine. In our case, the EDL
sequence is constructed not only when a blue task is
released (and no other was already present) but also after
a blue task completion if blue tasks remain in the system
(the next task instance of the completed blue task has
then to be considered as a blue one). Note that blue tasks
are executed in the idle times computed by EDL and are
of same importance beside red tasks (contrary to BWP
which always assigns higher priority to red tasks).

IV. I LLUSTRATIVE EXAMPLE

To illustrate RLP, let us consider a set of five periodic
tasksT = {T1, T2, T3, T4, T5} whose parameters are
described in Table 1. We assume that all the tasks have the
same skip parametersi = 2. We note that the processor
utilization factor for this task set is equal to 1.15 and
consequently some instances will necessarily miss their
deadlines. It can be observed on Figure 1 that, thanks
to RLP scheduling, the number of deadline violations
relative to blue task instances has been reduced to three
(for the same task set, five deadline violations occurs with
a BWP schedule).

TABLE I.
TASK PARAMETERS

Task T1 T2 T3 T4 T5

ci 3 4 1 7 2
pi 30 20 15 12 10

They occur at time instants t = 40 (taskT5), and t = 60
(tasksT4 andT5). Observe thatT4 first blue task instance
which would fail to complete within its deadline with
the BWP strategy, has enough time to succeed in the
RLP schedule, since the execution ofT2 andT1 first red
task instances is postponed. Until time t = 10, red task
instances are scheduled as soon as possible. From time
t = 10 to the end of the hyper-period (defined as the least
common multiple of task periods), red task instances do
execute as late as possible in the presence of blue task
instances, thus enhancing the QoS of periodic tasks.

V. EXPERIMENTAL RESULTS

A. Simulation parameters

The simulation context includes 50 periodic task sets,
each consisting of 10 tasks with a least common multiple
equal to 3360. Tasks are defined under QoS constraints
with uniform si. Their worst-case execution time depends

-
-
-
-
-6 6 6

6 6 6 6
6 6 6 6 6
6 6 6 6 6 6
6 6 6 6 6 6 6

0 30 60

0 20 40 60

0 15 30 45 60

0 12 24 36 48 60

0 10 20 30 40 50 60

T1

T2

T3

T4

T5

: processing red task
: processing blue task

6: release time

Figure 1. A RLP schedule

on the setting of the periodic loadUp. Deadlines are equal
to the periods and greater than or equal to the computation
times. Simulations have been processed over 10 hyper-
periods. Measurements rely on the ratio of periodic tasks
instances which complete before their deadline. The eval-
uation is done by varying the periodic task load,Up.

B. Observations

Simulation results reported in Figure 2 and Figure 3
are carried out for a skip parametersi equal to 2 and
6 respectively, varying the periodic load and measuring
the percentage of periodic task instances that complete
successfully. We observe that, for any skip parameter and
any processor workload, BWP and RLP outperform RTO
for which the resulting QoS is constant and minimal.
For Up≤1, the processor is under-loaded, and both BWP
and RLP success in completing all blue tasks instances
which are respectively executed after and before red task
instances. In overload situations, RLP reveals better than
BWP and, higher is the skip parameter more significant
is the advantage of RLP over BWP.

Figure 2. QoS for uniformsi=2

VI. I MPLEMENTING THE RLP SCHEDULER

The RLP scheduler is performed by the RLP schedule()
function, reported hereafter. In our implementation, the
scheduler maintains three task lists which are sorted in
increasing order of deadline: waiting list, red ready list
and blue ready list.

• waiting list: list of waiting tasks.
• red ready list: list of red scheduled tasks
• blue ready list: list of blue scheduled tasks

Note that tasks in the red ready list are always performed
before any one present in the blue ready list. At RLP

46 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

Figure 3. QoS for uniformsi=6

schedule() invocation time, the currently running task is
the default candidate to run next.

RLP schedule(t : current time)
begin

/*Checking blue ready list in order to abort tasks*/
while (task=next(blue ready list)=not(∅))

if (task→release time+task→critical delay<t)
break

endif
Pull task from blue ready list
task→release time+= task→period
task→current skip value=1
Put task into waiting list

endwhile
/*Checking waiting list in order to release tasks*/
while (task=next(waiting list)=not(∅))

if (task→release time>t)
break

endif
if ((task→current skip value< task→max skip value)
and (Slack(t)=0))

Pull task from waiting list
Put task into red ready list

else
if (blue ready list=∅)

Compute EDLschedule
endif
if (Slack(t)!=0)

Pull task from waiting list
Put task into blue ready list

endif
endif
task→current skip value+=1

endwhile
if ((blue ready list=not(∅)) and (Slack(t)!=0))

/*Checking red ready list in order to suspend task*/
while (task=next(red ready list)=not(∅))

Pull task from red ready list
Put task into waiting list

endwhile
endif

end

The RLP schedule() routine proceeds in three steps.
In the first one, it examines blue ready list in order to
abort one or several blue tasks which have reached their
deadline. The waiting list is scanned in the second step
so as to resume tasks whose release time is less than or
equal to current time. Red tasks are put in the red ready

list when there is no slack at current time, contrary to blue
ones released only when there is an idle time. Slack value
at time t is the output of the Slack(t) function, obtained
from the EDL schedule. Such schedule is defined by
computing the length of every processor idle time which
follows every task deadline in the current hyper-period.
In the last step, the red ready list is examined in order
to suspend red ready tasks (released before current time),
provided the blue ready list is not empty and there is slack
at current time i.e. surplus processing time.

VII. FAIRNESS ISSUES

A. Motivation example

Our interest here is not quantifying absolute QoS
(defined here as the global success ratio of task instances
while guaranteeing skip constraints) but measuring it in
a relative manner in order to compare several scheduling
strategies. In some cases, performance evaluation of a firm
scheduling strategy must be performed not only on the
basis of the global success ratio but rather must describe
the behavior of every task which is characterized by its
individual success ratio. This is the issue we propose
to illustrate here, with the description of a real-time
telesurveillance application (Figure 4).

Figure 4. A real-time telesurveillance application

Video data are first captured and digitized through
video capture devices such as video cameras. Then, each
video capture task “Acqi” reads the input video buffer
relative to the camera it is attached, thus periodically
acquiring incoming frames. Downstream from the chain,
another task named “Display” is in charge of continously
consuming frames from an output frame buffer and send-
ing the acquired video frames to a final display device
composed of various telesurveillance screens.

Among others, one important problem part of the
management of telesurveillance systems is the rate at
which data are refreshed on the display device. Indeed, by
definition, such a system must provide pictures as recent
as possible to be useful, and this must equally concern
all the screens of the device. The leading solution of
this problem is to ensure not only a mininum acceptable
refreshing rate (i.e. a minimum QoS level) but also an
equal one for the different screens of the display device.
So, one of the key features of the scheduler here is to
provide a fair service to all the tasks in charge of the
frame acquisition upstream from the chain of the system
(tasks “Acqi”).

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 47

© 2007 ACADEMY PUBLISHER

Consequently, our objective in this section is to bring
to light how to improve fairness while guaranteeing a
Quality of Service as good as possible.

B. Definitions

In the present approach, fairness resembles the balanc-
ing of the task success ratios as specified by the following
definition:

Definition 1: A scheduling algorithm X isfairer than a
scheduling algorithm Y if the biggest difference between
the individual success ratios of tasks obtained with X is
lower to the one obtained with Y.

Note that fairness does not refer to the ability of the
system to maintain a certain level of performance. This
characteristic would still permit aberrant behavior of the
system such as degrading the global success ratio but
keeping individual success balanced nevertheless.

C. Proposed Algorithms

The need of designing systems which are as fair as
possible has led us to study novel scheduling strategies.
Underlying the assessment that scheduling algorithms
relying only on dynamic priorities assigned according to
the Earliest Deadline (ED) criterion are not fair (see sec-
tion D.), we defined new blue tasks scheduling algorithms
for the RLP algorithm.

The proposed scheduling algorithms are inspired by the
work described in [6] which deals with the problem of
analyzing the performance of real-time control systems
that feature the Deadline Mechanism [4] for on-line
recovery from timing faults. From our results on the
Deadline Mechanism, we propose to evaluate the two
following strategies in the context of a weakly-hard real-
time system:

• RLP-LF (RLP - Last Failure) algorithm schedules
at each time instant, the ready blue task whose
number of successive successes from the last failure
is least. The earliest deadline rule is used to break
ties between blue tasks of equal priorities.

• RLP-MS (RLP - Minimum Success) algorithm
schedules at each time instant, the ready blue task
whose individual success ratio memorized from the
initialization time is least. As for the RLP-LF case,
ties are broken in favour of the task with the earliest
deadline.

These two variants of RLP scheduling algorithm ensure
that any task will have the highest priority within finite
time and no task will indefinitely keep the highest priority.

D. Comparative evaluation

The simulation context includes 50 periodic task sets,
each consisting of 10 tasks with a least common multiple
equal to 3360. Tasks are defined under QoS contraints
with uniform si = 2. Their worst-case execution time
depends on the setting of the periodic load Up and is
randomly generated in order to reflect the greatest number

of applications. Deadlines are equal to the periods and
greater than or equal to the computation times. Simula-
tions have been processed over 10 hyper-periods.

Figure 5. Measurement of the Global Success Ratio

1) Measuring the global success ratio:Figure 5 e-
nables us to conclude that RLP-ED is better in terms of
global success ratio than all other variants of RLP since
Earliest Deadline is the optimal scheduling algorithm for
deadline critical tasks. Consequently, if fairness is of no
importance for a given application, we can consider RLP-
ED as the best one with a global success ratio that attains
100% when the processor is under-loaded. We note that
in overload situations, RLP-MS is the worst one, even if
the gap with RLP-LF is less than 10%.

2) Measuring individual success ratios:Figure 6
brings out the fact that RLP-ED lacks fairness since it
gives more importance to some tasks. Individual success
ratios are really scattered around the curve depicting the
global success ratio.

The distribution of the individual success ratios has
been significantly improved by the proposed algorithms,
RLP-LF and RLP-MS (see Figures 7 and 8). Individual
success ratios of tasks have been gathered around the
global success ratio curve. Whereas the mean distance
between two individual success ratios is respectively equal
to 30.88% for RLP-ED and 12.65% for RLP-LF, it is
reduced to 1.24% for RLP-MS on the average. Similarly,
as regards the maximal difference of individual success
ratios, we observe a big gap between the different strate-
gies.

VIII. I NTEGRATION IN A FREE OPERATING SYSTEM

A. The Cleopatre library

A library of free software components was developed
within the French National project CLEOPATRE (Soft-
ware Open Components on the Shelf for Embedded Real-
Time Applications) in order to provide more efficient
and better service to real-time applications. Our purpose
was to enrich the real-time facilities of real-time Linux
versions, such as RTLinux [9] or RTAI [10]. RTAI was
the solution adopted for this project because we wanted
the CLEOPATRE components to be distributed under the
LGPL license which is also the one used in the RTAI
project.

48 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

Figure 6. Measurement of the Individual Success Ratios (RLP-
ED)

Figure 7. Measurement of the Individual Success Ratios (RLP-
LF)

Figure 8. Measurement of the Individual Success Ratios (RLP-
MS)

The CLEOPATRE library offers selectable COTS
(Commercial-Off-The-Shelf) components dedicated to
dynamic scheduling, aperiodic task service, resource con-
trol access, fault-tolerance and now, QoS scheduling (see
Figure 9).

An additional layer named TCL (Task Control
Layer) interfaces all the CLEOPATRE components.
It has been added as a dynamic module in $RTAI
DIR/modules/TCL.o, and represents an enhancement
of the legacy RTAI scheduler defined in $RTAI
DIR/modules/rt sched.o. CLEOPATRE applications are
highly portable to any new CPU architecture thanks to this
OS abstraction layer which makes the library of services,

Figure 9. The CLEOPATRE framework

generic. The CLEOPATRE Off-the-Shelf components are
optional except the OS abstraction layer (TCL) and the
scheduler.

At most one component per shelf can be selected.
Since all components of a given shelf have the same
programming interface, they are interchangeable. Ev-
erything needed to use and develop CLEOPATRE can
be downloaded from the web site of the project:
http://cleopatre.rts-software.org.

RTO, BWP and RLP algorithms have been put into an
additional shelf called Quality of Service. The QoS ser-
vices are available as independent software components.
This enables developers to build their own application-
specific operating system.

B. Data structures and API

The basic data structure of our QoS schedulers is the
task descriptor, defined in $RTAI DIR/include/QoS.h as
struct QoSTaskStruct. This one contains nine fields for
every task gathered and described in the following data
structure:

typedef struct QoSTaskStruct QoSTaskType;
struct QoSTaskStruct{
void (*fct) (QoSTaskType *);/*pointer to task function*/
TaskType TCLtask; /*low-level descriptor*/
TimeType criticaldelay; /*deadline*/
TimeType period;
TimeType releasetime;
unsigned int max skipvalue;/*maximum tolerance to skips*/
unsigned int currentskipvalue;/*dynamic skip parameter*/
unsigned int currentshift; /*shift w.r.t a RTO sequence*/
unsigned int slack; /*slack time of the task*/
};

At initialization time, the user has to set the usual
parameters for all tasks (periodPi, critical delaydi,...)
and also the additional skip parametersi for all QoS tasks.

The user interface for the QoS schedulers is composed
of the following functions:

• QoScreate : create a new task
• QoSresume : resume a task
• QoSwait : wait till next period
• QoSdelete : delete a task

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 49

© 2007 ACADEMY PUBLISHER

C. Overheads and footprints

For embedded real-time applications, the memory foot-
print and disk footprint of the operating system are gener-
ally key issues as well as the time overhead incurred by its
execution. Measurements of footprints for the schedulers
are given in Table 2.

TABLE II.
FOOTPRINTS

Scheduler Hard disk size (KB) Memory size (KB)
RTO 3.2 2.3
BWP 4.1 3.2
RLP 9.7 7.6

We observe that RLP requires less than ten KB. We
have made some experiments to get a quantitative evalua-
tion about the overhead introduced by the RLP scheduler.
The tests have consisted in measuring the overhead for
different number of tasks (5, 10, 15, 20,...) with all
periods equal to 10 milliseconds. Periods of all tasks are
harmonic, leading up to an hyper-period equal to 3360
ticks. Measurements were performed over a period of
1000 seconds on a computer system with a 400 MHz
Pentium II processor with 384 Mo RAM. Results are
shown in Figure 10.

Figure 10. Overheads of RTO, BWP and RLP

The timings shown hereafter were performed with a
400 MHz Pentium II by using the Time Stamp Counter
(TSC) available with every modern Intel processor. As
it can been seen from Figure 10, the overhead of the
QoS schedulers scales with the number of installed tasks.
We note that BWP mean execution time is quite higher
than the one observed for RTO. This is caused by the
blue task management performed under BWP. The curve
obtained for RLP is mainly due to the amount of time
spent on the EDL schedule (performed only when a
blue task instance is released or completed). As a matter
of fact, we observe that overheads are closely related
to algorithm efficiencies. An interesting feature of this
component approach is that the selected scheduler can be
tuned to balance performance versus complexity, so easily
conforming to applications requirements.

D. A programming example

Success of real-time systems comes from both ease of
use and performances. Writing code to run with CLEOPA-
TRE is as simple as writing a C language program to run
under Linux. The scheduling of QoS tasks is performed
in the QoS schedule() function as described in 5. The
scheduling occurs on timer handler activation (each 8254
interrupt).

Consider a periodic task setT composed of two tasks.
The program implemented under Cleopatre is described
below:

/*——– Headers of required components ——–*/
#include <TCL.h>
#include <QoS.h>
#include <simul.h>
/*——- Timer clock period (10ms) ——-*/
#define TIMERTICKS 10000000
/*———– Declarations of QoS tasks ————*/
QoSTaskType T1;
QoSTaskType T2;
/*———- Code description of QoS tasks ——*/
void CodeT1(){simul.wait(4);}
void CodeT2(){simul.wait(1);}
/*—— Initialization ——-*/
int init module(void)
{

TCLCreateTypecreate={0, 2000, 0, 0};
/********* Initializing QoS tasks **********/
QoScreate(&T1, CodeT1, 4, 20, 20, 2, create);
QoScreate(&T2, CodeT2, 1, 15, 15, 2, create);
/************* Resuming QoS tasks **************/
QoSresume(&T1, 100);
QoSresume(&T2, 100);
/*********** Starting the real-time mode **********/
TCL.begin(TIMERTICKS, 2000);
return 0;

}
/*——- Ending and deleting QoS tasks ———*/
void cleanupmodule(void)
{

/***********Deleting QoS tasks**********/
QoSdelete(&T1);
QoSdelete(&T2);
/********** Exit from the real-time mode **********/
TCL.end();

}

IX. CONCLUDING REMARKS AND EXTENSIONS

The paper has described scheduling algorithms dedi-
cated to uni-processor systems that may experience over-
load. We have considered the Skip-over model where
all tasks are periodic and characterized by a skip factor.
Because using specific properties of Earliest Deadline, we
have shown that the so-called RLP algorithm performs
better than other skip-over strategies when the resulting
QoS is measured in terms of global success ratio. With
the emergence of lots of weakly-hard real time appli-
cations that can tolerate a certain deadline missed, the
understanding real time must be improved instead of just
guaranteeing global QoS. The real time schedule theory
need to be expanded to investigate a second criteria,

50 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

fairness, aiming to balance individual success ratios of
tasks. The experimental study reported in this paper has
permitted to compare results from these two points of
view. Recently, this approach was extended to cope with
aperiodic tasks that arrive at unpredictable times [8].
Aperiodic tasks may have strict deadline or no deadline
at all. The objective of the skip-over scheduler is then to
serve all the tasks by accounting for both timing and QoS
constraints.

Finally, we have integrated these QoS functionalities
in CLEOPATRE which is a portable, open-source, free
to download and royalty free RTOS that can be used in
commercial applications through the LPGL license.

REFERENCES

[1] M. Hamdaoui, P. Ramanathan, “A Dynamic Priority As-
signment Technique for Streams with (m,k)-firm deadlines”.
IEEE Transactions on Computers, Vol. 44, No. 4, pp 1443-
1451, 1995.

[2] G. Koren., D. Shasha, “Skip-Over Algorithms and Complex-
ity for Overloaded Systems that Allow Skips”.Proceedings
of the 16th IEEE Real-Time Systems Symposium (RTSS’95),
Pisa, Italy, 1995.

[3] H. Chetto, M.Chetto., “Some Results of the Earliest Dead-
line Scheduling Algorithm”.IEEE Transactions on Software
Engineering, Vol. 15, No. 10, pp 1261-1269, 1989.

[4] A-L. Liestman and R-H. Campbell, “A fault tolerant
scheduling problem”,In Proceedings of the IEEE Transac-
tions on Software Engineering, Vol. 12, No. 10, pp 1089-
1095, 1986.

[5] C. Liu, J.W. Layland “Scheduling algorithms for multipro-
gramming in a hard real-time environment”.Journal of ACM,
vol.20 n1 pp.46-61, 1973.

[6] M. Silly-Chetto,“On the stability of scheduling algorithms
for real-time contro”,IMACS/IEEE-SMC Computational En-
gineering in Systems Applications Multiconference, Lille,
France, 1996.

[7] M. Silly-Chetto, “The EDL Server for Scheduling Peri-
odic and Soft Aperiodic Tasks with Resource Constraints”,
Journal of Real-Time Systems, Kluwer Academic Publishers,
Vol. 17, pp 1-25, 1999.

[8] A. Marchand, M. Silly-Chetto, “Dynamic Real-Time
Scheduling of Firm Periodic Tasks with Hard and Soft
Aperiodic Tasks”.Journal of Real-Time Systems. Vol. 32,
No. 1, pp 21-47, 2006.

[9] P. Mantegazza, “DIAPM RTAI for Linux: Why’s, what’s
and how’s”,Real Time Linux Workshop, University de Tech-
nology of Vienna, 1999.

[10] V. Yodaiken, “The RTLinux Approach to Real-Time” -
FSM Labs Inc., August 2004.

[11] A.Marchand and M. Silly-Chetto, “Stability and
Robustsness Issues in Scheduling Periodic Tasks with
Firm Real-Time Requirements”,In Proc. Euromicro
Conference on Real-Time Systems, WIP Session, Dresden,
July 2006.

Maryline Silly-Chetto received the degree of Docteur de 3ième
cycle in control engineering and the degree of Habilitée à
Diriger des Recherches in Computer Science from the Univer-
sity of Nantes, France, in 1984 and 1993, respectively. From
1984 to 1985, she held the position of Assistant professor
of Computer Science at the University of Rennes, while her
research was with the Institut de Recherche en Informatique et
Syst̀emes Aĺeatoires, Rennes. In 1986, she returned to Nantes
and is currently a professor with the Institute of Technology
of the University of Nantes. She is conducting her research at

IRCCyN. Her main research interests include scheduling and
fault-tolerance technologies for real-time applications. She has
published more than 60 journal articles and conference papers
in the area of real-time operating systems. She is the leader of a
French national R&D project, namely Cleopatre, supported by
the French government, which aims to provide free open source
real-time solutions.

Audrey Marchand graduated in Computer Engineering at Poly-
technic School of the University of Nantes (France), in 2002.
She received her PhD degree in computer science from the
University of Nantes in 2006. She is currently a post-doctoral
researcher at Polytechnic University of Valencia in Spain. Her
research interests include real-time scheduling theory, aperiodic
service mechanisms, quality of service guarantees in soft real-
time systems, and Linux-based real-time operating systems and
applications.

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 51

© 2007 ACADEMY PUBLISHER

