
HAL Id: hal-00542196
https://hal.science/hal-00542196

Submitted on 3 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Concept of Dynamically Reconfigurable Real-Time
Vision System for Autonomous Mobile Robotics.

Aymeric de Cabrol, Thibault Garcia, Patrick Bonnin, Maryline Chetto

To cite this version:
Aymeric de Cabrol, Thibault Garcia, Patrick Bonnin, Maryline Chetto. A Concept of Dynamically
Reconfigurable Real-Time Vision System for Autonomous Mobile Robotics.. International Journal of
Automation and Computing, 2007, 4 (1), pp.100-106. �10.1007/s10453-004-5872-7�. �hal-00542196�

https://hal.science/hal-00542196
https://hal.archives-ouvertes.fr


International Journal of Automation and Computing 04(1), January 2007, 100-106

DOI: 10.1007/s10453-004-5872-7

A Concept of Dynamically Reconfigurable Real-Time
Vision System for Autonomous Mobile Robotics.

Aymeric DE CABROL1,∗ Thibault GARCIA2 Patrick BONNIN1,3 Maryline CHETTO2

1 L2TI, Université Paris 13, 99 avenue JB Clément, 93 430 Villetaneuse, FRANCE
2 IRCCyN, 1 rue de la Noë, BP 92 101, 44 321 Nantes CEDEX 03, FRANCE

3 LRV, 10–12 Avenue de l’Europe, 78 140 Vélizy, FRANCE

Abstract: In this article, we describe specific constraints of vision systems that are dedicated to be embedded in mobile robots. If
PC based hardware architecture is convenient in this field because of its versatility, its flexibility, its performance and its cost, current
real-time operating systems are not completely adapted to long processings with varying duration, and it is often necessary to oversize
the system to guarantee fail-safe functioning. Also, interactions with other robotic tasks having more priority are difficult to handle.
To answer this problem, we have developed a dynamically reconfigurable vision processing system, based on the innovative features
of Cléopatre real-time applicative layer concerning scheduling and fault tolerance. This framework allows to define emergency and
optional tasks to ensure a minimal quality of service for the other subsystems of the robot, while allowing to adapt dynamically vision
processing chain to an exceptional overlasting vision process or processor overload.
Thus it allows a better cohabitation of several subsystems in a single hardware, and to develop less expensive but safe systems, as they
will be designed for the regular case and not rare exceptional ones. At last, it brings a new way to think and develop vision systems,
with pairs of complementary operators.

Keywords: Real-Time Vision, Dynamic Reconfiguration, Embedded Systems, Robustness, Real-Time Operating System.

1 Introduction.

Mobile Robotics usually requires a vision system because
the sight is a very convenient means to detect and recognize
from afar things with unexpected or badly defined appear-
ance. However, extracting relevant information from the
video stream is a very complex process, requiring a signifi-
cant amount of computing power. Moreover, an erroneous
result will cause a wrong action from the robot, which may
be dangerous as well as for the machine itself, as for its en-
vironment where might be human beings. Therefore design
of the vision system must be thought carefully to match
specific requirements and constraints of the robot and its
mission.

Some mobile robotic systems are remotely controlled,
and their vision system only acquires a video stream sent
to the remote human pilot. This solution is efficient for
short-range missions in visually complex or unexpected en-
vironments, where analysis and decision skills of the mind
are required because the ability of the computer is either
insufficient or unreliable. This is used for robots dealing
with emergency situations in nuclear plants, as Cybernetix’s
BROKK and SAMM [1].

When the processing of the video stream can be achieved
by a computer, two strategies exist. If the required di-
mensions of the mobile robot prohibit the embedding of
the vision processing system, this one can be set as a dis-
tant static processing center, remotely linked to the mobile
robots. Either these each have a camera, and send data
to the processing center to get back useful information (eg.
position of a target after a heavy 3D incremental recon-
struction of the environment from images sent by several
robots), or the processing center may have its own vision
system and guide some blind mobile robots (eg. RoboCup

2007.02.26; 2007.07.17
This work is supported by the French research office, grant number

01 K 0742, under the name of CLÉOPATRE project.
*Corresponding author. E-mail address: decabrol@univ-paris13.fr

Small-Size League [2, 3]). Nevertheless, this strategy cannot
be used when the application has hard constraints of video
latency (as for martian rovers [4]), cadence and regularity
of process (systems with visual servo control as in [5]). To
reach a high level of autonomy, the vision system must be
embedded within the mobile robot.

As technology evolves and matures, robotic applications
become more various, and robots much more complex. Be-
cause of interactions with other mechanical parts of the
robot, servo controls, and a varying unsettled environment,
it is mandatory to use a real-time vision system, which can
be defined as a vision system for which the processing meets
cadence and latency constraints due to client systems, en-
vironment, and the robot itself (Fig. 1). Such systems can
be designed using three different families of hardware: elec-
tronic, programmable electronic or computer architecture.
The fully electronic hardware, because of its lack of flex-
ibility and its cost and duration of development, is more
and more replaced in industrial world by the programmable
electronic. But the flexibility of this latter is still inferior
to those of the computer based architecture, as over the
past few years progress have been made in processing power
and speed, integration (eg. small size of PC-104 boards for
embedded applications), diversity and cost of peripherals
(cameras, sensors, communications), and performance and
reliability of Real-Time Operating Systems. As computer
based architecture offers a flexibility of design, an easiness of
conception and modification, and open-source community
knowledge source and tools for a low cost, it has become
one of the most interesting hardware for robotics.

But the Vision has specific features and constraints that
are difficult to deal with yet. These will be detailed in the
next section of this article. As current Real-Time Operat-
ing System design does not fit completely these particular
requirements, the LINA laboratory1 has developed a library

1Computer Science Laboratory, the leader of Cléopatre project.



2 International Journal of Automation and Computing 04(1), January 2007

of the environment

time constant

of the robot

time constant

Real−Time Vision System

video cadence

cadence of
input data

maximal latency
for results

client subsystems asking for information

Figure 1 Definition of a Real-Time Vision System.

of Real-Time software components within the French Na-
tional R&D project named Cléopatre. These innovative
features, which are very interesting and promising for Vi-
sion Processing, are shown and explained in Section 3. In
Section 4, we describe the system we have implemented. As
we focus on the difficulty to match a robust vision process-
ing with a limited robotic hardware, the robotic system we
describe uses only vision sensors. Finally we will present in
Section 5 how such a system allow to design and realize a
Dynamically Reconfigurable Vision System, able to adapt
itself to fit instantaneous available computing power in em-
bedded systems where Vision has a low priority, and thus
to ensure the robustness to scheduling faults.

2 Applicative constraints.

Vision systems that are embedded in an autonomous mo-
bile robotic systems evidently have to fulfill the require-
ments specific to the purpose of the machine. But several
constraints are common for embedded robotic vision sys-
tems, so they are to be detailed thereafter.

They follow from our experience in mobile robotics, for
legged robots (the RoboCup’s 4-legs league [6, 7]), a wheeled
robotic conveyor for industry (Cléopatre RNTL project,
[8, 9, 10, 11]), and now the RoboCup Rescue challenge [12],
where robots have to complete rescue missions after a dis-
aster, so in a very uncooperative environment.

2.1 Inner constraints of a vision system.

An embedded robotic vision system must meet four cri-
teria:

• It must see far in order that the robot can detect the
elements of the scene soon enough to be able to antic-
ipate. This criterion depends on the technical features
of the video device: its resolution, its depth of focus,
etc.

• It must be fast compared with the dynamics of the
observed scene, so that high-level results of the vision
system are not obsolete. If the process is too slow, the
results will be useless because of the difference between
the observed past scene and the present one. This
situation may even provoke a pumping, and endanger
the stability of the whole system.

This swiftness is expressed by two parameters: the
latency, which is the delay between frame grabbing and
results sending, and the cadence, the number of frames
processed each seconds. Usually, the latency must be
low and the cadence must be sufficiently high.

• It must be reliable, as the results of vision processing
will make the robot react. In order to avoid aberrant
behavior and to reach high performance, the vision
system must be designed to ensure a high detection
rate, a low false alarm rate, and an optimal quality of
processing.

• At last, it must be robust to continue to be reliable de-
spite variations of the environment. Most vision pro-
cessing algorithms require parameters to fit the exter-
nal conditions (ambient luminosity, range of speed for
targets, etc.), the internal conditions (angle and speed
of joints of the robots, odometry, etc.), and the ele-
ments of the scene (list of colors to recognize, shapes
to segment etc.). As reliability cannot be guaranteed
outside of the validity range, either must this range
be as vast as possible, or parameters must be adapted
periodically to fit the observed variations in the envi-
ronment.

Though it must be kept in mind that the vision system
is embedded within the whole robot, and consequently it
must coexist with all other subsystems. Hence the following
constraints:

• As it is embedded, the vision system must run with
mere available computing resources. As vision process-
ing is usually computing power consuming, it may be
impossible to embed the vision system without increas-
ing the computation power of the target, which can be
done by adding a processor dedicated to vision or a
specific processing board. Still, as embedded systems
are designed to be the smallest and the most economic
they can be, adding a component will increase volume
of the machine, its electrical consumption, the dura-
tion of its realization, and consequently the cost of the
project. Therefore, extensions must be restricted to
the strictly necessary and be carefully thought.

• Also, as it is a mere sensor, the vision system must
give a service to the other subsystems, and it has
a lower priority than more critical parts (eg. Con-
trol/Command, which process cannot be delayed with-
out making the robot unstable).

• The third constraint follows from the two previous
ones taken into account simultaneously: the vision sys-
tem must not jam the whole system, whatever the rea-
son. For example, such a jamming would keep Con-



de Cabrol et al./ Dynamically Reconfigurable Real-Time Vision System for Autonomous Mobile Robotics. 3

trol/Command from running correctly, making the be-
havior of the robot unpredictable and dangerous for its
environment, in which human beings can be.

All these considerations must be kept in mind when a
vision system is designed.

Meanwhile, any project has economic constraints, and
the designer has either to choose the smallest hardware to
run the planned vision system, or to select the most efficient
algorithms for a specific hardware.

2.2 Mission constraints.

In our mobile robotics applications, whether the environ-
ment is under control (RoboCup 4-legged league, industrial
conveyor) or not (RoboCup Rescue), the vision system is
in charge of several tasks of target localization and environ-
ment modeling.

The subsystems of the robot have various needs. The
Piloting servo control loop and the Path Planning module
need obstacles detection and localization, so that to be able
respectively to stop before the collision or to compute a new
safe trajectory; the Navigation module needs to know the
position of the robot, and may have to map the environment
to determine the next place to reach. All this information
can be given by the Vision system.

For the robotic conveyor developed during the Cléopatre
project or for the RoboCup 4-legged league, the robot
manœuvers indoors, in a environment which some prop-
erties are known and that can be made cooperative. Thus,
provided that the ground has a known and rare color, an
obstacle detection can be done from a color region segmen-
tation: then, the color regions detected in the ground area
are potential obstacles, which position can be computed
from their coordinates in the image. Also, the localiza-
tion of the robot can be done visually from the detection
and the localization of known objects in the reference of the
robot. This method requires that the known objects are un-
ambiguous and at precisely known locations, and that they
are numerous enough to be usable. A convenient solution is
to use cylindrical landmarks, with colored strips, as it has
been used in the RoboCup. The cylindrical shape makes
landmarks appear the same from all around on the floor,
and the sequence of colors used for the strips makes them
unique. So, a color region detection followed by an analysis
of connected regions and a triangulation leads theoretically
to the localization of the robot. But application teaches
that usually not enough landmarks are visible at the same
time to perform a regular triangulation; consequently, a so-
lution proposed by Hugel & al. [7] consists in computing a
triangulation whenever it is possible, or else use a particle
filter to find the most probable location corresponding to
current view. At last, to map the environment, the vision
system may use an incremental 3D reconstruction, based
on a color edge detection.

However the durations of all vision processes must be
managed conscientiously as some vision processes will be
too slow to be usable by the rest of the robot. As an exam-
ple, for a mobile robotics application, as well the Navigation
and the low level servo control loops need to know the posi-
tion, but standard vision-based localization algorithms are
too slow to be used directly by the low level servo control,

which usually runs at least at 1 kHz. That is why the po-
sition is usually given by proprioceptive sensors (odometer,
accelerometer, etc.), and is periodically corrected by the
vision-extracted position, as those measurements diverge
quickly. Also some theoretical solutions may be found too
slow in practice; it was the case of using a color region
segmentation in the real-time vision system. Then, either
another family of process must be used, even if this does
not fit the problem as well (eg. Edge Segmentation), or a
more efficient algorithm must be designed (as our fast color
region segmentation, exposed in [13]).

That is why, in a real-time vision system, the cadences of
processes must be chosen carefully to fit the periods of all
client subsystems that need extracted information. To illus-
trate this, Fig. 2 shows that there is a symmetry between
the vision tasks and the client control loops, so the vision
processes used by the Pilotage loop must be fast enough
to deliver information that is not obsolete, whereas those
required by the Navigation loop can be a little bit slower,
as this control loop has a smaller frequency.

navigation servo loop

pilotage servo loop

Mobile System

Vision System

(obstacle detection)
low−level process

(localization)
high−level process

Figure 2 Symmetry of cadences in a robotic vision system.

2.3 Selected hardware.

Nowadays, a mobile robot may be realized using any of
the three standard hardware architecture: electronics, pro-
grammable electronics and PC-based software implementa-
tion. For our research & development approach, the whole
electronics realization is not flexible enough. And, even if
the programmable electronics has made progress over the
past few years, the PC-based architecture is still less expen-
sive and more versatile, and has a great calculation capacity.

Moreover, the recent developments and advances of real-
time operating systems lead to current wide offer of sys-
tems and tools. Those based on Linux, as DIAPM RTAI
[14], are particularly interesting because of their high-level
of performance and their permanent improvement by their
community, and because they can be embedded on very
limited targets by using a minimal Linux kernel. The fact
that some of them are free and open-source is an additional
asset for research purpose.



4 International Journal of Automation and Computing 04(1), January 2007

2.4 Compromise between safety and cost.

To fit the temporal constraints and to enable an efficient
exchange of information with other subsystems of the robot,
the vision processes are implemented as real-time tasks.
The Vision Processing has still several particularities that
make these tasks different from other one.

First of all, a vision process lasts generally much longer
than most processes of other subsystems. This is due to the
fact that processed data is an image, which size is 19, 2 kilo-
bytes for a greyscale low-resolution QSIF (160× 120 pixels,
with 1 byte per pixel) or 57, 6 kB for a color one. The low-
level vision processes test and use all these bytes to extract
some higher level data, and this must be done at video rate
(25 Hz). This requires a large amount of the embedded
computing power.

The second point is that the duration of a vision process
often depends on the content of the scene: an Edge Points
Chaining process will have more things to do in an image
containing many outlines than on an empty image. Besides
this, it may be difficult to determine the worst case, and
this one can be very rare.

As the vision system has the same importance as a sen-
sor and must not provoke a scheduling fault because one of
its tasks has an exceptionally long duration, the design of
the real-time vision system must ensure a safe functioning
of the whole robotic system. With existing real-time oper-
ating systems, this usually implies the choice of the period
of the task exceeding its worst expected duration. Conse-
quently the system is oversized for normal situations, and
this means further expenses and less efficiency.

So our researches have focused on obtaining a fail-safe vi-
sion system with a limited hardware, considering economic
constraint.

2.5 Toward a dynamically reconfigurable

vision system.

A means to reach this goal is to be able to handle in-
dependently usual situations and exceptional ones, due to
either the vision system itself or interaction with the other
subsystems of the robot. To prevent any too long dura-
tion, the vision system would be designed to modify the
unfolding of processes or their content so as to respect the
schedule.

But most of the time the dynamic reconfiguration of a
vision system is a topic distant from these considerations.
Many researches have been conducted to develop a dy-
namic reconfiguration of vision systems on programmable
electronic hardware, as for ARDOISE project [15, 16]. As
the programmable electronic components are expensive but
very fast, this topic aims to load successively several steps
of a algorithm into FPGA during one period, in order to
do this operation on a component too small to contain the
whole process [17, 18, 19]. In other cases, the dynamic re-
configuration consist in modifying the sequence of process
in Incremental Processing Systems [20, 21, 22] or to choose
operators to apply on several areas of the image for the
Blind-Processing Systems of image restoring [23, 24].

One of the rare studies concerning the dynamic reconfig-
uration of the processing chain to adapt a vision system to
the hardware is [25], where the system searches the moving

objects in the image and defines their bounding boxes, then
select which boxes to process from the expected duration
of the process knowing the dimensions of each box. But,
if this kind of approach can be interesting for a standalone
image processing system, this cannot work if other systems
share the same processor, as in robotics.

Therefore, a reconfiguration system, which enables to
adapt vision system to instant available computing power,
must run at a higher hierarchical level than the Vision Sys-
tem. Seeing that no operating system allowed this in year
2001 as far as we know, LINA laboratory studied then the
feasibility of such an OS and developed the Cléopatre real
time applicative layer. Then we have tried to make good
use of the innovative features it offered, so as to design a
robust dynamically reconfigurable vision system.

3 Cléopatre Real-Time Operating Sys-

tem facilities.

Cléopatre is a real-time applicative layer adding new
tools and services to regular real-time operating systems,
which corresponds to current needs of developers. It has
been developed as the core element of the French National
R&D project Cléopatre, and it aims to provide LGPL open-
source software components for robotics industrial applica-
tions.

This section will glimpse its original features, and then
detail the two main mechanisms that are of the utmost
interest for embedded robotic vision systems.

3.1 Overview.

Cléopatre is a real-time applicative layer that can be ap-
pended to regular real-time operating system to give them
new abilities. This is implemented owing to an OS abstrac-
tion layer named TCL (for Task Control Layer) that is the
only element that has to be adapted to the targeted RTOS2

(as shown in Fig. 3). Then Cléopatre specific tasks can be
run together with the regular RTOS tasks and user space
processes. At present time, this has been used successfully
with RTAI and RT-Linux.

CLEOPATRE

Linux
Operating System Abstraction Layer

of Cléopatre : TCL

Hardware Abstraction Layer of RTAI

Hardware

RTAI

Cleopatre
tasks

RTAI
tasks

Linux
processes

Figure 3 Software layers using Cléopatre, with RTAI.

The innovative components of Cléopatre can be sorted in
four fields: scheduling, aperiodic tasks servicing, synchro-
nization and fault tolerance [26]. All these components has

2Acronym for Real Time Operating System.



de Cabrol et al./ Dynamically Reconfigurable Real-Time Vision System for Autonomous Mobile Robotics. 5

been implemented as kernel modules, so they can be loaded
on demand to fit only the needs of a specific application.
This flexibility ensures the lowest footprint.

Most existing RTOS offers only a static scheduling, which
does not fit with several families of application, especially
Robotics. Consequently Cléopatre takes advantage of re-
cent studies in scheduling theory and offers both static and
dynamic schedulers. With a static scheduler like Deadline
Monotonic [27], priority is defined once for all for all peri-
odic tasks, the ones with the shortest deadline being granted
with the highest priority. This mechanism does not allow to
change the tasks periodicity during the running of the ap-
plication, which may be required in robotics to adapt the
processes to a modification of external environment. But
the dynamic priority scheduler Earliest Deadline First [28]

of Cléopatre allows these changes, as the task with earliest
deadline will be executed first.

Three aperiodic tasks servers are also provided to sched-
ule the soft and hard aperiodic tasks together with the pe-
riodic ones: BG (Background Server), EDL (Earliest Dead-
line as Late as possible) [29] and TBS (Total Bandwidth
Server) [30]. The two latter ones are optimal in the sense
that they minimize the mean response time for the soft ape-
riodic tasks, and they maximize the acceptance ratio for the
hard aperiodic tasks. They also guarantee that these ape-
riodic tasks meet their timing requirements.

The synchronization components are three sets of
semaphores that can be used with any scheduler (static and
dynamic ones) and prevent deadlocks and priority inversion
situations. These mechanisms are the Super-Priority Proto-
col (SPP), the Priority Inheritance Protocol (PIP) [31] and
the Priority Ceiling Protocol (PCP) [32], that offer various
compromise between security and overhead.

At last, Deadline Mechanism (DM) [33] and Imprecise
Computation (IC) [34] are two features that allow to im-
plement fault tolerant systems able to manage a transient
overload. As they are of the utmost interest for the vi-
sion processing, they are presented in detail in the two next
paragraphs.

3.2 Deadline Mechanism.

The Deadline Mechanism enables the designer to asso-
ciate an emergency tasks to each regular one, in order to
ensure a minimal functioning of the system in any situation.

More often than not, real time systems runs periodic
tasks, that contains one operator or more in the case of
the vision system. The duration of each task must be less
than the critical delay defined by the designer, that can be
used by the scheduler to define priority of this task. If the
task outlast this duration, a scheduling fault occurs and may
have several consequences: results of the process may be ob-
solete, be unserviceable for client subsystems, and provoke
either a transient bad behavior or a complete breakdown of
the robot. Therefore this kind of problem must be avoided.

In order to do so, Deadline Mechanism enables to assign
two tasks for a single operation, for which critical delay
has been defined. First task ensures normal functioning
of the system, and the second one is run only if the first
one outlasts its deadline (Fig. 4). Logically, the duration of
the emergency task is shorter than the first one’s, and the
quality of its results are worse: its purpose is to guarantee

a degraded functioning to the system. When this mecha-
nism is activated, the scheduler places at first all emergency
tasks using the Earliest Deadline as Late as possible algo-
rithm (EDL), that sets their activation date as late as pos-
sible according to their maximal duration (which must be
known) and the deadline of corresponding operation. Then
the principal tasks will be placed into the remaining spare
time, owing to another scheduling algorithm that is chosen
by the designer.

If the principal task has completed before the beginning
of the emergency task, this latter one is aborted, and the
scheduling is computed again to use freed time. If it has
not, the exceptional duration of the principal task has no
lethal result for the whole system because an emergency
behavior planned during the design phase is run.

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

A2

A2 is aborted

A1 A
′

1

dA1

A2 B

dB dA2

A
′

2

Figure 4 DM : example of use.
A′ is backup task of task A. During the first period, principal
function has completed successfully, so A′

1
is abandoned. During

the second period, an aperiodic task B is running with more pri-
ority, so A is delayed. As A cannot complete before the activation
of A′

2
, A is aborted and A′

2
is activated.

3.3 Imprecise Computation.

In order to take advantage of the free time remaining af-
ter all normal tasks have been run, Cléopatre has another
mechanism called Imprecise Computation (IC), which en-
ables to run extra tasks when processor is underloaded. The
purpose of this mechanism is to enable to design some op-
tional tasks to refine the results of a principal task, among
other things. The scheduler runs this optional task during
free time after the completion of the main task it refines. If
the optional task has not completed before its deadline, it
is merely aborted (Fig. 5).

An optional task itself can also possess another optional
refining task.

��
��
��
��
��
��
��

��
��
��
��
��
��
��

giving up
A1+

A2

A
1
+B1A1

dA2+

A3B2 A2+

dA1
dB1

dA2
dB2

Figure 5 IC : example of use.
A and B are two principal periodic tasks, with dAi

and dBi
being

the deadlines of Ai and Bi. A+ is the optimal task of A. During
the first period, A+ cannot complete before next activation of
A, so it is aborted. During second period, B is shorter so A+
can run until completion.



6 International Journal of Automation and Computing 04(1), January 2007

4 Dynamically Reconfigurable Vision

System.

Classic vision systems compel to choose the best algo-
rithm for each operator. The best algorithm means the one
with the best compromise for the targeted mission, and ap-
praisal criteria are if the algorithms meets mission needs,
the required quality of results, their preciseness, the speed
of the process and its robustness to several parameters of
the robot or its environment.

But a compromise always means that the chosen algo-
rithm has mean performances, and that a better one could
be found for each criterion. Moreover, a safe implementa-
tion impose to consider the worst situations to determine
the periodicity of tasks, even if they are extremely rare:
this makes the system oversized, and has repercussion on
its cost.

Therefore the fault tolerance mechanisms of Cléopatre
are interesting as they enable to implement a dynamic re-
configuration of the tasks sequence according to the state of
the whole processor and not only the vision subsystem, and
to guarantee a fail-safe behavior. Moreover, as it is possible
to run two different tasks to do a single operation, principal
task will use the best algorithm for standard situations, and
emergency task will implement a faster algorithm for which
maximal duration is known.

4.1 Nominal and backup systems.

To illustrate this, we have implemented with these mech-
anisms a Color Region Segmentation for a robotic system.
The most robust algorithm is a classic region segmenta-
tion, that operates a region growth simultaneously on the
three color planes. It does not need a priori knowledge,
and its only parameters are the criteria of homogeneity for
monochromatic intensities. Consequently, it is quite insen-
sitive to lighting variations, one of the biggest problem in
robotic vision. But this process is relatively long, and its
duration fluctuates according to the number and the size of
color regions in the image, even if this still fits the cadence
and latency constraints of the system.

Another way to segment color regions of an image is to
do a Color Classification followed by a Connected Com-
ponents Decomposition. The Color Classification requires
several parameters to divide the color space (RGB, BGR,
YUV, etc.) to do a low level merging of the information
in the three spectral planes, similarly to low-level merging
presented in [35] and [36]. Then, the Connected Compo-
nents Decomposition can be done by Rosenfeld & Pfaltz’s
algorithm [37] or by a run-length decomposition [38], and
it requires only two scans of the classified image. So this
algorithm is faster than the Region Growth and its dura-
tion more regular: so an estimate of its maximal processing
time can easily be defined. Nevertheless these operators
are efficient only if parameters of the Color Classification
truly fit the current situation, but apparent color of objects
usually depends on the ambient luminosity and the type
of surface of the object (eg. there may be some specular
spots). That’s why the Color Classification parameters are
often chosen by a human expert by hand, or with a semi-
automatic process. Another means to find these parameters

is to compute them automatically from the observation of
an element with known colors, as a color test card embed-
ded on the robot [4], or by a recognition of some elements
of the scene (cf. Vision Challenge of RoboCup’05).

To be able to use the Deadline Mechanism of Cléopatre,
the candidate algorithms must be sorted. The one that fits
the best mission constraints will be used for principal task,
and the one with a known maximal duration will be used
for emergency task. In this example, the Color Region Seg-
mentation is robust enough to be used for the main task,
and the other will be for the emergency one. Even if the
results of the latter are not as robust as the other one’s,
this algorithm will be able to give a result before the dead-
line, which is mandatory for the other subsystems to run
properly, and will prevent jamming.

The method to define optional tasks is wholly different.
They ca, be either refining operators for main operators, or
totally different and independent processes.

Using the fault tolerance mechanisms of Cléopatre, the
splitting of the processing chains into real-time tasks has to
be done a different way than usual. In a classic real-time
vision system, one task generally gathers a linear sequence
of operators, each of them depending only on the results
of the previous one (Fig. 6). When several process have to
run simultaneously and use the same input data, they can
be run on different processors.

But if faults tolerance mechanisms of Cléopatre are used,
there are numerous possible sequence of operators, due
to the fact that dynamic reconfiguration substitutes some
emergency operators to regular ones and possibly sched-
ules also some optional tasks. If only the Deadline Mecha-
nism is used, the tasks splitting must create a task for each
linear sequence of operators without degraded mode, then
another task for each operator having a degraded mode,
and another one for each emergency operator (Fig. 7). If
the vision system also use the Imprecise Computation, each
refining operator must be implemented as an independent
task.

grabbing

R
ight fram

e
Left fram

e
grabbing

R
esults

R
esults

Task 1 on CPU 2

Task 3 on CPU 1

Task 1 on CPU 1

Task 2 on CPU 1

Figure 6 Classic splitting of a processing chain into tasks, each
circle being an operator

4.2 Implemented system.

In order to validate the software architecture we have de-
signed for a dynamically reconfigurable vision system, we
have implanted an elementary vision system. This aimed to
determine if the applicative layer of Cléopatre truly enables
to commute between two vision tasks using Deadline Mech-
anism. Difficulty of this test was concerning three points:

• The implemented tasks are genuine vision tasks, ex-
tracting color regions and edges. The image format



de Cabrol et al./ Dynamically Reconfigurable Real-Time Vision System for Autonomous Mobile Robotics. 7

1

1+

2 3 4

2’

R
esults

F
ram

e
grabbing

Task 1 Task 3 Task 5

Task 2

Task 4

Figure 7 Split of a vision processing chain into tasks, using
Cléopatre’s DM and IC.
1+ is a refining operator for operator 1; 2′ is degraded version of
operator 2, used if 2 outlasts its deadline.

is RGB QSIF, so each frame is about 50 kB and then
the processing duration of the selected operators is be-
tween 2 ms and 10 ms. For a real-time system, data
of this size are very large, and such a duration is very
long.

• Between two operators, the images are buffered in
shared memory area protected by mutex. But when
the Deadline Mechanism switches to an emergency
task, all semaphores taken by the main task have prob-
ably not been freed yet. This thought must be kept in
mind when implementing the system.

• The video frames are sent by an external program, so a
synchronization must be done as well at the beginning
of the process as during the processing.

The implemented system is the following: the initializa-
tion of the system allocates all shared memory image buffers
and creates the semaphores, the input FIFO to receive video
frames, its handler and all periodic tasks. The handler re-
ceives the video frames and copies them in the input buffers
of each available processing chain. Each buffer is protected
by a mutex, and may be used as well by the principal tasks
as by the emergency tasks. So regular mutex use is done
in principal tasks, whereas each emergency tasks begins by
a test of possibly taken mutexes by their main task, and
their reset if needed. As this couple of instructions must
be atomic to avoid inconsistency, they are protected in a
non-preemptive area.

For optional tasks, the mechanism is different as
Cléopatre framework allows to define a function that will be
activated when optional task is aborted. This final function
sends an informative message to the managing system, and
sets semaphores back to their initial state to avoid dead-
locks.

This basic dynamically vision system has validated the
functioning of the mechanisms of Cléopatre for a real case,
and the feasibility of a whole dynamically reconfigurable vi-
sion system. This has enabled us to verify the good running
of Cléopatre framework realized by the LINA, and to feed
back its designers with our practical experience about the
existing features and some new features that could answer
to some of our specific needs. Especially, this practical re-
alization allowed us to set several rules in order to use at
best these mechanisms.

5 Advanced dynamic reconfiguration.

This final section gathers some rules we have found or set
during our experiments. Their purpose is to explain how
should be used mechanisms of Cléopatre to realize some
efficient dynamically reconfigurable applications, especially
for Robotic Vision.

5.1 Use of Cléopatre Deadline Mecha-

nism.

5.1.1 Emergency task duration.

The Deadline Mechanism needs a function with a known
maximal duration in order to ensure a degraded functioning
if the principal operator cannot complete properly.

Logically, the duration of an emergency task has to be
shorter compared with the principal task, because the emer-
gency tasks are scheduled at first, and then the principal
tasks are scheduled in remaining free time. An emergency
task with a too long duration will perturb the efficiency of
the system, as its duration will be set apart for each period.
Also, a duration longer than the estimated worst case of the
principal function would be a flaw, since then the best func-
tion would be interrupted for a worse function that lasts the
same time.

5.1.2 Emergency task activation frequency.

It is necessary to keep the information about the fre-
quency of activation of emergency tasks, so that it can be
analyzed online or offline.

An emergency task should be run seldom only, because
of a temporary overload of the processor, an unsuitabil-
ity between the main operator parameters and the scene
content, or an error of design of the processing chain (bad
periodicity, wrong parameters, etc.).

In order to use this information online, each emergency
task shall send its identification and its activation date
to a manager task, that stores this information in circu-
lar buffers. If this frequency is too high, the manager can
run an asynchronous task to check if the principal operator
parameters have to be changed. Also, for mobile robotics,
manager can send a signal to Control/Command subsystem
to indicate that the vision system is about to reconfigure,
and so it would be suitable to stop the temporarily blind
robot.

If this information are stored in a logfile, it can be used by
the designers to check if the periods, the deadlines, and the
parameters of operators have been efficiently set. Compar-
ing this information with the recorded video sequence may
be interesting to find out what kind of scene has jammed
principal task.

5.1.3 Emergency task content.

Various emergency strategies can be considered, depend-
ing on the vision system to realize, the content of the mis-
sion and the complexity wanted for degraded mode:

• Do nothing : the emergency task is empty, but its acti-
vation prevents vision system from jamming. At next
period, the principal function will process from the be-
ginning of most recent input data. This strategy can
be used only if all client subsystems do not need the
imperative sending of a result.



8 International Journal of Automation and Computing 04(1), January 2007

• Take notice of the problem: this solution is as simple
as the previous one, and it is very fast. For example, it
can be used when computing optical flow with a con-
stant pace. Then, the problem is taken into account
by doubling the pace for the next iteration.

• Use a predicting operator : to compensate the loss of a
regular result, an emergency result is predicted from
the previous regular results. So it is able to send a re-
sult to client subsystems, yet nothing guarantees com-
puted value.

• Process again the whole frame with another algorithm:
this method is the one that has been used for our ex-
periments. Its main asset is that it does not requires
to synchronize the principal task with the emergency
task. Nevertheless it requires a fast alternate operator,
which does not always exist.

• Continue the processing with another algorithm: this
method is far more complex to bring into operation.
It requires that the designer knows well inner mecha-
nisms of used algorithm, and possibly develops other
specific algorithms. Emergency and principal tasks
must also be synchronized. But this strategy has the
great asset to be shorter than the previous one, and to
keep good results of the regular operator on a part of
the input image.

5.1.4 Continuing the process with another algo-

rithm.

This case is the most difficult to implement, but also the
most interesting to study and the most promising. It re-
quires yet a good knowledge of inner mechanisms of chosen
algorithms.

This strategy is justified by the fact that, if the vision sys-
tem has been cleverly designed, activation of an emergency
task should be a rare event. So when it occurs, the principal
operator has very likely processed a significant amount of
its input data. As it would be a pity to loose this high qual-
ity results, this method enable to bound degraded results
to a small part of the image.

To set an example, we can analyze the simplified case
of the principal and emergency operators processing the
whole image in a single video scan, as Smoothing of Sam-
pling operators. If the nominal task is a sampling operator
dividing by two image dimensions using a Gaussian filter
with σ = 1

√

2
, the convolution mask is the following 5 × 5

matrix:

G 1√
2

=

2

6

6

6

6

6

4

0.00 0.00 0.01 0.00 0.00

0.00 0.04 0.12 0.04 0.00

0.01 0.12 0.32 0.12 0.01

0.00 0.04 0.12 0.04 0.00

0.00 0.00 0.01 0.00 0.00

3

7

7

7

7

7

5

(1)

This convolution requires for each point 25 multiplica-
tions and 24 additions in a raw implementation, or 4 mul-
tiplications and 12 additions for a more optimized imple-
mentation. Emergency operators can either use a simpler
operator, as the 3 × 3 mask shown in 2, or keep only the

even pixels in both directions (which needs only a single
assignment).

Gd =
1

10

2

6

4

1 1 1

1 2 1

1 1 1

3

7

5
(2)

As both principal and emergency operators are of the
same kind, the only information to share between these two
tasks is the coordinate of the last processed pixel. When
the principal task is aborted, the emergency task will go
on from this point, and only the last few lines of resulting
image will be degraded.

However, used algorithms are often more complex than
that, and following cases can occur:

• The algorithm can be composed of several distinct
steps (eg. several image scans with different pyramidal
levels, as for the Region Segmentation).

• The algorithm may use an irregular scan of the image
(eg. automaton based algorithms).

• The result may be a list of image features (eg. a list
of regions, of edges, etc.).

Each time, the means to use the Deadline Mechanism
and the choice of the emergency operator must be carefully
adapted to the specific characteristics of nominal algorithm.

If the principal algorithm can be divided in several steps,
a status variable shall be shared between the two tasks,
to tell which step has been interrupted. According to this
value, several adapted emergency processing can be run.

If the image is not scanned linearly, it would be probably
well advised to use an emergency task that processes the
whole image again.

At last, if the role of the principal task was to extract
some image features as regions or edges, it may be useful to
mend the extracted features on the line of darn3, according
to applicative context. The purpose of the vision processing
may require an accurate knowledge of several properties of
the image, dependent of the accuracy of operators results;
if the line of darn runs across some of these features, this
ones may have to be melt so that extracted high-level in-
formation is precise. For example, if a mission consists in
detecting any colored regions (that possibly are obstacles),
the fact that a region may be split in two on both sides of
the line of darn is not a problem. On the contrary, if the
system has to detect all regions greater than a specified size,
it is mandatory to mend the results of the two processes to
melt regions that are on the line of darn. In case image
features do not have to be sorted (to detect the biggest col-
ored region for example), another possibility is to validate
the incomplete results of primary task if its giving up has
occurred at the very end of the process: in other word, we
accept that a tiny part of the image is not processed.

In the particular case of the emergency algorithm requir-
ing specific dimensions for its input data, it must be taken

3The line of darn is the frontier between the part of the image
processed by one operator, and the part processed by another. In
our case, these operators are the principal and the emergency ones.



de Cabrol et al./ Dynamically Reconfigurable Real-Time Vision System for Autonomous Mobile Robotics. 9

into account to choose from which point process must con-
tinue (Fig. 8(d)). For example, if the emergency operator
can only process images which dimensions are power of 2,
it will have to start from a point already processed by the
principal operator, in order that the second part of the im-
age has the good size. In this case, since a part of the image
is processed twice, one can choose to use the results of the
one or the other for this area. It could also be possible to
produce more accurate results from a combination of both.

In all other cases, to simplify the darning problems with
the extracted image features (Fig. 8(c)), the emergency op-
erator can still start again from the beginning of current
image line, so that the frontier is horizontal.

Nevertheless, the major difficulty with continuing the
process with another algorithm is that the existing oper-
ators must be adapted to enable the darning.

(a) Result of
aborted principal
process.

(b) Immediate darn. (c) Darn at the be-
ginning of the line.

(d) Darn on an area
which dimesions are
power of 2.

Figure 8 DM : strategies for darning.

5.2 Use of Cléopatre Imprecise Computa-

tion.

It is not self-evident to use properly the Imprecise Com-
putation mechanism. This mechanism enables to make one
task to be followed by another one, running in the remain-
ing free time. If an optional task outlasts its deadline, it is
aborted and a special function defined by the user is acti-
vated immediately after. According to the role of the op-
tional task, some precautionary measures vary.

In the following, principal tasks will be named A and the
next one B. The optional task of A will be A+. The type
of A’s result is homogeneous to an image.

5.2.1 Case of a refining optional task.

The purpose of a refining optional task is to modify re-
sults produced by a principal task so that they be more
precise, or more adapted to the downstream processing.
However, as these results have been produced by a prin-
cipal task, they already are precise enough (out of design)
to enable the robot to complete its mission. Therefore it
is primordial that the optional task does not degrade the

results!
In order to do so, two kinds of solutions exist. First one

consists in creating an extra buffer dedicated to A+, so that
this task reads A’s results but do not modify them. If A+
is completed before its deadline, its last action will be to
update a flag or a pointer, to tell B that the best input data
to use are in A+’s buffer. This implies that A and A+’s
buffers have the same size, which requires another allocation
of a chunk of memory (about the size of an image).

A second solution can be used if an image partially pro-
cessed by A+ is exploitable. This requires that A+ pro-
cesses in a single scan, and that it improves locally the
image. Then, if an optional task is aborted because it has
lasted too long, it would have only small consequences. But
this solution must not be used if this abortion causes a too
important discontinuity in the result image, and provoke
errors from B task.

5.2.2 Case of an independent optional task.

If an optional task is an independent processing, the de-
signers must think about the reason of this task they want
to implement. As an activation of this task is unpredictable
and irregular, they must ask themselves what would be the
benefit of the produced results. If these results are neces-
sary for the accomplishment of the mission, this task should
perhaps be a regular and periodic task, so that the results
are regularly updated. On the contrary, if those are not
mandatory, the next tasks that use them as input must be
examined, in order to decide if it would be better to use a
classic task with a low periodicity.

Some vision processing operators can use irregular input
data, for example to update a 3D reconstruction from a sin-
gle image [39], but such a case is extremely rare. Further-
more, if such an operator was implemented as an optional
task it would not overload the processor, but meanwhile
nothing guarantees its running.

Nevertheless, one of the main asset of these optional tasks
is that they run only during free time remaining after the
scheduling of the principal and emergency tasks. The use
of this mechanism contributes to exploit the available com-
putation time at best without overloading the system. So
it is very profitable to try to make use of it.

The most interesting use of this mechanism for an inde-
pendent processing may be the calculation of some quality
measurements on the results of principal operators. The
sudden abortion of this computation does not have any bad
consequence on the running of the whole system. On the
contrary, if the calculation is completed and its result shows
that an operator must have its parameters updated, the op-
tional task can emit a signal to the manager task that will
reconfigure tested operator.

6 Conclusion.

Cléopatre framework contains several innovative features
for scheduling and fault tolerance, that we have turned to
good account in our field of research: real-time vision for
mobile robotics.

Especially, we have shown that these mechanisms could
enable to run a vision system on a hardware designed for
regular situations (thus without the usual oversize neces-
sary to deal with the exceptional ones), while ensuring ro-



10 International Journal of Automation and Computing 04(1), January 2007

bustness as design includes a minimal running mode. This
is particularly important to develop systems that are both
safer and less expensive.

Our experiments let us define a set of rules to use at best
the dynamic reconfiguration for Vision Processing. This
foretells an evolution of the way to design a vision process-
ing chain, where one will not reason by operator but by
couples of complementary operators, so that more sophis-
ticated strategies of dynamic reconfiguration can be used,
that avoid redundant processings and achieve the best final
result in the least duration.

References

[1] Cybernetix, “BROKK & SAMM, remote interven-
tion vehicle (dismantling operation),” datasheet, Aug.
2005.

[2] “RoboCup Small-Size League,”
http://www.robocup.org.

[3] M. Bowling and M. Veloso, “Motion control in dy-
namic multi-robot environments,” in Proceedings of
The 1999 IEEE International Symposium on Com-
putational Intelligence in Robotics and Automation
(CIRA’99), Monterey, Nov. 1999.

[4] Cornell University, “Instruments:
panoramic camera (PanCam),”
http://athena.cornell.edu/the mission/ins pancam.html.

[5] J. Gangloff, “Asservissements visuels rapides d’un
robot manipulateur 6 degrés de liberté,” PhD The-
sis, Université Louis Pasteur, 1999.

[6] V. Hugel, P. Bonnin, and P. Blazevic, “French LRP
team’s description,” in Robocup, 2000, pp. 615–618.

[7] V. Hugel, T. Costis, P. Bonnin, and P. Blazevic, “2005
RoboCup technical report,” LRV, Tech. Rep., 2005.

[8] M. Silly and T. Garcia, “Cléopatre : Un systme
d’exploitation temps réel composable et ouvert basé
sur Linux/RTAI,” LINA,” Rapport de Recherche, Oct.
2004.

[9] P. Bonnin and A. de Cabrol, “Projet RNTL Cléopatre,
COTS vision robotique : rapport final,” L2TI, Tech.
Rep., 2005.

[10] T. Garcia, “Conception et développement de com-
posants pour logiciel temps-réel embarqué,” PhD The-
sis, École Centrale de Nantes, LINA, Nov. 2005.

[11] A. de Cabrol, “Système de vision robuste temps-réel
dynamiquement reconfigurable pour la robotique mo-
bile.” PhD Thesis, Universit Paris 13, 2005.

[12] “RoboCup Rescue,” http://www.rescuesystem.org/
robocuprescue.

[13] A. de Cabrol, P. Bonnin, V. Hugel, P. Blazevic, and
M. Silly-Chetto, “Video rate color region segmentation
for mobile robotic applications,” in SPIE, Applications
of Digital Image Processing XXVIII, vol. 5909, 2005.

[14] “RTAI,” http://www.rtai.org.

[15] R. Bourguiba, “Conception d’une architecture
matérielle reconfigurable dynamiquement dédiée au
traitement d’images en temps réel,” PhD Thesis, de
l’Université de Cergy Pontoise, July 2000.

[16] D. Demigny, M. Paindavoine, and S. Weber, “Archi-
tecture à reconfiguration dynamique pour le traite-
ment temps réel des images,” Technique et Science
de l’Information, Special Issue Architectures Reconfig-
urables, vol. 18(10), pp. 1087–1112, Dec. 1999.

[17] N. Abel, D. Demigny, L. Kessal, and N. Boudouani,
“Mise en oeuvre de la reconfiguration partielle
sur l’architecture reconfigurable ARDOISE,” in
Proceedings of the JFAAA, Monastir, Tunisie,
Dec. 2002, pp. 45–48. [Online]. Available:
http://publi-etis.ensea.fr/2002/ADKB02

[18] N. Abel, L. Kessal, and D. Demigny, “Mise en
oeuvre du lisseur de Deriche sur l’architecture recon-
figurable dynamiquement ARDOISE,” in GRETSI,
T. Paris, Ed., vol. I, Paris (France), Septem-
bre 2003, pp. 376–379. [Online]. Available:
http://publi-etis.ensea.fr/2003/AKD03

[19] S. Bouchoux, E.-B. Bourennane, and J. Mitran, “Im-
plantation du décodeur arithmétique de JPEG2000
se basant sur la reconfiguration dynamique des FP-
GAs,” in Journées Francophones de l’Adéquation
Algorithmes-Architectures (JFAAA’2005), Jan. 2005,
pp. 215–219.

[20] R. Bajcsy, M. Mintz, and E. Liebman, “A common
framework for edge detection and region growing,”
University of Pennsylvannie, Tech. Rep., Feb. 1986.

[21] H. L. Anderson, R. Bajcsy, and M. Mintz, “A modular
feedback system for image segmentation,” University
of Pennsylvannie, Tech. Rep., June 1987.

[22] M. Salotti, “Gestion des informations dans les
premières tapes de la vision par ordinateur,” PhD
Thesis, Institut National Polytechnique de Grenoble
(INPG), Jan. 1994, 25 janvier 1994.

[23] K. Chehdi, “Traitement numérique du signal et im-
ages multispectrales et multimodales,” Villetaneuse,
France, Jan. 2005, invited conference at the L2TI.

[24] K. Chehdi, B. Vozel, C. Kermad, and M.-P. Vandecan-
delaere, “A blind system to identify and filter degra-
dations affecting an image,” in IEEE ICSP’2000, In-
ternational Conference on Signal Processing, Beijing,
China, Aug. 2000.

[25] C. Millour and A. Lanusse, “Intgration de mécanismes
préattentifs en analyse par vision de scènes dy-
namiques,” in 2nd scientific workshop TIPI-Aussois,
1988.

[26] M. Silly, A. Marchand, and T. Garcia, Guide
d’installation et d’utilisation de Cléopatre, Oct. 2004.

http://www.cybernetix.fr/modules/cybernetix/upload/Fiche_Produit_Nucleaire/Structure_de_base/BROKKSAMM.pdf
http://www.robocup.org
http://athena.cornell.edu/the_mission/ins_pancam.html
http://www.rescuesystem.org/robocuprescue
http://www.rtai.org
http://publi-etis.ensea.fr/2002/ADKB02
http://publi-etis.ensea.fr/2003/AKD03


de Cabrol et al./ Dynamically Reconfigurable Real-Time Vision System for Autonomous Mobile Robotics. 11

[27] N. C. Audsley, “Deadline monotonic scheduling,” De-
partment of Computer Science, University of York,
Tech. Rep. YCS 146, Oct. 1990.

[28] C. L. Liu and J. W. Layland, “Scheduling algorithms
for multiprogramming in a hard-real-time environ-
ment,” Journal of the ACM, vol. 20, no. 1, pp. 46–61,
1973.

[29] M. Silly-Chetto, “The EDL server for scheduling pe-
riodic and soft aperiodic tasks resource constraints,”
Real-Time Systems, vol. 17, pp. 1–25, 1999.

[30] G. C. Buttazzo and F. Sensini, “Optimal deadline as-
signment for scheduling soft aperiodic tasks in hard
real-time environments.” IEEE Trans. Computers,
vol. 48, no. 10, pp. 1035–1052, 1999.

[31] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority in-
heritance protocols: An approach to real-time synchro-
nization,” IEEE Transactions on Computers, vol. 39,
no. 9, pp. 1175–1185, 1990.

[32] M. Chen and K. Lin, “Dynamic priority ceilings: a
concurrency control protocol for real-time systems,”
Real-Time Systems, vol. 2, no. 4, pp. 325–346, 1990.

[33] H. Chetto and S.-C. Maryline, “An adaptive schedul-
ing algorithm for a fault-tolerant real time system,”
Software Engineering Journal, vol. 6, no. 3, pp. 93–
100, May 1991.

[34] J. Liu, J. Lin, and S. Natarajan, “Scheduling algo-
rithms for multiprogramming in a hard real-time en-
vironment,” in Proceeding of the 8th real-time system
symposium, San Francisco, CA, USA, Dec. 1987, pp.
252–260.

[35] M. Mangolini, “Apport de la fusion d’images satelli-
taires multicapteur au niveau pixel en télédétection et
photointerprétation,” PhD Thesis, Université de Nice
Sophia Antipolis, 1995.

[36] L. Kuntz-Sliwa, “Optimisation d’une configuration
multi-capteur donnée : fusion pixel,” PhD Thesis,
Institut National Polytechnique de Toulouse (INPT),
Feb. 1996.

[37] A. Rosenfeld and J. L. Pfalz, “Sequential operations in
digital picture processing,” in Journal of the Associa-
tion for Computing Machinery, vol. 13(4), 1966, pp.
471–494.

[38] J. Bruce, T. Balch, and M. Veloso, “Fast and inexpen-
sive color image segmentation for interactive robots,”
in International Conference on Intelligent Robots and
Systems (IROS’00), vol. 3, 2000, pp. 2061–2066.

[39] M. Herman and T. Kanade, “The 3D MOSAIC
scene understanding system: incremental reconstruc-
tion of 3D scenes for complex images,” in Readings
in computer vision: issues, problems, principles, and
paradigms. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc., 1987, pp. 471–482.

Aymeric de Cabrol graduated from ESME
Sudria Engineering School in Paris, France, in
2001. He received his M.Sc. in Automatic
Control from ENSAE Sup’aéro in Toulouse,
France, in 2002 ad the Ph.D. degree from the
Paris 13 University, France, in 2005. He is cur-
rently associate researcher at the Laboratory
of Transport and Processing of Information,
L2TI.

His research interests include vision pro-
cessing for mobile robotics.

Thibault Garcia received his M.Sc. in
Distributed Computing, then the Ph.D. from
University of Nantes, France, respectively in
2001 and 2005.

His field of research includes real-time op-
erating system and scheduling issue.

Dr. Garcia is currently at the head of Re-
vaweb company.

Patrick Bonnin received his agrégation in
Physics in 1985, then his M.Sc. in Physi-
cal Measurement in Remote Sensing and the
Ph.D. from University Paris 7, France, respec-
tively in 1986 and 1991. Then he became
associate professor in 1992, and professor in
2000. His field of interest includes Real-Time
Robotic Vision, especially for legged robots.

He is currently professor at ISTY School
of Engineering of the University of Versailles,
France.

Maryline Chetto received her M.Sc. in
Automatic Control, the Ph.D. degree in Com-
puter Science and the HDR from University of
Nantes, respectively in 1982, 1984 and 1993.
She is currently professor at the University of
Nantes, France.

Her research is conducted in the Group of
Real-time systems of the research institute of
communications and cybernetics (IRRCyN).
Her area of interest includes scheduling and
fault-tolerance in real-time systems. She has

published more than 60 journal articles and conference papers in the
area of real-time operating systems.

Professor Chetto has been the leader of a French national R&D
project, namely CLÉOPATRE, supported by the French government,
which aims to provide free open source real-time solutions.


	Introduction.
	Applicative constraints.
	Inner constraints of a vision system.
	Mission constraints.
	Selected hardware.
	Compromise between safety and cost.
	Toward a dynamically reconfigurable vision system.

	Cléopatre Real-Time Operating System facilities.
	Overview.
	Deadline Mechanism.
	Imprecise Computation.

	Dynamically Reconfigurable Vision System.
	Nominal and backup systems.
	Implemented system.

	Advanced dynamic reconfiguration.
	Use of Cléopatre Deadline Mechanism.
	Emergency task duration.
	Emergency task activation frequency.
	Emergency task content.
	Continuing the process with another algorithm.

	Use of Cléopatre Imprecise Computation.
	Case of a refining optional task.
	Case of an independent optional task.


	Conclusion.

