
HAL Id: hal-00542190
https://hal.science/hal-00542190

Submitted on 3 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic scheduling of periodic skippable tasks in an
overloaded real-time system

Audrey Marchand, M. Chetto

To cite this version:
Audrey Marchand, M. Chetto. Dynamic scheduling of periodic skippable tasks in an overloaded real-
time system. IEEE/ACS International Conference on Computer Systems and Applications, Mar 2008,
Doha, Qatar. pp.456-464. �hal-00542190�

https://hal.science/hal-00542190
https://hal.archives-ouvertes.fr

Dynamic Scheduling of Periodic Skippable Tasks
in an Overloaded Real-Time System

Audrey Marchand∗ and Maryline Chetto†, member IEEE
∗DISCA - Technical University of Valencia, Spain

†IRCCyN - University of Nantes, France
Email: {audrey.marchand, maryline.chetto}@univ-nantes.fr

Abstract

The need for supporting dynamic real-time environments
where changes in workloads may occur requires a schedul-
ing framework that explicitly addresses overload condi-
tions, allows the system to achieve graceful degradation
and supports a mechanism capable of determining the load
to be shed from the system to handle the overload. In ap-
plications ranging from video reception to air-craft control,
tasks enter periodically and have response time constraints,
but missing a deadline is acceptable, provided most dead-
lines are met. Such tasks are said to be occasionally skip-
pable and have an assigned skip parameter. We look at the
problem of uniprocessor scheduling of skippable periodic
tasks which consists in maximizing the robustness of the sys-
tem defined as the global completion ratio. In this paper,
we propose a novel scheduling Skip-over algorithm, called
RLP/T, a variant of Earliest-Deadline First which adjusts
the system workload such that tasks adhere to their timing
and skip constraints and guarantees the best robustness.

1. Introduction

While it is imperative that all time constraints are met
in hard real-time systems, firm or soft real-time systems
do not have as stringent timeliness requirements, allowing
for some degree of tardiness (soft) or miss ratio (firm). A
significant body of research within the soft and firm real-
time area has focused on minimizing tardiness and/or miss
ratio, but without quantifying acceptable levels. In this
paper, we focus on scheduling firm periodic tasks which
have additional requirements specifying the minimum ac-
ceptable completion ratios that should be met in order to
maintain system correctness. In a hard real-time system
all hard deadline tasks must meet their deadlines to main-
tain system correctness; otherwise, the system has failed.
In contrast, a deadline is considered to be soft if it can be

missed occasionally (or not by much), and hence, a task
missing a single soft deadline is not considered as a fail-
ure. In a soft real-time system correctness is determined
by the degree to which timeliness has been enforced for
the entire task set. However, completion of a tardy firm
deadline task is not meaningful, since late delivery of the
result is considered to be of no value to the real-time sys-
tem. Although firm deadlines can occasionally be missed,
there is normally an upper limit on the number of misses
within a defined interval. The hard real-time paradigm is
well established and it has received considerable attention
by researchers and practitioners within academia and indus-
try. Numerous techniques and algorithms, especially in the
area of scheduling, have been developed. Most schedul-
ing algorithms developed for soft and firm real-time sys-
tems lack the ability to enforce constraints on the upper
limit of misses. Without such enforcement, unbounded
consecutive time constraint violations may occur. Realis-
tically, if consecutive instances of a task fail to complete
before their deadlines, then the system will eventually suffer
from a failure. This indicates that there are additional con-
straints expressing the minimum degree of timeliness for
firm real-time tasks, that must be enforced. Unfortunately,
little work has been done on scheduling of firm tasks with
such constraints, and this is the subject of our paper. The
most significant firm real-time constraint is (m, k)-firm con-
straint and consists of guaranteeing m out of k consecutive
task executions or message transmissions. New strategies
to schedule systems with (m, k)-firm constraints or other
similar constraints (e.g.window-constrained [13] and skip-
over [5]) have been defined. Koren and Shasha identified
a model, called skip-over, for overloaded systems allowing
skips. In this paper, we focus on dynamic scheduling of pe-
riodic tasks with firm deadlines, where each firm task has
an additional constraint specifying the acceptable level of
timeliness, the skip factor. If a task has a skip factor s, it
will have at most one invocation skipped out of s. We have
presented, in an earlier paper, a scheduling framework [9],

RLP (Red Tasks as Late as possible) for handling dynamic
workloads consisting of periodic firm deadline tasks. In this
paper, we introduce a variation of RLP, called RLP/T. We
add a novel admission control mechanism to RLP, which
enables the algorithm to enforce robustness constraints by
performing a dynamic test to accept or not a skippable task
for execution, so as to lost minimum processing time. The
admission controller tests for schedulability of a new in-
stance upon its arrival. It acts as a task filter guaranteeing
that the scheduler is always able to find a feasible schedule.
Our performance evaluation shows that RLP/T outperforms
the basic skip-over algorithms, RTO (Red Tasks Only) and
BWP (Blue When Possible) [5]. The paper is structured as
follows. In section 2 we describe the Skip-Over model and
recall some background materials in section 3. In section 4
and 5 we respectively describe in detail the algorithm RLP
and its extension RLP/T. In section 6 we present results of a
simulation study. Implementation and validation issues are
considered in section 7. At the end of the paper, we make a
short summary and directions for future work in section 8.

2. The skip-over model

2.1 Terminology and assumptions

In what follows, we consider the problem of schedul-
ing periodic tasks which allow occasional deadline viola-
tions (i.e. skippable periodic tasks), on a uniprocessor sys-
tem. The system under study has a workload consisting of
tasks that can be preempted at any time and they do not
have precedence constraints. A taskTi is characterized by
a worst-case computation timeCi, a periodPi, a relative
deadline equal to its period, and a skip parametersi. This
parameter represents the tolerance of this task to miss dead-
lines. That means that the distance between two consecutive
skips must be at leastsi periods. Whensi equals to infinity,
no skips are allowed andTi is a hard periodic task.

Every taskTi is divided into instances where each in-
stance occurs during a single period of the task. Every in-
stance of a task is either red or blue [5]. A red task instance
must complete before its deadline whereas a blue task in-
stance can be aborted at any time. However, if a blue in-
stance completes successfully, the next task instance is still
blue.

2.2 RTO and BWP algorithms

Two scheduling algorithms were introduced about ten
years ago. The first one proposed by Koren and Shasha
is the Red Tasks Only (RTO) algorithm. Red instances are
scheduled as soon as possible according to Earliest Dead-
line First (EDF) algorithm [4], while blue ones are always
rejected. The second algorithm studied is the Blue When

Possible (BWP) algorithm which is an improvement of the
first one. Indeed, BWP schedules blue instances whenever
their execution does not prevent the red ones from complet-
ing within their deadlines. In other words, blue instances
are served in background relatively to red instances.

2.3 Illustration

Hereafter is presented a scheduling example with two
tasks Ti(Ci, Pi, si) defined according to the Skip-Over
model. TaskT1 is a hard real-time periodic task (si = ∞)
while taskT2 allows deadline skips (si = 3). Tasks are
scheduled as soon as possible according to their deadline.

-

-
6 6 6 6

6 6 6 6 6 6 6 6 6 6
0 6 12 18

0 2 4 6 8 10 12 14 16 18

T1(4, 6,∞)

T2(1, 2, 3)

skip skip skip

Figure 1. A Skip-Over schedule

The system is overloaded (Up =
∑n

i=1
Ci

Pi
= 4

6 + 1
2 =

1.17), but we can see that tasks can be schedulable provided
T2 exactly skips one instance every 3.

3. Background material on Earliest Deadline

Despite of not being implemented yet in any commercial
RTOS, dynamic scheduling policies and more particularly
Earliest Deadline First algorithm (EDF) offer many advan-
tages such that accomplishing a 100% processor utilization.
Let us review the fundamental properties of Earliest Dead-
line First algorithm, stated in [3] [5] which are the basic
foundation of our approach for scheduling tasks in the skip-
over model.

3.1. Earliest Deadline as Soon as possible (EDS)

In general, implementation of EDF consists in executing
tasks according to their urgency, as soon as possible with no
inserted idle times. Such implementation is known as EDS
(Earliest Deadline as Soon as possible). Nevertheless, in
some applications, this implementation presents drawbacks,
for example when soft aperiodic tasks need to be served
with minimal response times. In that case, it is preferable
to postpone the execution of periodic tasks, executing them
by the so-called EDL (Earliest Deadline as Late as possible)
strategy.

3.2. Earliest Deadline as Late as possible (EDL)

Such approach is known as Slack Stealing since it makes
any spare processing time available as soon as possible.
In doing so, it effectively steals slack from the hard dead-
line periodic tasks. A means of determining the maximum
amount of slack which may be stolen, without jeopardiz-
ing the hard timing constraints, is thus key to the operation
of the EDL algorithm. In [3], we described how the slack
available at any current time can be found. This is done by
mapping out the processor schedule produced by EDL for
the periodic tasks from the current time up to the end of
the current hyperperiod (the least common multiple of task
periods). This schedule is constructed dynamically when-
ever necessary and is computed from a static EDL sched-
ule, constructed off-line and memorized by means of the
two following vectors:

• K, called static deadline vector.K represents the time
instants from 0 to the end of the first hyperperiod, at
which idle times occur and is constructed from the dis-
tinct deadlines of periodic tasks.

• D, called static idle time vector.D represents the
lengths of the idle times which start at time instants
of K.

The complexity for computing the EDL static schedule is
O(N) whereN is the total number of periodic instances in
the hyperperiod. Formula that giveK andD can be found
in [11].

The computation of the EDL static schedule is illustrated
in Figure 2 with a set of two taskTi(Ci, Pi,Di). Note that
in this example there are 7 potential idle times denoted by
ki, i = 0, .., 6. Results of the computation of vectorsK and
D are summarized in Table 1.

-

-

-6 6 6 6

6 6 6 6 6 6
0 10 20 30

0 6 12 18 24 30

k0 k1 k2 k3 k4 k5 k6

T1(3, 10, 10)

T2(3, 6, 6)

fEDL

: processing of periodic tasks according to EDL

: idle time

6 : release time

Figure 2. EDL computation of static idle times

At run-time, the dynamic EDL schedule is updated from
the static one by taking into account the execution of current
ready tasks. It is described by means of the two following
vectors:

Table 1. K andD computation
K 0 6 10 12 18 20 24
D 3 0 0 2 0 1 0

• Kt, called dynamic deadline vector.Kt represents the
time instants posterior tot in the current hyperperiod,
at which idle times occur.

• Dt, called dynamic idle time vector.Dt represents the
lengths of the idle times that start at time instants given
by Kt.

The complexity for computing the EDL dynamic sched-
ule isO(K.n) wheren is the number of periodic tasks, and
K is equal to⌊R

p
⌋, whereR and p are respectively the

longest deadline and the shortest period of current ready
tasks [11]. Formula that giveKt andDt can be found in
[11].

Assume now that, given the same task set as introduced
before, we want to compute idle times from time instant
t = 5 when tasks are processed by EDS from 0 tot. The
resulting schedule is depicted in Figure 3.

-

-

-6 6 6 6

6 6 6 6 6 6

6

0 10 20 30

0 6 12 18 24 30

kt k1 k2 k3 k4 k5 k6

T1(3, 10, 10)

T2(3, 6, 6)

fEDL

: processing of periodic tasks according to EDF

: simulated processing of periodic tasks according to EDL

: idle time

6 : release time

Figure 3. EDL computation of dynamic idle times at
time t = 5

Table 2. K andD computation
Kt 5 6 10 12 18 20 24
Dt 1 2 0 2 0 1 0

Then, from timet = 5 until the end of the hyperperiod,
tasks are scheduled as late as possible according to EDL.
Nonzero idle times resulting from the computation of vec-
torsKt andDt (see Table 2) appear at timest = 5, t = 6,
t = 12 andt = 20.

Chetto and Chetto in [3] showed that the EDL sched-
ule computation can be efficiently used for improving the

service of aperiodic tasks. By definition, soft aperiodic re-
quests must not compromise the guarantees given for pe-
riodic tasks and should be completed as soon as possible.
No acceptance test is performed for soft aperiodic requests;
they are served on a best-effort basis within the computed
idle times, the goal being to minimize their response times.
With respect to hard aperiodic tasks, every task is subject
to an acceptance-rejection test upon arrival. Indeed, given
their absolute deadline and their worst-case execution time,
hard aperiodic tasks can easily be admitted or rejected on
the basis of the knowledge of idle times localization.

In [4] the same authors presented how EDL can be used
to generate fault-tolerant schedules. The authors assume
that every task is composed of primary and alternate jobs as
specified by the Deadline Mechanism model [2]. The main
feature of their method lies in the ability of dynamically
changing the schedule and accounting for runtime situations
such as successes or failures of primaries.

In our approach, we propose to use the EDL scheduling
algorithm with the Skip-Over task model ascertaining the
fact that the Deadline Mechanism and the Skip-Over mod-
els present analogous features. In both cases, the objec-
tive is to manage overload situations. The Deadline Mecha-
nism performs commutations to a degraded mode in which
results of lower quality are produced, but still meeting all
the deadlines. As regards the Skip-Over model, it also per-
forms commutations to a degraded mode, processing results
of constant quality, but allowing some results to be not pro-
duced at all. Blue task instances of the Skip-Over model can
be compared to primary jobs of the Deadline Mechanism,
whereas red task instances can be associated with alternate
jobs.

4. The RLP algorithm

4.1. Principles

The objective of RLP algorithm [9] is to bring forward
the execution of blue task instances so as to minimize the ra-
tio of aborted blue instances, thus enhancing the robustness
(i.e., the total number of task completions) of periodic tasks.
From this perspective, RLP scheduling algorithm, which is
a dynamic scheduling algorithm, is specified by the follow-
ing behaviour:

• if there are no blue task instances in the system, red
task instances are scheduled as soon as possible ac-
cording to the EDF (Earliest Deadline First) algorithm.

• if blue task instances are present in the system, they are
scheduled as soon as possible according to the EDF al-
gorithm (note that it could be according to any other
heuristic), while red task instances are processed as

late as possible according to the EDL algorithm. Dead-
line ties are always broken in favor of the task with the
earliest release time.

4.2. Applying EDL to Red instances

The main idea of this approach is to take advantage of
the slack of red periodic task instances. Determination of
the latest start time for every red instance of the periodic
task set requires preliminary construction of the scheduleas
described previously and taking skips into account [8, 10].
In the EDL schedule established at current timet, we as-
sume that the instance following immediately a blue in-
stance which is part of the current periodic instance set at
time t, is red. Indeed, none of the blue task instances is
guaranteed to complete within its deadline. Moreover, in
[11] it was proved that the online computation of the slack
time is required only at time instants corresponding to the
arrival of an instance while no other is already present on the
machine. In our case, the EDL sequence is constructed not
only when a blue task is released (and no other was already
present) but also after a blue task completion if blue tasks
remain in the system (the next task instance of the com-
pleted blue task has then to be considered as a blue one).
Note that blue tasks are executed in the idle times computed
by EDL and are of same importance beside red tasks (con-
trary to BWP which always assigns higher priority to red
tasks).

4.3. Illustrative example

To illustrate RLP, let us consider a set of five periodic
tasksT = {T1, T2, T3, T4, T5} whose parameters are de-
scribed in Table 3. We assume that all the tasks have the
same skip parametersi = 2. We note that the processor
utilization factor for this task set is equal to 1.15 and con-
sequently some instances will necessarily miss their dead-
lines.

Table 3. Task parameters
Ti T1 T2 T3 T4 T5

Ci 3 4 1 7 2
Pi 30 20 15 12 10

It can be observed that, thanks to RLP scheduling, the
number of violations of deadline relative to blue task in-
stances equals three. They occur at time instantst = 40
(taskT5), andt = 60 (tasksT4 andT5). Until time t = 10,
red task instances run as soon as possible. From timet = 10
to the end of the hyperperiod, red task instances do execute
as late as possible in the presence of blue task instances,
thus enhancing the robustness of periodic tasks.

-
-
-
-
-6 6 6

6 6 6 6
6 6 6 6 6
6 6 6 6 6 6
6 6 6 6 6 6 6

0 30 60

0 20 40 60

0 15 30 45 60

0 12 24 36 48 60

0 10 20 30 40 50 60

T1

T2

T3

T4

T5

: processing red task
: processing blue task

6: release time

Figure 4. A RLP schedule (si = 2)

5. The RLP/T algorithm

5.1. Principles

The main disadvantage of RLP lies in that this scheduler
attempts to process as soon as possible blue instances at the
risk of not completing them before their deadlines due to
possible overload. Such strategy then generates wasted pro-
cessing times due incomplete execution of tasks and does
not provide the best degradation during overload periods.
Consequently, we propose to handle overload by perform-
ing admission control before deciding to execute a ready
blue instance. The so-called RLP/T (Red Tasks as Late as
Possible with blue acceptance Test) then leads to maximize
the robustness. Considering the worst-case execution time
of each occurring blue instance we can ensure that the set
of admitted blue instances is feasibly schedulable. And as
soon as a blue instance is admitted, the next task instance
of the completed blue instance which was necessarily red is
considered as a blue one. A blue instance is normally re-
jected once it is determined that it cannot be admitted given
the current workload composed of red instances and already
admitted blue instances.

5.2. The admission test

The acceptance test of blue tasks within a system involv-
ing Skip-Over tasks presented below in Theorem 1, is based
on results established by Silly and al. [12] for the accep-
tance of sporadic requests occurring in a system consisting
of basic periodic tasks (i.e., without skips).

THEOREM 1 TaskB is accepted if and only if, for every
taskBi ∈ B(τ)∪{B} such thatdi ≥ d, we haveδi(τ) ≥ 0,
with δi(τ) defined as:

δi(τ) = ΩEDL
T (τ) (τ, di) −

i∑

j=1

cj(τ) (1)

B(τ) denotes the blue task set supported by the machine
at timeτ . δi(τ) is called slack of taskBi at timeτ and rep-
resents the maximum units of time during which the task

could not be served by the processor without missing its
deadline.ΩEDL

T (τ) (τ, di) denotes the total units of time that
the processor is idle in the time interval[τ, di]. The to-
tal computation time required by blue tasks within[τ, di]

is given by
∑i

j=1 cj(τ).
Hence, a blue task occurring at timeτ can be accepted

provided that all the slacks (including the ocurring task’s
one) of the blue tasks having a deadline greater than or
equal to the occurring task, which are computed atτ , re-
main greater than or equal to zero.

5.3. Example

RLP/T scheduling is illustrated in Figure 5 with the pe-
riodic task setT defined in Table 3. It is easy to see that
RLP/T improves on RLP. Only two violations of deadline
relative to blue task instances are observed: at time instants
t = 40 (taskT5) andt = 60 (taskT4). The acceptance test
contributes to compensate for the time wasted in starting
the execution of blue tasks which are not able to complete
within their deadline. As we can observe, in the RLP case
(see Figure 4),T4 blue instance released at timet = 48 is
aborted at timet = 60 (2 units of time were indeed wasted).
Note that the rejection of this blue task instance, performed
with RLP/T, contributes to save time used for the successful
completion ofT5 blue instance released at timet = 50.

-
-
-
-
-6 6 6

6 6 6 6
6 6 6 6 6
6 6 6 6 6 6
6 6 6 6 6 6 6

0 30 60

0 20 40 60

0 15 30 45 60

0 12 24 36 48 60

0 10 20 30 40 50 60

T1

T2

T3

T4

T5

: processing red task
: processing blue task

6: release time

Figure 5. A RLP/T schedule (si = 2)

6. Performance evaluation

6.1. Simulation details

We report part of a performance analysis which consists
of three simulation experiments designed to evaluate RLP/T
with respect to RTO, BWP and RLP. In the first experiment,
we measure the robustness, in the second one, the wasted
time ratio (i.e the percentage of unuseful processing time)
and in the third one, the percentage of processor idle time.
The study is done by varying the periodic task loadUp.

The simulator generates 50 periodic task sets. Each one
contains 10 tasks with a least common multiple equal to

3360. Tasks are defined with uniform skip factorsi. The
worst-case computation times depend on the setting of the
periodic loadUp. Deadlines are equal to the periods and
greater than or equal to the computation times. Simulations
have been processed over 10 hyperperiods.

6.2. Experiment 1

Simulation results reported in Figure 6 are carried out
for a skip parametersi equal to 2, varying the periodic load
and measuring the robustness given by the percentage of pe-
riodic task instances that complete successfully. We report
here the results of 2 simulation studies where tasks have an
actual computation time (ACET) equal to 100% and 75% of
the worst-case computation time (WCET) respectively. Let
us recall that in practice, tasks have variable actual compu-
tation times assumed to be less than an estimated worst-case
computation time. The assumption that a task will consume
its WCET in all the activations does not have to be necessar-
ily true, which implies that the real utilization of the CPU is
less than the estimated in the schedulability test.

Figure 6. Robustness for ACET=WCET and
ACET=0.75*WCET

On one hand, we observe that, for any processor work-
load, BWP and RLP outperform RTO for which the robust-

ness is constant and minimal. ForUp ≤ 1, the processor is
underloaded, and both BWP and RLP success in complet-
ing all blue tasks instances which are respectively executed
after and before red task instances. In overload situations,
RLP and BWP give quite the same performances. However,
compared with RLP, RLP/T provides a significant perfor-
mance improvement.

On the other hand we can see that, for an identical peri-
odic load, the success ratio of tasks observed for BWP, RLP
et RLP/T is higher when the task execution time is less than
its worst-case execution time. This is due to the fact that
the amount of time (WCET-ACET) that is not used by each
instance and which is in fact additional CPU time, is used
for completing a greater number of task instances.

Moreover, note that for low overloads and
ACET=0.75*WCET, BWP and RLP outperform RLP/T.
This is due to the fact that the admission test performed
by RLP/T is based upon the assumption that tasks execute
according to their WCET, the value of ACET being not
known a priori. Consequently, RLP/T will necessarily
reject tasks that after all could have been accepted on the
basis of their ACET. This is exactly what we can observe
for the periodic load equal to130%, RLP/T temporarily
offers lower performances than BWP and RLP. Note that
this phenomenon is not observable any more once the skip
parameters are higher (e.g.si = 6).

Finally, other tests not reported here show that, higher
is the skip parameter more significant is the advantage of
RLP/T over the other algorithms.

6.3. Experiment 2

It seemed wise to perform measurements about the CPU
time wasted in incomplete executions of blue tasks. Simu-
lation results forsi = 2 andsi = 6 are depicted in Figure 7.

Wasted CPU time is equal to zero for RTO since the al-
gorithm schedules only red tasks. For RLP/T, the wasted
CPU time is also equal to zero, whatever is the periodic
load. This has been achieved thanks to the admission test
implementation which prevents the abortion of blue tasks.
A blue task is accepted if and only if it will be able to com-
plete before its deadline.

With respect to BWP and RLP, the wasted CPU time is
always positive once the system is overloaded (Up > 1).
ForUp = 115% andsi = 2, BWP et RLP involve the great-
est amount of wasted CPU time, namely24% et 26% re-
spectively. Beyond that load, BWP and RLP curves present
a decline. This is due to the fact that when the system is
highly overloaded, it means that there are more red tasks to
execute, hence less available CPU time for the execution of
blue tasks. In addition, results not reported here show that
the wasted CPU time is all the less significant as the skip
parameters are higher.

Figure 7. Wasted CPU time for high (si = 2) and low
(si = 6) skips

6.4. Experiment 3

Finally, we made a performance comparison on the basis
of another criterion : the CPU idle time ratio (i.e. the ra-
tio of time during which the processor is not processing any
task). This measure represents the system ability to face a
dynamic surplus of processing (e.g. the arrival of an ape-
riodic task). Simulation results forsi = 2 et si = 6 are
presented in Figure 8.

First, let us remark that the CPU idle time ratio under
RTO is the biggest one. This one declines in a linear fashion
according to the periodic loadUp applied to the system. In
the casesi = 2, it varies from55% for Up = 90%, to 10%
for Up = 180%. Note the singular points of the curves
si = 2 et si = 6: when Up = 100%, idle time ratios
are respectively equal to12 = 50% and 1

6 = 16.7%, thus
corresponding exactly to the allowed skip ratios.

As regards BWP, RLP and RLP/T, idle time ratios are
identical when the system is underloaded (Up < 100%).
They become positive (idle time= 10% for Up = 90%)
and decline in a linear fashion until reaching a zero value
for Up = 100%.

Figure 8. CPU idle time for high (si = 2) and low (si =

6) skips

However, when the system is overloaded (Up > 100%),
results differ. RLP doesn’t involve CPU idle time what-
ever are the skip parameters. We observe that BWP in-
volves a low idle time ratio only for low skip ratios. As
regards RLP/T, it seems the most performant keeping a non
neglecting idle time ratio when the system is lightly over-
loaded. Indeed, the idle time ratio under RLP/T forsi = 2
andUp = 115% is equal to9%. Morever, even when the
system is highly overloaded, RLP/T presents an idle time
ratio which is low, certainly, but always positive.

As a matter af fact, all the experiments show that RLP/T
seems the most suitable for facing transient overloads.

7. Implementation and validation issues

7.1. Integration in a Linux based operating system

There are two approaches to provide real-time perfor-
mance in a Linux system: 1. Improving the Linux ker-
nel preemption. 2. Adding a new software layer beneath
Linux kernel with full control of interrupts and processor

key features. This second approach is the one used by
RTAI [6]. RTAI is the acronym of Real Time Applica-
tion Interface. It was first started at the Dipartimento di
Ingeneria Aerospaziale, Politecnico di Milano by Professor
Paolo Mantegazza. RTAI started as a variant of RTLinux
in 1999. Recently, RTAI developers have replaced the un-
derlying hardware control RTHAL, based on the RTLinux
original code and patented by Victor Yodaiken [15], with
a new technology called ADEOS “Adaptive Domain Envi-
ronment for Operating Systems” [14]. The basic structure
of RTAI is the same than RTLinux. A new software layer
is beneath Linux kernel with full control of interrupts and
processor key features. RTAI scheduler treats the Linux op-
erating system kernel as the idle task. Linux only executes
when there are no real time tasks to run, and the real time
kernel is inactive. Linux processes can never block inter-
rupts or prevent themselves from being preempted. In this
way, it is possible to have a complete general purpose op-
erating system running on top of a small predictable RTOS.
RTAI provides an execution environment “below” the Linux
kernel. One consequence of this is that real-time tasks can
not use Linux services because deadlock or system incon-
sistencies may happen. To overcome this problem, a FIFO-
based mechanism can be used to communicate threads in
both layers.

An optional tracer module (Linux Trace Toolkit) can be
included in the system. The tracer will register all the rel-
evant system events and user-defined ones. LTT provides
developers with all of the information necessary to recon-
struct a system’s behavior over a certain period of time and
find logical and temporal bugs of the system or the appli-
cation. Linux and RTAI both lack some important facilities
needed in real-time systems.

7.2. The CLEOPATRE framework

CLEOPATRE, that stands for Open Components on
Shelves for Embedded Real-time Applications, is a french
national project, based on Open Source, which aims to
provide an integrated execution environment for embed-
ded real-time applications with flexible and portable com-
ponents. So, it was mandatory to design the components
taking as starting point a given RTOS. Without a basic
infrastructure, it was not possible to develop new func-
tionalities. RTAI was adopted for this project because we
wanted the CLEOPATRE components to be distributed un-
der the LGPL license which is also the one used in the RTAI
project.

The CLEOPATRE library offers selectable COTS
(Commercial-Off-The-Shelf) components dedicated to dy-
namic scheduling, aperiodic task service, resource control
access, fault-tolerance and now, QoS scheduling (see Fig-
ure 9).

Figure 9. The CLEOPATRE framework

An additional layer named TCL (Task Control Layer)
interfaces all the CLEOPATRE components. It has been
added as a dynamic module in $RTAI DIR/modules/TCL.o,
and represents an enhancement of the legacy RTAI sched-
uler defined in $RTAI DIR/modules/rt sched.o. CLEOPA-
TRE applications are highly portable to any new CPU ar-
chitecture thanks to this OS abstraction layer which makes
the library of services, generic. The CLEOPATRE Off-the-
Shelf components are optional except the OS abstraction
layer (TCL) and the scheduler.

At most one component per shelf can be selected. Since
all components of a given shelf have the same programming
interface, they are interchangeable. Everything needed to
use and develop CLEOPATRE can be downloaded from the
web site of the project [1].

RTO, BWP, RLP and RLP/T algorithms have been put
into an additional shelf called Quality of Service. The QoS
services are available as independent software components.
This enables developers to build their own application-
specific operating system.

7.3 Tests and validation criteria

To validate the correct implementation of this component
two types of tests have been developed:

• Conformance tests. These tests have checked the cor-
rect behavior of the API.

• Overhead tests. These tests have validated the
following criteria (for a Pentium III 400 MHz):
overhead<400 microseconds incurred with RLP/T and
overhead<100 microseconds incurred with RLP, for a
set of 20 tasks whose execution was simulated during
34 seconds.

Details of implementation and tests can be found in [7].

8. Conclusions and Future Work

It is generally accepted that occasionally missing some
firm deadlines is acceptable and is not considered as a fail-

ure. Hence, during transient overloads, some of the non-
critical tasks can be dropped without jeopardizing system
correctness. Most research in the area of scheduling firm
tasks assume that there is no requirement on the minimum
number of tasks that must successfully complete. In this
paper, we have focused on scheduling firm periodic tasks
which may skip occasionnaly. In other words, system cor-
rectness is maintained if, for all tasks, the scheduler en-
forces the skip factor while maximizing the robustness (i.e.
the task completion ratio). We have suggested an overload
scheduling algorithm, RLP, for a periodic workload that
complies to the Skip-Over model and we have presented
a variant of RLP, called RLP/T based on an admission con-
trol mechanism. Tasks having better chances to successfully
complete with RLP/T, robustness of the system i.e the com-
pletion ratio is increased. We have evaluated RLP/T by con-
ducting a simulation-based performance analysis. The re-
sults show that the performance of firm tasks gracefully de-
grades as the load increases. We have presented CLEOPA-
TRE, a library of free software components for the design
of a high variety of embedded real-time systems to cover
several classes of applications. Overload scheduling strate-
gies including RLP and RLP/T are provided by one shelf
of the library and are the key features needed to provide a
powerful and usable RTOS, that permits to manage over-
load conditions for firm real-time systems. We intend to
present, in future papers, the feasability of using the RLP/T
algorithm for scheduling skippable periodic tasks in pres-
ence of soft and hard aperiodic tasks under resource access
constraints.

References

[1] http://cleopatre.rts-software.org.
[2] R.-H. Campbell, K.-H. Horton, and G.-G. Belford. Sim-

ulations of a fault-tolerant deadline mechanism.Digest of
papers FTcs-9, pages 95–101, 1979.

[3] H. Chetto and M. Chetto. Some results of the earliest dead-
line scheduling algorithm.IEEE Transactions on Software
Engineering, 15(10):1261–1269, October 1989.

[4] H. Chetto and M. Chetto. An adaptive scheduling algorithm
for fault-tolerant real-time systems.Software Engineering
Journal, May 1991.

[5] G. Koren and D. Shasha. Skip-over algorithms and com-
plexity for overloaded systems that allow skips.16th IEEE
Real-Time Systems Symposium, 1995.

[6] P. Mantegazza, E. Bianchi, L. Dozio, M. Angelo, and
D. Beal. Diapm. rtai programming guide 1.0.Lineo Inc.,
2000.

[7] A. Marchand.Ordonnancement temps réel avec contraintes
de qualit́e de service - De la th́eorie l’intégration. PhD
thesis, University of Nantes (France), October 2006.

[8] A. Marchand and M. Silly-Chetto. Qos scheduling com-
ponents based on firm real-time requirements.ACS/IEEE
International Conference on Computer Systems and Appli-
cations, January 2005.

[9] A. Marchand and M. Silly-Chetto. Rlp: Enhanced qos sup-
port for real-time applications.11th IEEE International
Conference on Embedded and Real-Time Computing Sys-
tems and Applications, August 2005.

[10] A. Marchand and M. Silly-Chetto. Dynamic real-time
scheduling of firm periodic tasks with hard and soft aperi-
odic tasks.The Journal of Real-Time Systems, 32(1-2):21–
47, February 2006.

[11] M. Silly. The edl server for scheduling periodic and soft
aperiodic tasks with resource constraints.The Journal of
Real-Time Systems, Kluwer Academic Publishers, 17:1–25,
1999.

[12] M. Silly, H. Chetto, and N. Elyounsi. An optimal algorithm
for guranteeing sporadic tasks in hard real-time systems.
IEEE Symposium on Parallel and Distributed Processing,
pages 578–585, 1990.

[13] R. West and C. Poellabauer. Analysis of a window-
constrained scheduler for real-time and best-effort packet
streams.21st IEEE Real-Time Systems Symposium, Novem-
ber 2000.

[14] K. Yaghmour. Adaptive domain environment for operating
systems.Opersys Inc., 2001.

[15] V. Yodaiken. The rtlinux approach to real-time.FSMLabs
Inc., 2004.

