
Journées Automates Cellulaires 2010 (Turku), pp. 88-99

A CATEGORICAL OUTLOOK ON CELLULAR AUTOMATA

SILVIO CAPOBIANCO AND TARMO UUSTALU

Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618
Tallinn, Estonia
E-mail address : {silvio,tarmo}@cs.ioc.ee

Abstract. In programming language semantics, it has proved to be fruitful to
analyze context-dependent notions of computation, e.g., dataflow computation and
attribute grammars, using comonads. We explore the viability and value of similar
modeling of cellular automata. We identify local behaviors of cellular automata
with coKleisli maps of the exponent comonad on the category of uniform spaces
and uniformly continuous functions and exploit this equivalence to conclude some
standard results about cellular automata as instances of basic category-theoretic
generalities. In particular, we recover Ceccherini-Silberstein and Coornaert’s ver-
sion of the Curtis-Hedlund theorem.

1. Introduction

Since the seminal work of Moggi [13], it has become standard in programming
language semantics to analyze functions producing effects such as exceptions, input,
output, interactive input-output, nondeterminism, probabilistic choice, state, con-
tinuations using monads. Specifically, effectful functions are identified with Kleisli
maps of a suitable monad on the category of pure functions. Wadler [18] put this
view to further use in programming methodology by extracting from it a very useful
programming idiom for purely functional languages like Haskell.

The dual view of context-dependent functions as coKleisli maps of a comonad is
equally useful, but less well known. Brookes and Geva [2] explained the “intensional”
aspect of denotational semantics in terms of the ω-chain comonad on the category
of ω-cpos. More recently, Uustalu and Vene [15, 16, 17] employed comonads to
analyze dataflow computation and attribute grammars and Hasuo et al. [9] treated
tree transducers.

Characteristic of many context-dependent notions of computation is shape-
preserving transformation of some datastructure based on a value update rule which
is local in nature and applied uniformly to every node. This is the case with dataflow
computation where such a transformation is applied to a list or to a stream with a
distinguished position and with attribute grammars where computation happens on
a tree or a tree with a distinguished position (a “zipper”). Cellular automata are

This research was supported by the European Regional Development Fund (ERDF) through
the Estonian Center of Excellence in Computer Science (EXCS) and by the Estonian Science
Foundation under grant no. 6940.

88

A CATEGORICAL OUTLOOK ON CELLULAR AUTOMATA 89

similar, the datastructure being the integer line or plane or, more generally, a group.
It should therefore be worthwhile to test the slogan that context-dependent compu-
tation is comonadic also on cellular automata. To a degree, this has already been
done, as Piponi [14] programmed cellular automata in Haskell using the comonadic
interface. However, he did not use his modeling of cellular automata to prove prop-
erties about them and also dropped the classical requirement that cellular automata
rely on a finite neighborhood only.

In this paper, we study the comonadic aspect of cellular automata deeper. We
identify cellular automata (more exactly their local behaviors) with coKleisli maps
of the exponent monad on Unif , the category of uniform spaces and uniformly
continuous functions, and explore whether this view can be useful. We see that it
is: we can conclude some standard results about cellular automata as instances of
category-theoretic generalities. In particular, we recover the Curtis-Hedlund theo-
rem [10]—a characterization of global behaviors of cellular automata—in the version
of Ceccherini-Silberstein and Coornaert [4] (this applies to general discrete alpha-
bets rather than finite alphabets only). This theorem turns out to be an instance of
the basic category-theoretic fact that the coKleisli category of a comonad is isomor-
phic to the full subcategory of its co-Eilenberg-Moore category given by the cofree
coalgebras. We also show that the comonadic view allows one to see 2-dimensional
cellular automata as 1-dimensional and treat point-dependent cellular automata.

The paper is organized as follows. Section 2 is a quick introduction to comonads
while Section 3 reviews some preliminaries about topological and uniform spaces. In
Section 4, we show that cellular automata local behaviors are the same as coKleisli
maps of a certain comonad. In Section 5, we recover the Curtis-Hedlund theorem
(in the version of Ceccherini-Silberstein and Coornaert). In Section 6, we reprove
the reversibility principle. In Sections 7, 8, we discuss some further applications of
the comonadic view: 2-dimensional cellular automata as 1-dimensional and point-
dependent cellular automata.

The paper assumes knowledge of basic category theory (categories, functors,
natural transformations, Cartesian closed categories), but is self-contained in re-
gards to comonads. For background material on category theory and (co)monads in
particular, we refer the reader to Barr and Wells [1, Ch. 1, 3]. We also assume the
basics of ca as presented by Ceccherini-Silberstein and Coornaert [5, Ch. 1].

2. Comonads

Given two categories C, D and a functor L : D → C, a right adjoint to L is given
by a functor R : C → D and two natural transformations ε : LR → IdC (the counit)
and η : IdD → RL (the unit) such that the diagrams

L
Lη

//

FF
FF

FF
FF

F

FF
FF

FF
FF

F LRL

εL
��
L

R

ηR
�� GG

GG
GG

GG
G

GG
GG

GG
GG

G

RLR
Rε

// R

commute. Equivalently, a right adjoint may be given by an object mapping R :
|C| → |D|, for any object A ∈ |C|, a map εA : LRA → A, and, for any objects
A ∈ |D|, B ∈ |C| and map k : LA → B, a map k‡ : A → RB (the right transpose)
such that

90 S. CAPOBIANCO AND T. UUSTALU

• for any objects A ∈ |D|, B ∈ |C|, and map k : LA → B, εB ◦ Lk‡ = k,
• for any object A ∈ |C|, (εA)

‡ = idRA,
• for any objects A,B ∈ |D|, C ∈ |C| and maps f : A → B, k : LB → C,
(k ◦ Lf)‡ = k‡ ◦ f .

The morphism mapping part of R and unit η define the right transpose of k : LA →
B by k‡ =df Rk ◦ ηA. The right transpose (−)‡ determines the morphism mapping
part of R and unit η by Rf =df (f ◦ εA)

‡, for f : A → B, and ηA =df (idLA)
‡.

A comonad on a category C is given by a functor D : C → C and natural
transformations ε : D → IdC (the counit) and δ : D → DD (the comultiplication)
making the diagrams

D
δ

//

δ
�� HH

HH
HHH

HH

HHH
HH

HH
HH

DD

εD
��

DD
Dε

// D

D
δ

//

δ
��

DD

δD
��

DD
Dδ

// DDD

commute. Equivalently, a comonad can be given by an object mappingD : |C| → |C|,
for any object A ∈ |C|, a map εA : DA → A, and, for any objects A,B ∈ |C| and
map k : DA → B, a map k† : DA → DB (the coKleisli extension) such that

• for any objects A,B ∈ |C| and map k : DA → B, εB ◦ k† = k,
• for any object A, (εA)

† = idDA,
• for any objects A,B,C ∈ |C| and maps k : DA → B, ℓ : DB → C, (ℓ◦k†)† =
ℓ† ◦ k†.

The morphism mapping part of D and comultiplication δ define the coKleisli ex-
tension (−)† by k† =df Dk ◦ δA. Conversely, the (−)† determines the morphism
mapping part of D and comultiplication δ by Df =df (f ◦ εA)

†, δA =df (idDA)
†.

A functor L : C → D with a right adjoint (R, ε, η), defines a comonad on C with
counit ε by D =df LR, δ =df LηR, alternatively by DA =df L(RA), k† =df Lk

‡.
In the converse direction, a comonad (D, ε, δ) on C induces a whole category of

adjunctions (D, L, R, η) that have ε as the counit and satisfy D = LR, δ = LηR,
called splittings of the comonad. This category has initial and final objects, which
are known as the coKleisli and coEilenberg-Moore splittings of the comonad.

The coKleisli category coKl(D) has as objects those of C and as maps from
A to B those from DA to B of C. The identity jdA on object A is defined by
jdA =df εA. The composition ℓ • k of maps k : DA → B and ℓ : DB → C is
ℓ • k =df ℓ ◦Dk ◦ δA = ℓ ◦ k†. The functor L : coKl(D) → C in the coKleisli splitting
is defined by LA =df DA, Lk =df k

†. The right adjoint, unit and right transpose
are defined by RA =df A, Rf =df f ◦ εA, ηA =df idDA, k

‡ =df k.
The coEilenberg-Moore category coEM(D) has as objects coalgebras of D and

as maps coalgebra maps of D. A coalgebra of D is given by an object A ∈ |C| and
map u : A → DA (the coalgebra structure) making the diagrams

A
u

//

EE
EE

EE
EE

EE
EE

EE
EE

DA

εA
��
A

A
u

//

u

��

DA

δA
��

DA
Du

// D(DA)

A CATEGORICAL OUTLOOK ON CELLULAR AUTOMATA 91

commute. A coalgebra map between (A, u) and (B, v) is a map f : A → B making
the diagram

A
u

//

f
��

DA

Df
��

B
v

// DB

commute. The identity and composition are inherited from C. The functor L :
coEM(D) → C in the splitting of D through coEM(D) is the coalgebra-structure
forgetful functor: L(A, u) =df A, Lf =df f . The right adjoint R is defined by RA =df

(DA, δA), Rf =df Df . The unit and right transpose are defined by η(A,u) =df u and
k‡ =df Dk ◦ u (for k : L(A, u) → B).

The functor R being the right adjoint of the forgetful functor implies that, for
any B, the coalgebra RB = (DB, δB) is the cofree coalgebra on B, i.e., for any
coalgebra (A, u), object B and map k : A → B, there is a unique map f : A → DB,
namely k‡, such that the diagrams

A
k

}}zz
zz

zz
zz

u
//

f

��

DA

Df
��

B DB
εB

oo
δB

// D(DB)

commute.
The unique splitting map between the coKleisli and coEilenberg-Moore splitting

is the functor E : coKl(D) → coEM(D) defined by EA =df (DA, δA), Ek =df

Dk◦δA = k†. This functor is a full embedding. The image ofE is the full subcategory
of coEM(D) given by the cofree coalgebras that is therefore isomorphic to coKl(D).

A simple and instructive example of a comonad and its coKleisli and coEilenberg-
Moore splittings is given by the reader (or product) comonad. It is defined on any
category C with finite products, but let us choose C to be Set (or Top or Unif),
so we can write pointwise definitions for intuitiveness. Given some fixed object
C ∈ |C|, it is defined by DA =df A × C, Df(x, c) =df (f(x), c), εA(x, c) =df x,
δA(x, c) =df ((x, c), c), k

†(x, c) =df (k(x, c), c).
The coKleisli category has as objects those of C and as maps from A to B those

from A × C to B. The identities and composition are defined by jd(x, c) =df x,
(ℓ • k)(x, c) =df ℓ(k(x, c), c).

A coalgebra of D is given by an object A and a map u : A → A× C satisfying
the laws of a coalgebra. Let us define (u0(x), u1(x)) =df u(x). The laws impose that
u0(x) = x and ((u0(x), u1(x)), u1(x)) = (u(u0(x)), u1(x)). The first law defines u0

and the second becomes a tautology as soon as this definition is substituted into
it. Hence, a coalgebra is effectively the same as an object A with an unconstrained
map u1 : A → C.

A map between D-coalgebras (A, u), (B, v) is a map f : A → B such that
(f(u0(x)), u1(x)) = (v0(f(x)), v1(f(x))), which boils down to u1(x) = v1(f(x)).

The coEilenberg-Moore category has thus as objects pairs of an object A and
map u1 : A → C and a map between (A, u1), (B, v1) is map f : A → B such
that u1(x) = v1(f(x)). The cofree coalgebra on A is the pair (A × C, δ1A) where
δ1A(x, c) =df c.

The isomorphism between coKl(D) and the category of cofree D-coalgebras
establishes a 1-1 correspondence between maps k : A × C → B and maps f :
A× C → B × C such that δ1B(f(x, c)) = c.

92 S. CAPOBIANCO AND T. UUSTALU

3. Exponentials, topologies, and uniformities

Given an object C in a category C with finite products, it is said to be expo-
nentiable if the functor (−)×C has a right adjoint. This amounts to the existence,
for any object A, of an object AC (the exponential) and map evA : AC × A → C

(the evaluation) as well as, for any objects A, B and map k : A × C → B, a map
cur(k) : A → BC (the currying of k) satisfying appropriate conditions. If every ob-
ject of C is exponentiable, it is called Cartesian closed. Intuitively, exponentials are
internalized homsets. In Set, every object C is exponentiable and the exponential
AC is the set of all functions from C to A.

Things are somewhat more complicated in the category Top of topological
spaces, as the exponential AC is to be the set of continuous functions from C to A,
but it must also be given a topology. Moreover, the evaluation evA : AC × A → C

must be continuous and the currying cur(k) : A → BC of a continuous function
must be continuous.

Not every topological space is exponentiable. Hausdorff spaces are exponentiable
if and only if they are locally compact: in this case, the exponential topology on the
space of continuous functions from C to A is the compact-open topology generated
by the sets {f : C → A | f(K) ⊆ U} with K compact in C and U open in
A [7, 8]. In particular, discrete spaces are exponentiable (which also follows from
the discrete topology making every function from it continuous) and their compact-
open topology is in fact the product topology.

That not all objects can act as exponents is also true in the category Unif

of uniform spaces whose constituents we now define. A uniform space is a set A

endowed with a uniformity, i.e., a collection U of binary relations on A (called
entourages) satisfying the following properties:

(1) ∆ ⊆ U for every U ∈ U , where ∆ = {(x, x) | x ∈ A} is the diagonal.
(2) If U ⊆ V and U ∈ U then V ∈ U .
(3) If U, V ∈ U then U ∩ V ∈ U .
(4) If U ∈ U then U−1 ∈ U .
(5) If U ∈ U then V 2 = {(x, y) | ∃z | (x, z), (z, y) ∈ V } ⊆ U for some V ∈ U .

The simplest non-trivial uniformity on A is the discrete uniformity, made of all the
supersets of the diagonal. A uniformity induces a topology as follows: Ω ⊆ A is open
if and only if, for every x ∈ Ω, there exists U ∈ U such that {y ∈ A | (x, y) ∈ U} ⊆ Ω.
Such topology is Hausdorff if and only if

⋂
U∈U U = ∆. The discrete uniformity

induces the discrete topology, but is not the only one that does (cf. [11, I-5]), i.e.,
uniform spaces may be discrete without being uniformly discrete.

A map f : A → B between uniform spaces is uniformly continuous (briefly, u.c.)
if, for every entourage V on B, there is an entourage U on A such that (f×f)(U) ⊆
V . Any u.c. function is continuous in the topology induced by the uniformities:
the converse is true if A is compact [11, II-24] but false in general even for metric
spaces. The product uniformity is the coarsest uniformity that makes the projections
uniformly continuous: the topology induced by the product uniformity is the product
topology. A product of discrete uniformities is called prodiscrete.

In Unif , uniformly discrete objects are exponentiable [11, III.19 and III.21].
Again, the reason is that every function from C is u.c. as soon as C is uniformly
discrete.

A CATEGORICAL OUTLOOK ON CELLULAR AUTOMATA 93

4. Cellular automata as coKleisli maps

Classically, a cellular automaton on a monoid (G, 1G, ·) (the universe)1 and set
A (the alphabet)2 is given by a finite subset N of G (the support neighborhood) and
function d : AN → A (the transition rule).

Any cellular automaton induces a local behavior k : AG → A via k(c) =df d(c|N).
One speaks of elements AN of finite subsets N ⊆ G as patterns and elements

of AG as configurations. Transition rules work on patterns, local behaviors on con-
figurations. Cellular automata that induce the same local behavior are considered
equivalent. In this paper, we will not distinguish between equivalent cellular au-
tomata, hence we can identify cellular automata with their local behaviors.

If the alphabet A is finite, a function k : AG → A is a local behavior (i.e., the
local behavior of some cellular automaton) if and only if it is continuous for the
discrete topology on A and the product topology on AG.

In the general case (where A may be infinite), the above equivalence does not
generally hold, but a refinement does. A function k : AG → A is then a local
behavior iff it is uniformly continuous for the discrete uniformity on A and product
uniformity on AG.3 The finite case becomes an instance: if A is finite, then AG is
compact and therefore any continuous function k : AG → A is uniformly continuous.

Based on these observations, we henceforth take it as a definition that a local
behavior on a set (the alphabet) A is a uniformly continuous function k : AG → A

wrt. the prodiscrete uniformity on AG and forget about the definition of cellular
automata in terms of a support neighborhood and a transition rule.

Any local behavior k induces a global behavior k† : AG → AG, a map between
configurations, via k†(c)(x) =df k(c ⊲ x) where ⊲ : AG × G → AG (the translation
of configurations) is defined by (c ⊲ x)(y) =df c(x · y) The translation is a uni-
formly continuous function. It follows that the global behavior k† is also uniformly
continuous.

Local behaviors on a fixed universe G and fixed alphabet A form a monoid with
unit jd given by jd(c) =df c(1G) and multiplication • given by ℓ•k =df ℓ◦k

†. Indeed,
it is easy to see that jd is uniformly continuous and • preserves uniform continuity
(because (−)† does) and the monoid laws turn out to hold too.

We now make two small generalizations and make a richer category out of local
behaviors: after all, a monoid is a category with one object. First, we do not insist
that the alphabet be a discrete uniform space, it may be any uniform space. And
second, we give up the idea of a fixed alphabet: we let the local behavior change the
alphabet.

For a fixed monoid G (the universe), we redefine a local behavior between two
general uniform spaces (the source and target alphabets) A and B to be a uniformly
continuous function k : AG → B where AG is given the product uniformity.

Local behaviors now make a category that has as objects alphabets and as
maps local behaviors between them. The identity on A is jdA : AG → A given by
jdA(c) =df c(1G) and the composition ℓ • k : AG → C of two maps k : AG → B

1Instead of the monoid, one usually takes a group in the cellular automata literature. But we
do not need inverses in this paper.

2The alphabet is often required to be finite. We make this assumption only where we need it.
3(Cf. [5, Th. 1.9.1]) Every entourage of the prodiscrete uniformity contains an entourage of the

form VN = {(c, e) | c|N = e|N} with N ⊆ G finite. If k : AG → A is u.c. with A uniformly discrete,
then (k × k)(VN) ⊆ ∆ for some finite N ⊆ G: thus, k(c) only depends on c|N .

94 S. CAPOBIANCO AND T. UUSTALU

and ℓ : BG → C given by ℓ • k =df ℓ ◦ k† where k† : AG → BG is defined by
k†(c)(x) =df k(c⊲A x) from ⊲A : AG ×G → AG defined by (c⊲A x)(y) =df c(x · y).
Notice that these definitions coincide exactly with those we made for the monoid of
local behaviors above, except that local behaviors can now mediate between different
alphabets that need not be uniformly discrete. The function jdA is still uniformly
continuous for any A and the operation • preserves uniform continuity.

While the generalized definition of local behaviors is more liberal than the clas-
sical one, it is conservative over it in the following sense: The local behaviors from
any uniformly discrete space A back to itself are exactly the classical local behaviors
on A seen as a set.

We will now recover our category of local behaviors from a categorical generality,
by showing that it is a straightforward instance of the coKleisli construction for a
comonad.

Any fixed monoid (G, 1G, ·) determines a comonad (D, ε, δ) on Unif (in fact,
on any category where the carrier G is exponentiable, so also, e.g., on Set and
Top) (the cellular automata or exponent comonad) as follows. The object mapping
part of D is defined by DA =df A

G, where AG is the G-exponential of A, i.e., the
space of uniformly continuous functions from G to A equipped with the prodiscrete
uniformity. The morphism mapping part is defined by Df =df f

G, i.e., Df(c) =df

f ◦ c. The components of the counit εA : AG → A and comultiplication δA : AG →
(AG)G are defined by εA(c) =df c(1G) and δA(c)(x) =df c⊲Ax (so that δA(c)(x)(y) =
c(x · y)); these functions are uniformly continuous. The general definition of the
coKleisli extension (−)† via the morphism mapping part of D and comultiplication
δ tells us that k†(c)(x) = Dk(δA(c))(x) = k(δA(c)(x)) = k(c⊲A x).

The laws of a comonad are proved from the monoid laws for G by the following
calculations (we omit the proofs of the naturality conditions of ε and δ).

εDA(δA(c))(x) = δA(c)(1G)(x) = c(1G · x) = c(x)

c(x) = c(x · 1G) = δA(c)(x)(1G) = εA(δA(c)(x)) = DεA(δA(c))(x)

δDA(δA(c))(x)(y)(z) = δA(c)(x · y)(z) = c((x · y) · z)
= c(x · (y · z)) = δA(c)(x)(y · z) = δA(δA(c)(x))(y)(z) = DδA(δA(c))(x)(y)(z)

As we have seen, a comonad on a category always defines two canonical splittings
of its underlying functor into two adjoint functors. The coKleisli splitting of our
comonad D on Unif goes via the coKleisli category which has as objects those of
Unif and as maps from A to B those from DA to B in Unif . The identity on A

is jdA =df εA and the composition of k and ℓ is ℓ • k =df ℓ ◦ k†. Note that these
are exactly the data of the category of local behaviors that we introduced above.
But this time we do not have to prove that the unital and associativity laws of the
category hold. Our proof obligations went into establishing that the comonad data
are well defined and the comonad laws hold.

5. Retrieving the Curtis-Hedlund theorem

Let (D, ε, δ) be theG-exponential comonad onUnif for a given monoid (G, 1G, ·),
with G endowed with the discrete uniformity, as introduced in the previous section.

As we know from Section 2, coKl(D) is equivalent to the category of cofree D-
coalgebras under a comparison functor E that sends a coKleisli map (local behavior)
k : DA → B to the cofree coalgebra map k† : (DA, δA) → (DB, δB), which, as a

A CATEGORICAL OUTLOOK ON CELLULAR AUTOMATA 95

map of Unif , we know to be the corresponding global behavior. Hence, a map
f : DA → DB would be a global behavior if and only if f is a cofree coalgebra map.

Now, given an arbitrary comonad, it is usually of interest to study its general
coalgebras and not only the cofree ones. We too follow this thumb rule.

By definition, objects in coEM(D) are pairs of objects A and maps u : A → DA

in Unif satisfying

A
u

//

IIIIIII

IIIIIII AG

εA
��
A

A
u

//

u
��

AG

δA��

AG
uG

// (AG)G

In our case, the first equation simply means u(a)(1G) = a while the second one
simplifies to u(a)(x · y) = u(u(a)(x))(y). This writing, however, is cumbersome and
unexplicative.

To see more, we uncurry u : A → AG to ⊗ : A × G → A, so that a ⊗ x =
u(a)(x). Then the two equations become a⊗ 1G = a, and a⊗ (x · y) = (a⊗ x)⊗ y.

Diagrammatically, this is to require commutation of

A
ρA

//

VVVVVVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVVVVV A× 1
A×1G

// A×G
⊗

��
A

(A×G)×G
αA,G,G

//

⊗×G
��

A× (G×G)
A×(·)

// A×G

⊗
��

A×G
⊗

// A

where ρ and α are the right unital and associative laws of the product monoidal
structure. But these are precisely the laws of a (right) action of G on A (where A

is a uniform space, so we expect an action to also be uniformly continuous).
Let us now consider coalgebra maps. A map f : (A, u) → (B, v) in coEM(D)

is a map in Unif that commutes with u and v or (which is equivalent) with their
uncurried forms⊗ and⊘ as shown on the left and right diagrams below, respectively:

A
u

//

f
��

AG

fG

��

B
v

// BG

A×G
⊗

//

f×G
��

A
f

��
B ×G

⊘
// B

Clearly, coalgebra maps are just action maps.
We are now ready to consider maps of cofree D-coalgebras. The uncurried

form of δA : AG → (AG)G is ⊲A : AG × G → AG. By what we have shown,
a map f : AG → BG in Unif is a map between (AG, δA) and (BG, δB) if and
only if f(c ⊲A x) = (f(c) ⊲B x). We see that maps between the cofree coalgebras
(AG, δA) and (BG, δB) are precisely those maps f : AG → BG that commute with
the translation!

With our reasoning, we have reproved the version of Curtis-Hedlund theorem
given by Ceccherini-Silberstein and Coornaert ([4, Th. 1.1], [5, Th. 1.9.1]): global
behaviors between uniform spaces A and B are those uniformly continuous functions
between the product uniformities on AG and BG that commute with the transla-
tion. Keep in mind that we are allowing arbitrary uniform spaces as alphabets, and
speaking of global behaviors in the sense of Section 4. It is, however, immediate to
specialize to the statement of C.-S. and C. by requiring A and B to be uniformly
discrete. Then local behaviors are precisely the finitary functions from AG to B.

The original Curtis-Hedlund theorem ([10], [5, Th. 1.8.1]) corresponds to the
special case where A is finite and discrete. In this case, AG is compact and any
continuous function between AG and BG is then uniformly continuous. We conclude,

96 S. CAPOBIANCO AND T. UUSTALU

in this case, that global behaviors between A to B are those continuous functions
between the product topologies on AG and BG that commute with the translation.

We have seen that the cofree coalgebra (BG, δB : BG → (BG)G) on B is the
currying of the translation action (BG,⊲B : BG × G → BG). Because of the
cofreeness on B of this coalgebra, the action must also be the cofree.

In basic terms, this means that for any action (A,⊗ : A × G → A) and map
p : A → B, there is a unique action morphism f to the translation action such that
εB ◦ f = p, i.e., a map f : A → BG such that the following diagrams commute:

A×G
⊗

//

f×G
��

A
p

$$HHHHHHH

f
��

BG ×G
⊲B

// BG
εB

// B

This fact can of course be proved from first principles, but we learned it for free!

6. Retrieving the reversibility principle

We will now recover the reversibility principle. Let again (G, 1G, ·) be a monoid
and (D, ε, δ) be the G-exponential comonad on Unif as introduced in Section 4.

Suppose we have a cofree coalgebra map f : (DA, δA) → (DB, δB) so that f has
an inverse f−1 as a map of Unif .

A very simple diagram chase (not specific to our particular comonad; we only
use that D is a functor!) shows that f−1 is also a cofree coalgebra map, i.e., an
inverse of f in coEM(D):

DA
δA

//

f
��

D(DA)

Df
��

D(DA)

DB

f−1 ::ttttttt

DB
δB

// D(DB)
Df−1

77nnnnnnn

We have thus reproved the reversibility principle [5, Th. 1.10.1]: A global behav-
ior f : AG → BG (a uniformly continuous function commuting with the translation)
between uniform spaces A, B is reversible if f has a uniformly continuous inverse.

If both A and B are finite and discrete, an inverse f−1 of f is necessarily uni-
formly continuous, because, in this case, AG and BG are compact Hausdorff and
f−1 is continuous. So we obtain a special case [5, Th. 1.10.2]: A global behavior
f : AG → BG (a continuous function commuting with the translation) between
uniform spaces A, B is reversible if f has an inverse.

In general, an inverse of a uniformly continuous function is not necessarily uni-
formly continuous. For a counterexample, see [5, Example 1.10.3].

For reversibility, it is useful, if the monoid G is actually a group. In particular,
for reversibility of δA : DA → D(DA), G must be a group.

7. Distributive laws and 2-dimensional cellular automata

We will now proceed to two variations on the theme of cellular automata as co-
Kleisli maps—2-dimensional (classical) cellular automata and point-dependent cellu-
lar automata. In both cases we first introduce some further comonad theory relevant
for our cause.

A CATEGORICAL OUTLOOK ON CELLULAR AUTOMATA 97

Sometimes, but not always, the composition D1D0 of two comonads D0 and D1

on the same category C is a comonad. It is the case, if there is a distributive law of
D1 over D0. A distributive law of a comonad (D1, ε1, δ1) over a comonad (D0, ε0, δ0)
is a natural transformation κ : D1D0 → D0D1 making the diagrams

D1D0 κ
//

D1ε0 ##GGGG
G D0D1

ε0D1{{ww
www

D1

D1D0 κ
//

D1δ0
��

D0D1

δ0D1

��

D1D0D0 κD0

// D0D1D0 D0κ
// D0D0D1

D1D0 κ
//

ε1D0 ##GGGG
G

D0D1

D0ε1{{ww
www

D0

D1D0 κ
//

δ1D0

��

D0D1

D0δ1
��

D1D1D0 D1κ
// D1D0D1 κD1

// D0D1D1

commute. A distributive law induces a comonad (D, ε, δ) defined by D =df D
1D0,

ε =df ε
1ε0, δ =df D

1κD0 ◦ δ1δ0.
A distributive law also induces comonad liftings. For the lack of space, we

concentrate on the coKleisli side of the picture. Given a distributive law κ ofD1 over
D0, the comonad D0 on C lifts to coKl(D1), i.e., induces a comonad D̄0 on coKl(D1).
This comonad is defined by: D̄0A =df D

0A, D̄0k =df D
0k ◦ κA : D1D0A → D0B

(for k : D1A → B), εA =df ε
0
A ◦ ε1D0A, δA =df δ

0
A ◦ ε1D0A.

Via this lifting, the coKleisli category of the composite comonad D and the
other ingredients of the coKleisli splitting of D can be obtained by a double coKleisli
construction: We have coKl(D) = coKl(D̄0) (equal strictly, not just isomorphic).

A simple example of a distributive law is obtained by taking D1 to be any
comonad and D0 the product comonad defined by D0A =df A×C for a fixed object
C ∈ |C|. The distributive law κ of D1 over D0 is given by κA =df 〈D

1π0, ε
1 ◦D1π1〉 :

D1(A×C) → D1A×C. It follows that the functor D defined by DA =df D
1(A×C)

is a comonad.
Given now two monoids G0, G1, we can think of a map k : (AG0)G1 → B in

Unif as a “2-dimensional” (2D) cellular automaton on the universes G0, G1 between
alphabets A and B (relying on the isomorphism AG0×G1 ∼= (AG0)G1).

Such a cellular automaton is by definition the same thing as a “1-dimensional”
(1D) cellular automaton on the universe G1 between alphabets AG0 and B. Note
that we can only see 2D cellular automata as 1D in this way, if we allow source and
target alphabets of a cellular automaton to differ and if we do not require them to
be uniformly discrete (notice that AG0 carries the prodiscrete uniformity). But this
view of 2D cellular automata as 1D, although nice, suffers from a serious drawback.
Since the 1D views do not have the same source alphabets as the 2D originals, they
do not compose the same way.

Distributive laws come to help. Let D0A =df AG0 and D1A =df AG1 . There
is a distributive law κ : D1D0 → D0D1 defined by κA(c)(x1)(x0) = c(x0)(x1) :
(AG0)G1 → (AG1)G0. Hence, the functor DA =df (AG0)G1 is a comonad, which is
hardly a surprise. But there is more: We know that coKl(D) = coKl(D̄0). Hence,
a good view of k : (AG0)G1 → B as a 1D cellular automaton is not as a Unif -
cellular automaton on the universe G1 between the alphabets AG0 and B, but on as
a coKl(D1)-cellular automaton on the universe G0 between the alphabets A and B.
Then 1D views compose exactly as their 2D originals. We see that it makes sense
to consider maps of categories other than Unif !

1D views of 2D cellular automata were of interest to Dennuzio et al. [6]

98 S. CAPOBIANCO AND T. UUSTALU

8. Comonad maps and point-dependent cellular automata

To make a category out of comonads over a fixed category C one needs a suitable
notion of comonad maps. A comonad map between two comonads (D, ε, δ) and
(D′, ε′, δ′) on C is a natural transformation τ : D → D′ making the diagrams

D ε
((QQQQQQ

τ

��
IdC

D′ ε′

66nnnnnn

D
δ

//

τ

��

DD

ττ

��

D′ δ′
// D′D′

commute. Comonads and comonad maps on C form a category. The identity and
composition of comonad maps is inherited from the category of natural transforma-
tions between endofunctors on C.

A comonad map τ between (D, ε, δ) and (D′, ε′, δ′) relates the coKleisli and
coEilenberg-Moore categories between the two comonads. It defines a functor from
coKl(D′) to coKl(D) and a functor from coEM(D) to coEM(D′).

We now introduce point-dependent cellular automata (studied under the name
of non-uniform cellular automata by Cattaneo et al. [3]). For a set G, the local
behavior of a point-dependent cellular automaton between uniform spaces A, B is
a uniformly continuous function k : AG×G → B. Note the added second argument
compared to the definition of a classical local behavior.

It turns out that local and global behaviors of point-dependent cellular automata
can be analyzed in the same way as those of classical cellular automata. In particular,
their local behaviors are the same thing as coKleisli maps of a suitable comonad
(D, ε, δ) on Unif and global behaviors are the corresponding cofree coalgebra maps!

Let us review the data of the comonad. The object mapping of D is defined by
DA =df A

G × G and the morphism mapping by Df =df f
G × G, i.e., Df(c, x) =df

(λy.f(c(y)), x). The components of the counit and comultiplication εA : AG×G → A

and δA : AG × G → (AG × G)G × G are defined by εA(c, x) =df c(x), δA(c, x) =
(λy.(c, y), x). Accordingly, the coKleisli extension k† : AG ×G → BG ×G of a map
k : AG × G → B is forced to satisfy k†(c, x) = Dk(δ(c, x)) = Dk(λy.(c, y), x) =
(λy.k(c, y), x).

When is a map f : AG×G → BG×G a global behavior? It is a global behavior
iff it is a cofree coalgebra map. Not surprisingly at all, the conditions for f being
a cofree coalgebra map reduce to the condition that f(c, x) = (g(c), x) for some
g : AG → BG.

Assume G is endowed with a monoid structure (1G, ·). Let (D′, ε′, δ′) be the
comonad of classical cellular automata. The translation ⊲ is a comonad map from
D to D′. Accordingly, any classical local behavior is also a point-dependent local
behavior that simply makes no use the point information that is available.

9. Conclusions

It was not the purpose of this paper to prove deep or difficult theorems. Rather,
we set out to experiment with definitions. We deem that this experiment succeeded.
We were pleased to learn that, from the category-theoretic point-of-view, cellular
automata are a “natural” construction with “natural” properties. Crucially, clas-
sical cellular automata are coKleisli maps of the exponential comonad on Unif ,
and it is harmless to accept alphabets with nondiscrete uniformities and variation

A CATEGORICAL OUTLOOK ON CELLULAR AUTOMATA 99

of alphabets, once it has been decided that local behaviors are uniformly contin-
uous functions. But other base categories can be useful too, as the example of
2-dimensional cellular automata as 1-dimensional shows.

We hope to be able to extend this work to cover more results of cellular automata
theory, in particular results toward the Garden of Eden theorem.

Acknowledgments. We are grateful to Jarkko Kari and Pierre Guillon for comments.

References

[1] Barr, M. and Wells, C. (1983) Toposes, Triples and Theories. Grundlehren der math. Wis-
senschaften 278. Springer. // Revised and corrected electronic version (2005). Reprints in
Theory and Appl. of Categ. 12, 1–287.

[2] Brookes, S. and Geva, S. (1992) Computational comonads and intensional semantics. In Four-
man, M. P., Johnstone, P. T., and Pitts, A. M., eds., Applications of Categories in Computer
Science, London Math. Society Lect. Note Series 177, 1-44. Cambridge Univ. Press.

[3] Cattaneo, G., Dennunzio, A. Formenti, E., and Provillard, J. (2009) Non-uniform cellular
automata. In Dediu, A. H., Ionescu, A.-M., and Mart́ın-Vide, C., eds., Proc. of 3rd Int. Conf.
on Languages and Automata Theory and Applications, LATA 2009 (Tarragona, Apr. 2009),
Lect. Notes in Comput. Sci. 5457, 302–313. Springer.

[4] Ceccherini-Silberstein, T. and Coornaert, M. (2008) A generalization of the Curtis-Hedlund
theorem. Theor. Comput. Sci. 400(1–3), 225–229.

[5] Ceccherini-Silberstein, T. and Coornaert, M. (2010) Cellular Automata and Groups, Springer
Monographs in Mathematics. Springer.

[6] Dennunzio, A. and Formenti, E. Decidable properties of 2D cellular automata. (2008) In Ito,
M. and Toyama, M., eds., Proc. of 12th Int. Conf. on Developments in Language Theory, DLT
2008 (Kyoto, Sept. 2008), Lect. Notes in Comput. Sci. 5257, 264–275. Springer.

[7] Escardó, M. and Heckmann, R. (2001) Topologies on spaces of continuous functions. Topol.
Proc. 26(2), 545–564.

[8] Geroch, R. (1985) Mathematical Physics. University of Chicago Press.
[9] Hasuo, I., Jacobs, B., and Uustalu, T. (2007) Categorical views on computations on trees.

In Arge, L., Cachin, C., Jurdzinski, T., and Tarlecki, A., eds., Proc. of 34th Int. Coll. on
Automata, Languages and Programming, ICALP 2007 (Wroc law, July 2007), Lect. Notes in
Comput. Sci. 4596, 619–630. Springer.

[10] Hedlund, G. A. (1969) Endomorphisms and automorphisms of the shift dynamical system.
Math. Syst. Theory 3(4), 320–375.

[11] Isbell, J.R. (1964) Uniform Spaces. Am. Math. Soc.
[12] Mac Lane, S. (1997) Categories for the Working Mathematician. Graduate Texts in Mathe-

matics 5. 2nd edition. Springer.
[13] Moggi, E. (1991) Notions of computation and monads. Inform. and Comput. 93(1), 55-92.
[14] Piponi, D. “sigfpe” (2006) Evaluation of cellular automata is comonadic. Entry

on the author’s blog, A Neighborhood of Infinity. http://blog.sigfpe.com/2006/12/

evaluating-cellular-automata-is.html

[15] Uustalu, T. and Vene, V. The essence of dataflow programming. (2006) In Horváth, Z., ed.,
Revised Selected Lectures from 1st Central European Functional Programming School, CEFP
2005 (Budapest, July 2005), Lect. Notes in Comput. Sci. 4164, 135–167. Springer.

[16] Uustalu, T. and Vene, V. Comonadic evaluation of attribute grammars. (2006) In van Eekelen,
M., ed., Trends in Functional Programming 6, 145–162. Intellect.

[17] Uustalu, T. and Vene, V. (2008) Comonadic notions of computation. Electron. Notes in Theor.
Comput. Sci. 203(5), 263–284.

[18] Wadler, P. (1992) The essence of functional programming. In Conf. Record of 19th Ann. ACM
SIGPLAN-SIGACT on Principles of Programming Languages, POPL ’92, 1–14. ACM Press.

This work is licensed under the Creative Commons Attribution-NoDerivs Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nd/3.0/.

