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Abstract. Rising complexity, increasing performance requirements, and shortening time-to-market
demands necessitate newer design paradigms for embedded system design. Such newer design
methodologies require raising the level of abstraction for design entry, reuse of intellectual property
blocks as virtual components, refinement based design, and formal verification to prove correct-
ness of refinement steps. The problem of combining various components from different designers
and companies, designed at different levels of abstraction, and embodying heterogeneous models of
computation is a difficult challenge for the designer community today. Moreover, one of the gating
factors for widespread adoption of the system-level design paradigm is the lack of formal models,
method and tools to support refinement. In the absence of provably correct and adequate behavioral
synthesis techniques, the refinement of a system-level description towards its implementation is pri-
marily a manual process. Furthermore, proving that the implementation preserves the properties of
the higher system-level design-abstraction is an outstanding problem.

In this paper, we address these issues and define a formal refinement-checking methodology for
system-level design. Our methodology is based on a polychronous model of computation of the
multi-clocked synchronous formalism@&\AL. This formalism is implemented in thedRy CHRONY
workbench. We demonstrate the effectiveness of our approach by the experimental case study of a
SPECC modeling example. First, we define a technique to systematically measiCSprograms

in the SGNAL formalism. Second, we define a methodology to compare system-level models of
SPECC programs and to validate behavioral equivalence relations between these models at differ-
ent levels of abstraction. Although we usee®C modeling examples to illustrate our technique,

our methodology is generic and language-independent and the model that supports it conceptually
minimal by offering a scalable notion and a flexible degree of abstraction.

Address for correspondencevriA-1RISA, Campus de Beaulieu, 35042 Rennes, Fradeen-Pierre.Talpin@irisa.fr)
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1. Introduction

Rising complexity and performances, shortening time-to-market demands, stress high-level embedded
system design as a prominent research topic Ad-hoc design methodologies, that lifts modeling to higher
levels of abstraction, the concept of intellectual property, that promotes reuse of existing components,
are essential steps to manage design complexity, gain performance, accelerate design cycle. However,
the issue of compositional correctness arises with these steps. Given components from different man-
ufacturers, designed at different levels of abstraction and with heterogeneous models of computation,
combining them in a correct-by-construction manner is a difficult challenge.

A gating factor for widespread adoption of the system-level design paradigm is a lack of formal mod-
els, method and tools to support refinement. In the absence of adequate behavioral synthesis techniques,
the refinement of a system-level description toward its implementation is primarily a manual process.
Furthermore, proving that the implementation preserves the properties of the higher system-level design
abstraction is an unsolved problem.

In this aim, system design based on the so-called “synchronous hypothesis” [5] consists of abstracting
the non-functional implementation details of a system away and let one benefit from a focused reason-
ing on the logics behind the instants at which the system functionalities should be secured. From this
point of view, synchronous design models and languages provide intuitive models for integrated circuits.
This affinity explains the ease of generating synchronous circuits and verify their functionalities using
compilers and related tools that implement this approach.

In the relational model of the®.YCHRONY workbench [28], this affinity goes beyond the domain
of purely synchronous circuits to embrace the context of globally asynchronous locally synchronous
(GALs) architectures. The unique features of this model are to provide a scalable capability to describe
partially clocked specifications or multi-clocked architectures and to support a formal notion of design
refinementfrom the early stages of requirements specification, to the later stages of deployment and
synthesis, using formal verification.

We address the issue of conformance checking in system design by considering the polychronous
model of computation of thed®.yCHRONY workbench to define a formal refinement-checking method-
ology. Our approach builds upon previous work on the multi-clocked synchronous paradigiw-of S
NAL [7] and verification using the related model-checking tom & | [24] (the FOLYCHRONY work-
bench). We put the polychronous model of computation [22] to work in the context of emerging high-
level design languages such ase®C [15] by the study of refinement relations between system design
levels in SPECC (Figure 1).

wait channel
notify S.PEOC
ones — even | refinement | jnaq even
L = send
L recv
conformance
v checking b
PoLYCHRONY model = <« PoLYCHRONY model

Figure 1. Checking conformance of a design refinement
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Outline This paper is organized as follows. We start with an overview of the polychronous model
of computation in Section 2. In Section 3, we provide an informal introduction to tbe/& data-

flow notation of the BLYCHRONY workbench. Starting from this presentation, Section 4 develops a
methodology aimed at checking design refinement relations correct withirothecPRRONY workbench

by introducing a suitable notion of flow-preservation. This model and methodology are put to work in
Section 5 in the context of system design usirRg&C. A simple design example of an even-parity
checker (EPC) is used as a vehicle to explain our methodology. We outline a technique to automatically
derive a model of 8EcC specifications in the ®LYCHRONY workbench and apply our methodology to
checking the refinement of thePE correct from its specification level design to its RTL-level design.
This exercise demonstrates the capability oLPCHRONY to support high-level design transformations
operated on 8ecC programs with the validation services offered by ttee FcHRONY workbench.

2. A Polychronous Model of Computation

We start with a brief overview of the polychronous model of computation, proposed in [22]. The poly-
chronous model of computation consists af@nainof traces and of semi-lattice structures that render
synchrony and asynchrony using timing equivalence relations: clock equivalence relates traces in the
synchronous structure and flow equivalence relates traces in the asynchronous structure.

Domain of polychrony We consider a partially-ordered gét, <,0) of tags. A tagt € 7 denotes a
symbolic period in time. The relatiod denotes a partial order. Its minimum is notedVe noteC € C
a (possibly infinitehainof tags. Events, signals, behaviors and processes are defined as follows:

Definition 2.1. (polychrony)
-Anevente € £ =7 x Vis the pair of a value and a tag.
-Asignals € § = C' — Vs a function from achainof tags to a set of values.
- A behaviorb € B is a function from names € X to signalss € S.
- A procesy € P is a set of behaviors that have the same domain.

Figure 2 depicts a behaviérover three signals nameg y andz in the domain of polychrony. Two
frames depict timing domains formalized by chains of tags. Sigreaidy belong to the same timing
domain:z is a down-sampling of. Its events are synchronous to odd occurrences of events glamg)
share the same tags, etg. Even tags ofj, e.g.t2, are ordered along its chain, etg.< t-, but absent
from z. Signalz belongs to a different timing domain. Its tags, &g gare not ordered with respect to the
chain ofy, e.g.t; £ t3 andis £ t;.

t1

t1 ol2 ° ° °

t3

Figure 2. A behavior in the polychronous model of computation
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In the remainder, we writeags(s) andtags(b) = Uzevars(p)tags (b(z)) for the tags of a signal
s and of a behaviob, b|x for the projection of a behavidron X C X andb/ X = b))\ x for its
complementaryars(b) andvars(p) for the domains ob andp. We write 3| x for the set of all behaviors
defined on the set of variables.

Synchronous composition is notedlg and defined by the union of all behavidrgfrom p) andc
(from ¢) which are synchronous: all signals they share, i.€.#avars(p) N vars(q), are equal.

plg={bUc|(b,c) € px q,I =vars(p) Nvars(q),bl; = |1}

Figure 3 depicts the synchronous composition, right, of the behayitef, and the behaviar, middle,
of two processep andq. Notice that the signaj, shared by andg, must carry the same tags and the
same values in bothandq in order forb U ¢, right, to belong to | g.

t r: ol

Figure 3. Synchronous compositionio& p andc € ¢

Scheduling structure To render constraints between the occurrence of events during a peried

refine the domain of polychrony with a scheduling relation. Figure 4 depicts a scheduling relation super-
imposed to the signals andy of Figure 2. The relation;, — z;, denotes a scheduling constraint:
should be calculated beforeat the period;.

T t1

t1 to

y:r e
Figure 4. Scheduling relations between simultaneous events

The pairz, of a time tagt and of a signal name renders the daté of the event occurring at the
symbolic periodt along the signak. The tagt represents the period during which multiple events take

place to form a reaction. It corresponds to an equivalence class betwee datda the synchronous
structures [27].

Definition 2.2. (scheduling relation)
The scheduling relation-? is a pre-order defined on datBs= X x 7 for a behaviob which satisfies:

Vb € B,V € vars(b), Vt, t' € tags(b(z)), t <t = xy =0 xp Aoy =% a2y = =t < t)

When no ambiguity is possible on the identityloin = —° y, we write itz — y. A scheduling
relation is implicitly transitive £; —° v, —? z» impliesz; —° z,+) and its closure for restrictioby X
is defined byz, —X yy iff 2, —b yy andz,y ¢ X.
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Synchronous structure Building upon the domain of polychrony, we define the semi-lattice structure
which relationally denotes synchronous behaviors. The intuition behind this relation is depicted figure 5.

It is to consider a signal as an elastic with ordered marks on it (tags). If the elastic is stretched, marks
remain in the same relative and partial order but have more space (time) between each other. The same
holds for a set of elastics: a behavior. If elastics are equally stretched, the order between marks is
unchanged. In the figure 5, the time scale @ahdy change but the partial timing and scheduling relations

are preserved. Stretching is a partial-order relation which defines clock equivalence (definition 2.3).

t1 t3

X . €T .

T T T < T T T

oll o2 o o o Y ol3 ot4

Figure 5. Relating synchronous behaviors by stretching.

Definition 2.3. (clock equivalence)
A behaviorc is astretchingof b, writtend < ¢, iff vars(b) = vars(c) and there exists a bijection on tags
f which satisfies

Vt, 1 € tags(b),t < f() AN (t <t & f(t) < f(t))

Va,y € vars(b), Vi € tags(b(z)), Vt' € tags(b(y)),te = t), & f(t)e = f(t')y
V€ vars(b), tags(c(x)) = f(tags(b(x))) A Vi € tags(b(z )) b(x)(t) = c(x)(f (1))
b andc areclock-equivalentwrittenb ~ c, iff there exists a behaviaf s.t.d < b andd < ¢

Asynchronous structure The asynchronous structure of polychrony is modeled by weakening the
clock-equivalence relation to allow for comparing behaviors w.r.t. the sequences of values signals hold
regardless of the time at which they hold these values. rélaxationrelation allows to individually

stretch the signals of a behavior in a way preserving scheduling constraints. Relaxation is a partial-order
relation which defines flow-equivalence (definition 2.4). Two behaviors are flow-equivalent iff their
signals hold the same values in the same order.

Definition 2.4. (flow equivalence)
A behaviorc is arelaxationof b, writtenb C ¢, iff vars(b) = vars(c) and, for allz € vars(b), b[(,) <
c|{z}. b andc areflow-equivalentwrittenb = ¢, iff there exists a behaviat s.t.d C b andd C c.

Figure 6 depicts two asynchronously equivalent behaviors related by relaxation. The first event along
x has been shifted (and its scheduling constraint with an initially synchronous eventdsiyas the
effect of delaying its transmission using e.g. a FIFO buffer.

t1

T T T E

y: o

t3

€T . X .

ta ts

[ ] [ ] ([ ] y . L] (]

Figure 6. Relating asynchronous behaviors by relaxation.
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Asynchronous composition is noted|| ¢ and defined by considering the partial-order structure
induced by the relaxation relation. The parallel compositiop ahdq consists of behaviorg that are
relaxations of behaviors andc from p andq along shared signals = vars(p) N vars(¢q) and that are
stretching ob andc along the independent signalspéndg.

p H q= {d € B‘vars(p)Uvars(q) |E](b7 C) €pXx Q7d/I > b/I/\d/I > C/I/\b‘[ C d‘l /\d|I - C|I}

Figure 7 depicts the asynchronous composition, right, of the behawgr, left, and of the behavior
¢ € q, middle. Notice that the signal andy are alternated ip, left, and synchronous ig, middle.
Asynchronous composition allows for these signals to be independently stretched in dadhy in
order to find a common flow in the asynchronously composed process, right.

t1 t3 t1 to

T . T . T .
ol2 ol4 H y: oll ol2 = Y ° °
AN ° ° ° Z: ° ° °

Figure 7. Asynchronous composition®& p andc € g

3. A Polychronous Design Language

In the PoLycHRONY workbench, the polychronous model of computation is implemented by the multi-
clocked synchronous data-flow notatiorc8AL [7]. It will serve as the specification formalism used
for the case study of the present article.

Core syntax and semantics In SIGNAL, a processP consists of the composition of simultaneous
equationsr := f(y, z) over signalse,y, z. A signalz € X is a possibly infinite flow values € V
sampled at a discrete clock noteg.

PQ:=x:=yfz|P/x|P|Q (SIGNAL process)

In the polychronous model of computation, Section 2, the denotation of a tloskthe domain of the
signal associated te: a chain of tags. We notgP] for the denotation of a proce$d The synchronous
composition of processd3| ) consists of the simultaneous solution of the equatiori3amd inQ. The
processP/x restricts the signat to the lexical scope af.

[P1Q] = [PI1[Q] and[P/z] = [P]/x = {c < b/{x}|b € [P]}

An equationz := y f z denotes a relation between the input signedsd z and an output signal by a
combinatorf. An equation is usually a ternary and infixed relation notee- y f z but it can in general
be anm + n-ary relation notedz1, ... z,) := f(y1,- .- Yn)-
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Native combinators SIGNAL requires four primitive combinators to perform delay= y$1 init v,
samplingz := y when z, mergex = ydefault z and specify scheduling constraints— y when "z,
Figure 8. The equatiom := y$1 init v initially defines the signat by the valuev and then by the
previous value of the signgl The signaly and its delayed copy := y$1 init v are synchronous: they
share the same set of tagsts, . . . . Initially, at t1, the signal: takes the declared valueand then, at
tagt,, the value ofy at tagt,,_1.

[ — ywhen ~z]={b € Bly,.. |Vt € tags(b(z)) N tags(b(y)) Ntags(b(z)), xr — ¢}
tags(b(x)) = tags(b(y)) = C € C,b(x)(min(C)) = v}

Y\t € €\ min(C), b(x)(t) = b(y)(pred(t))

tags(b(x)) = {t € tags(b(y)) N tags(b(z)) | b(2)(t) = true}}

[z := y$1init v]]—{b eB

Z,Y,z

[ 3:yWhenZ]]:{bEB Vt € tags(b(x)), b(z)(t) = b(y )()/\yt—’xt/\zt_)xt

( (t
tags(b(y)) U tags(b(z)) = tags(b(x)) €
[z :=ydefault z]=q b € Bl .. |Vt € tags(b(y)), b(z)(t) = b(y)(t) Ayt — x¢
vt € tags(b(z))\tags(b(y)), b(x)(t) = b(2)() Az —

Figure 8. Semantics of polychronous operators

The equationt — ywhen "z forcesx to occur beforey whenz is present. In the equation —
xwhen "z, for instance, there is no scheduling relation required froo y unless bothe, vy, z are
present, e.g. at tag

Y
Y t1,v1 t2,v2 tsvz l

(r:=y$linitv) z o1V ef2v1 Jlzv2 (y = zwhen”2) =z e
[ ] [ ]

The equationr := y default z definesz by y wheny is present and by otherwise. Ify is absent and
z present withvy att; thenx holds(t¢1,v1). If y is present (at, or ¢3) thenz holds its value whether
is present (ats) or not (att3). The equation: := y when z definesr by y whenz is true (and bothy and
z are present)y is present with the value, att, only if y is present withyy att, and if z is present at
to with the value true. When this is the case, one needs to schedule the calculatiandf beforex,
as depicted by, — 4, < z1,.

Yy ° .tQ,’Ug L Y .t277)2 .t3,’l}3
R t1,v1 to,v2 t3,v3
(z:=ywhenz) =z of2:v2 (x :=ydefaultz) x o1V o202 o3
1,0 Tt271 z et

z

Syntax and semantics of clocks In SIGNAL, the presence of a value along a sign& the proposition
noted"z that is true whem: is present and that is absent otherwise. The syntax of clock expressinds



8 J.-P. Talpin, P. Le Guernic, S. K. Shukla, F. Doucet, R. Gupta/ Polychrony for Formal Refinement Checking

clock relationsE is a particular subset ofiISNAL that is defined by the induction grammar of Figure 9.
The clock expressionz can be defined by the boolean operatios z (i.e.y := ~2=%fy .= (z = 2)).
Referring to the polychronous model of computation, it represents the set of tags at which the signal
holds a value. Clock expression naturally represent control, the elioekx represents the time tags

at which the boolean signalis present and true (i.g. := when 2=y := true whenz). The clock

when not x represents the time tags at which the boolean sigimpresent and false. We writefor the

empty clock (the empty set of tags). A clock constrdihts a SGNAL process. The constraiat= ¢’
synchronizes the clocksande’. It corresponds to the procegs := (e = €’))/z. CompositionE | E’
corresponds to the union of constraints and restrickigm to the existential quantification df by x.

"z | whenz | whennotz |e~+e'|e-¢' |e~xe’ | 0 (clock expression)
E = ()|e=¢€|e<ée |z — ywhene|E|E | E/x (clock constraint)

[

Figure 9. Clock and scheduling constraints

Scheduling constraints are transitive and distributive w.r.t. cloeks> ywhene|y — zwhene’
impliesz — zwhene “*¢’ andx — ywhene|z — ywhene’ impliesz — ywhene ~+¢’. Each process
P corresponds to a clock constraifitsatisfying[P] C [E] by the inference systeifi : E of Figure 10
(we writex — y for z — ywhen ~z).

x:=y$linitv: 2 ="y PE Q F P.E
x:=ywhenz: "z ="ywhenz|y — rwhenz
) / :
x:=ydefaultz: " x"="y + z|y — x|z — xwhen("z"-"y) PlQ:E|E Plz: Efx

Figure 10. Inference system

Hierarchization The clock and scheduling constraifi®f a process hold the necessary information

to decide the property of endochrony [22]. The process accepts flow-equivalent inpotky (left).
Inputs are processed hyin clock equivalent ways (middle) so as to produce the same outputs in the
same order at clock-equivalent rates (right).

v NN input | endochronous
o000 A
buffer proces®
y . (XX 1] [ J o000 00
v NN input Ll endochronous cee: s
buffer procesy '
y . (X ] [ N ] [ ] ® 0 0 00

Figure 11. Endochrony: from flow-equivalent inputs to clock-equivalent outputs
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A process is said endochronous iff, given a et vars(p) of external input signals, it has the
capability to reconstruct a unique synchronous behavior (up to clock-equivalence). Fognmslbn-
dochronous iff there exists C vars(p) such thatvb, ¢ € p, (b|;)=(c|r) = b ~ ¢. The behavior of an
endochronous procegss depicted in Figure 11.

Clock constraints determine the orderin which events are processed endochronously, defini-
tion 3.1. Rulel defines equivalence classes for signals of equivalent clocks 2Rolestructs elementary
partial orders relations: the cloeken = is smaller tharrz. Rule3 defines the insertion of a partial or-
der of maximumes under a clocke > e3. The insertion algorithm, specified in [3], yields a canonical
representation of the corresponding partial order by observing that there exists a unique minimum clock
¢’ belowe such thaB holds. We writeE = E' iff E’ is a proposition that is deductible frofi in the
semi-lattice of clocks.

E is hierarchicaliff its clock relation< has a minimum, writtemin< £ € vars(£), so thatvx €
vars(F),Jy € vars(E),y < z. H isacycliciff E = = — zwhene implies E = e~=0 (for all
x € vars(F)). In[22], we show thatif? : E and if E is acyclic and hierarchical, thehis endochronous.

Definition 3.1. The partial orde of F is the largest relation satisfying

1.if E = ~z"="ythenz < y (andy < x).

2.if E = "z =wheny or £ = "z "=whennot y theny < z.

3.ify Xz >wandH = ~z="yf wforanyf € { ~+, "x, ~-} thenz < z.
x andy are equivalent, writtem <>y, iff x < y andy =< z.

Example The implications of definition 3.1 can be outlined by considering a simp@al&. program,
Figure 12, left. Processuffer implements two functionalities. One is the processrent. It defines
a cell in which values are stored at the input clotk and loaded at the output cloclo. cell is a
predefined 85NAL operation defined by:

x:=ycell zinitwv &f (m:=2z$1linitv|z = ydefaultm| z"="y " +"z)/m

The other functionality is the processternate which desynchronizes the signalsindo by synchro-
nizing them to the true and false values of an alternating boolean gignal

Clock inference (Figure 12, middle) applies the clock inference system of Figure 10 to the process
buffer to determine three synchronization classes. We observe thatb, zb, zo are synchronous
and define the master clock synchronization classudffer. There are two other synchronization
classesc_i andc_o, that corresponds to the true and false values of the boolean flip-flop vasiable
respectively. Recalling Definition 3.1, we write:

b<~c_b=<>zb=<>zo andb < c_i<~i andb < c_o<>o

This defines three nodes in the control-flow graph of the generated code, Figure 12, right. At the main
clock ¢c_b, b andc_o are calculated fronzb. At the sub-clockb, the input signal is read. At the
sub-clockc_o the output signab is written. Finally,zb is determined. Notice that the sequence of
instructions follows the scheduling constraints determined during clock inference.
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process buffer = (7 1 ! o) buffer_iterate () {
(| alternate (i, o) (] ec.b "=b b = !zb;
| o := current (i) | b = zb c_o = !b;
) where | zb "= zo if (b) {
process alternate = (7 i, o ! ) | c_i := when b if (!'r_buffer_i(&i))
(Il zb := b$1 init true | c_i "=1 return FALSE;
| b := not zb | c_o := when not b }
| o "= when not b | c_o "= o if (c_o) {
| i = when b | i => zo when ~i o =1ij;
) / b, zb; | zb > b w_buffer_o(o);
process current = (7 i ! o) | zo => o when “o }
(|l zo := 1 cell "o init false |) / zb, zo, c_b, zb = b;
| o := zo when "o c_o, c_i, b; return TRUE;
) / zo; }

Figure 12. Specification, clock analysis and code generation

Some more concrete syntax In addition to the core syntax ofIGNAL presented so far, we make
extensive use of process declarations and partial equations for the purpose of modeling our case study. In
SIGNAL, a partial equation: ::= y f z when e is the partial definition of the variable by the operation

y f z at the clock denoted by the expressionThe default equation ::= defaultvalue v defines

the value of the variable when it is present but no corresponding partial equation= y f z whene

applies (becauseis absent). Let: be a variable defined usingpartial equations and a default value

x = xiwheney| ... |x := z,whene, |z ::= defaultvaluev

Once parsed, thelSNAL compiler processes this definition by first checking the clock expressions
e1, ... ey, mutually exclusive and then handling the definition as the equivalent equation:

x := (r1whene;)default ... default (x, whene,)defaultv

In SIGNAL, the declaration of a procegsof namef, input signalscy, . . . z,,, output signals:,,, 11, - . . x,
is noted
process f = (Tx1, ... Tm ! Tmt1, ... 2n) (| P|);

Once declared, procegsmay be calledy,+1,...yn) = f(y1,...ym) With its actual parameters
Y1, ... yn and behave a® with z; _,, substituted byy; ,. A variant declaration is that of a foreign
function f, accessible, e.g. from a separately compiled C library. Its call can be wrapped@nalLS
by declaring its interface and by declaring an abstrachoof its behavior (consists of scheduling and
clock constraints).

process f = (?x1,...xy ) spec (| E'|) pragmas C_.CODE” &x = f(&x4,...&xy)” end pragnas;

4. A Refinement Checking Methodology

The definition of the polychronous model of computation [22] accurately renders the synchronous hy-
pothesis implemented in the multi-clocked data-flow notatioeN8L and relates it to architectures
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using communication with unbounded delay. In an embedded architecture, however, the flow of a signal
usually slides from another as the result of finite delays incurred by resource-bounded protocols, e.g.
fifo buffers. In this section, we seek towards a formulation of the formal properties implied by this
practice to check correctness of a concrete design refinement methodology.

Finite relaxation We start from the model of a one-pla¢efo buffer in SGNAL, Figure 13, which

we will use to draw the spectrum of possible timing relations considered, modelled and checked in the
context of the present case study. The processing of préc€sss decomposed into two functionalities.

One is the processccess which defines the necessary timing constraints on the input sigarad output
signalo via the delayed value of the boolean sighafifo can accepts an input at the next time sample

iff bis true.

process access = (7 i, o ! ) process current = (7 i ! o)
(I a := "o default (not "i) default b (] o:= (i cell "o init false) when “o
| b := a$1 init false 1
| i °= when b process fifo = (7 i ! o)
| o °= when not b (| access(i, o) | o := current (i)
) / a, b [

Figure 13. A one-place first-in first-out buffer inc8vAL

The other functionality of ifo is the processurrent of Figure 12. Figure 14 depicts the relation
of the signalsc andy and the celin defined by the equation:= fifo(z).

y:=fifo(x) d(m) :

Figure 14. Relation between events through a one-place FIFO buffer

Definition 4.1 formalizes this relation and accounts for the behavidrigb by implying a series
of (reflexive-anti-symmetric) relatioris; (for N > 0) which yields the (series of) reflexive-symmetric
flow relations~ to identify processes of same flows up to a flow-preserving first-in-first-out buffer
of size N. In Definition 4.1, we writepred(t) (resp.succc(t)) for the immediate predecessor (resp.
successor) of the tagn the chainC'.

Definition 4.1. (finite relaxation)
The behavior is al-relaxation ofx in b, writtenb C7 ¢ iff vars(b) = vars(c) and there existg/m > b
such thati/x = ¢/x and a chairC = tags(d(m)) = tags(d(x)) U tags(c(x)) such that:

Vi e C, tetags(d(z)) = d(m)(t) =d(z)(t)
t & tags(d(x)) = d(m)(t) = d(m)(predc(t))
t € tags(c(x)) = c(z)(t) =d(m)(t)

and satisfyingvt € tags(c(x))3t" € {t,succe(t)}, c(x) (') = d(z)(t). We writeb Ty ciff b =7 ¢ for
all z € vars(b), and, for alln > 0, b C,,; c iff there existsd such thab C; d C,, c.
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Desynchronization Now, recall the processuffer of Figure 12. It essentially differs from process
fifo by the policy implemented by proces$ternate. Procesalternate synchronizes ando to
the true and false values of an alternating signal

This guarantees the independence or exclusion between the clackedé. Each tag’ of an event
alongo can only happen strictly between the tagendt;,; of two consecutive events alorg i.e.
t; < t, < ti+1, and vice-versa.

process alternate = (7 i, o ! ) process buffer = (? 1 ! o) i:
(I b := not (b$1 init true) (| alternate (i, o) b: ° ° ° °
| 1 "= when b | o := current (i) . .
| o "= when not b 1
> / b

Figure 15. A desynchronization buffer inG8vAL

Definition 4.2. (desynchronization)
The behavior is a desynchronization @ writtend C ¢ iff vars(b) = vars(c) and there existd > b
such that, for all: € vars(b), d(z) = (ti,vi)i>0, c(x) = (t;,vi)i>0 and, foralli > 0, ¢; < t; < t;41.

The relation between Definitions 4.1 and 4.2 and the implementatidnfaf andbuffer of Fig-
ure 13 and 15are brought together by the following proposition. The proof of profdgrgonsists of
formulating the four requirements of definition 4.1 by observers written@naL and of checking them
against the model afifo. Property(2) is proved by observing that all tags bando satisfyt; < ¢, by
induction oni and that; and¢; form two disjoint sub-chains of the domainf

Proposition 4.1.

(1) vb € [o:=fifo(y)], [z —b(y)]
(2) Vb € [z:=buffer(y)], [z bly)] C* [z+— b(x)]

Formal properties The series of relation&s,,),>o defines a spectrum between synchrony and asyn-
chrony that can be modeled using thesSAL formalism. It is hence tempting to interpret the asyn-
chronous partial-orddr as the (inaccessible) limit or uniany>¢ Ty of this series.

Lemma4.1.
-b ~ b impliesb ~; ¥/,
-b~, b impliesb ~ ¥, foralln > 0
-b oy U o=y, U impliesh =, 1, b7, for all m andn

Instead, we focus on the largest equivalence relation that can be modeled wmirg Slt consists
of behaviors equal up to a timing deformation performed by a finite FIFO protocol.

Definition 4.3. (finite flow-equivalence)
b andc are finitely flow-equivalent, writteh ~* ¢, iff there existsr > 0 andd s.t.d C,, b andd C,, c.



J.-P. Talpin, P. Le Guernic, S. K. Shukla, F. Doucet, R. Gupta/ Polychrony for Formal Refinement Checkinj3

We say that a procesB is finitely flow-preserving iff given finitely flow-equivalent inputs, it can
only produce behaviors that are finitely flow equivalent. Example of finitely flow-preserving processes
are endochronous processes. An endochronous process which receives finitely flow equivalent inputs
produces clock-equivalent outputs.

Definition 4.4. (finite flow-preservation)
p is finitely flow-preservingvith I C vars(p) iff Vb, c € p, (b|1)=(c|;) = b =" c.

A refinement-based design methodology based on the property of finite flow-preservation consists of
characterizing sufficient invariants for a given model transformation to preserve flows.

Definition 4.5. (finite flow-invariance)
The refinement op by ¢ is finitely flow-invariant written p <* ¢, iff I C vars(p) = vars(q) and
V(b, C) €pxgq, (b|[)%(€|[) = b~"c

The property of finite flow-invariance is a very general methodological criterion. It is reflexige’(
p) and transitive f <* ¢ <* r = p <* r) for all flow-preserving processes, (g, r). For instance, it
can be applied to the characterization of correctness criteria for model transformations such as protocol
insertion or desynchronization.

Verification methodology Property 4.1 provides all necessary elements to define an observer giving
sufficient conditions for finite flow-preservation to hold and be provable by model checking. To this end,
we consider the templata &AL processobserver of Figure 16. It is parameterized by the notation
{P, Q} overtwo processes nameandQ which we want to check finitely flow-equivalent.

process observer = {P, Q} (? i ! o)
(I o := fifo (P (buffer (i))) = fifo (Q (buffer (i))) |);

Figure 16. Observer function for the property of finite flow-equivalence

Theobserver receives an input signal This input signal is used to generate two desynchronized
signals (i.e. satisfying the hypothesis ~ c|;) by using the processuffer. The flowsb|; andc|; are
injected toP and (@ and the outputs collected by usidigfo to avoid the synchronization of the out-
puts performed by the comparisen If the output of theobserver is always true then the equality
is an invariant. For the sake of simplicity, procegserver is displayed Figure 16 for two processes
P andQ that have only one input and one output signal and withi o buffer of lengthl. Extend-
ing the observer to accept processes with inputs,n outputs and a buffer of lenglit is obtained
by structural induction starting fromifo andbuffer. Theorem 4.1 formalizes the implication of
processbserver for refinement checking by considering flow-preserving procegsaad(Q of same
cardinality i.e.vars(P) = vars(Q) andin(P) = in(Q).

Theorem 4.1. (refinement checking)
Let P and( be finitely flow-preserving processes of same cardinality- |in(P)| = |in(Q)|. If, for all
b € [x := observer{P, Q}(v1,...ym)] and, for allt € tags(b(z)), b(z)(t) = true, thenP <* Q.
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Letp = [P] andq = [Q] be two flow-preserving processes andllet in(p) = in(q) be the input
signals. By definition of processbserver, Figure 16, and by Property 4.1, we have:

(1):Vbe B|, Y(e,d)epxqg bl eynbcld;=c~id

By hypothesisp andq are both finitely flow-preserving. By definition 4.4, this requires that= d|;
impliesc ~* d for all (¢,d) € p? as well as alc,d) € ¢>. Applied to(1), this hypothesis means that
c|r = d|; also impliesc =~ d for all (¢,d) € p x q. By lemma 4.1, this yields the result expected in
Theorem 4.1, a8 =~ d impliesc ~* d.

5. Formal Methods for Refinement-Based Besign iisPECC

The model and method presented in Sections 2 and 4 are applied to checking refinements between design
abstraction-levels correct. Section 5.2 proposes a technique to automatically represghipograms

in the FoLYycHRONY workbench. Section 5.3 applies the methodology of Section 4 to formally establish

the correctness of design refinements (Figure 17). We consider a simptProgramming example

as case study to illustrate our methodology. It demonstrate the usability obttyetRRONY workbench

to provide the needed model, method and tool to automatically derive conditions on specifications, veri-
fiable by static checking or model checking, and under which the refinement of a high-level specification
by its lower-level implementation can be formally checked, in a manner that is independent of a particular
formalism (we consider ©EcC in [36], JAVA in [35], SYSTEMC in [37]).

i channel
oty SpEcC
ones — even | refinement | jnaq even
=} = send
L recv
conformance
Y checking Y
PoLYCHRONY model = = POLYCHRONY model

Figure 17. Checking conformance of a design refinement

Larger case studies applied to concrete examples (e.g. a finite input response filter and an ARM bus)
are currently under way to demonstrate the capability of our technique to provide modular verification
and an environmnent for co-simulation. In particular, modular verification is envisaged by considering
the verification of a property in a system by checking it against the model of the very components that
affects it while considering a static abstraction (in terms of clock and scheduling constraints) of all
other components in the system under validation. Cosimulation is being investigated by considering the
controller synthesis techniques provided in tr@.PCHRONY workbench and with the aim of applying
them to the generation of optimized and control-sensitive simulators for largeeE™C designs.

5.1. Refinement-Based Design iBPECC

The SPECC system-level design methodology is depicted in Figure 18. It is based on the concept of
refinement: an initial system model is gradually refined through transformations performed at several
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levels of abstraction: specification, architecture, communication, and implementation. System design
starts with a set of requirements and constraints, both in terms of functionality and quality, possibly
captured in different models of computation.

The specification level describes the system functionality in a unified way as a starting point for
system synthesis. At the architecture level, the system functionality is partitioned and partitions are
assigned to different components. In the process, the computational parts of the system are ordered
based on execution times and a scheduling of computation on each component. At the communication
level, components are refined into bus-functional representations, which accurately describe the timing
of events on the wires of the busses. Finally, at the implementation level, the components are defined in
terms of their register-transfer or instruction-set architecture.

SRR
Capture

v

Specification model

Architecture exploration

Architecture model

Communication synthesis

Communication model
>

Hardware | Interface | Software
HI—FF'L synthesis | synihesis |compilation R—II—F?S

Implementation model

Figure 18. $ECC designh methodology [15]

‘.
=]
3
=

3
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5.2. Modeling SPECC Behaviors in SIGNAL

The formal grammar of &EcC programs under consideration, Table 19, is represented in static single-
assignment intermediate form akin to that of the Tree-SSA package of the GCC project [34]. SSA
provides a language-independent, locally optimized intermediate representation (Tree-SSA currently ac-
cepts C, C++, Fortran 95, and Java inputs) in which language-specific syntactic sugar is absent. SSA
transforms a given programming unit (a function, a method or a thread) into a structure in which all
variables are read and written once and all native operations are represeftaddrngss instructions.
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An intermediate representation A programpgm consists of a sequence of labeled blo€k&lk. Each
block consists of a labdl and of a sequence of statemests terminated by a return statemertt. In
the remainder, a block always starts with a label and finishes with a return statesment’:stms is
rewritten asstmq; goto L; L:stmo. A wait is always placed at the beginning of a blockin; wait v;
stmy IS rewritten asstmy; goto L; L:wait v; stmg. Block instructions consist of native method invo-
cationsz = f(y*), lock monitoring and branchesf x goto L. Blocks are returned from by either
agoto L, areturn or an exceptiorthrow x. The declaratiortatch z from L to Ls using L3 that
matches an exceptionraised at blockl; activates the exception handles and continues at blocks.

(program) pgm ::= L:blk | pgm; pgm (block) blk ::= stm; blk | rtn

(instruction)stm ::=xz = f(y*) (invoke) (return)rtn ::= goto L (goto)
| wait x (lock) | return (return)
| notifyx  (unlock) | throw z; (throw)
| if x goto L (test) catchx from L to Lusing L (catch)

Figure 19. SA intermediate representation forScC programs

We depict the structure of thesa for a typical S>ECC program by considering the core of the®&
Figure 20. The behaviames counts the number of bits set1dn a bit-arraydata. It consists of three
blocks. The block labelet1 waits for the lockistart before initializing the local state variabldata
to the value of the input sighakta andicount to 0. LabelL2 corresponds to a loop that shittgata
right and adds its right-most bit tbcount until termination (conditiorT2). Finally, in the blockL3,
icount is sent to the signalcount andidone is unlocked before going back 1d.

Whlliazzu?iitart)' L1: wait (istart); L2: T1 = idata;
idata = data" idata = data; T2 = T1 == 0;
T ’ icount = 0; if T2 goto L3;
icount = O; .
. . goto L2; T3 = icount;
while (idata !'= 0) {
i t += (idata & 1); Ta=TL &1
132:2 - 1? ; & ’ L3: ocount = icount; icount = T3 + T4;
. ’ notify (idome); idata = T1 >> 1;
ocount = icount; oto Li: oto Lo
notify (idone); } & ’ & ’

Figure 20. From 8ECC to static single assignment

Translation algorithm  The functionZ [pgm], Table 22, implements the translation frora&&to SIG-
NAL. It was first developed for theMPLE intermediate representation ofvd [35], then redesigned
and adapted to the wider spectrum of programming languages admitting tHat€rmediate represen-
tation [34] and its used exemplified fovSTEMC in [37].

To each block of label. € L, the functionZ [pgm] associates aimput clockz;, and amoutput clock
;veL“'t. The clockxy, is true iff L has been activated in the previous transition. The boolean sjgﬁél
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is true iff execution of block. is terminates. The default activation condition of a block is hernckl
(equation(1) of Table 22).

For a return instruction or for a block, functiaghreturns a typeP. For a block instructiorstm,
functionZ[stm]}' = (P)° takes three arguments: an instructiem, the labelL of the block it belongs
to, and an input clock; . It returns the type of the instruction and its output cloek. The output clock
of stm corresponds to the input clock of the instruction that immediately follows it in the execution
sequence of the block.

For instance, consider blodk of behaviorones, Figure 21. The instructiolil = idata, left, is
associated with the partial equatidh : := idata$l when L2$1, right. It means that, if the labeb is
being executed, themd is equal toidata$1. Next, consider instructionf T2 goto L3. It corresponds
to the partial equation3 ::= true when T2. It means that control is passedltd whenT2 is true.
Instructions that follow are conditioned by the negatige T2 to means: "in the block2 and not in its
branch going ta.3".

L2: T1 = idata; T1 = idata$l when L2$1
T2 = T1 == 0; | T2 = T1 = 0 when L2$1
if T2 goto L3; | L3 = true when T2
T3 = icount; | T3 = icount$l when not T2

Figure 21. From SAto SIGNAL

Rules(1 — 2) are concerned with the iterative decomposition of a progsgum into blocksblk and
with the decomposition of a block inte¢m and rtn instructions. In rulg2), the input clocke of the
block stm; blk is passed tatm. The output clocle; of stm becomes the input clock éfk.

(1) T[L:blk; pgm] =Z[blk] 23" | T[pgm]
(2) I[stm; blk]S =let (P)¢t = I[stm]} in P|Z[blk]}
(3) Iz = f(yr.n)lL=(E(f) (1. ne))"
(4) T[if z goto L1]§=(y := xwhene|zy, = true wheny)™*Y)
(5) Z[notifyz]f=(z ::= not z$1whene)®
(6) I[wait z]¢=( y := (r = x$1) whene |z, ::= true wheny
| 2 :== true whenydefault false )
(7) Z[goto L1]§ =25 ::= true whene|zy, := true whene
(8) I[return]§=x5" ::= true whene| m?xit ::= true whene
9) Z[throwz]§=2%"" ::= true whene|z := true whene
(10) Z[catchx from L to Ly using L]$= xr, ::= true when "z when z¢""
|2z, := true whenz§""

Figure 22. Modeling of SA expressions into IBNAL

Rule (3) is concerned with the translation of native and external method invocatiens (y;..,,).
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The generic type of is taken from an environmeust(f). It is given the name of the result of the
actual parameterg _,, and of the input clock to obtain the type of = f(y1..n).

For instance, Figure 23 depicts the translation of native operations in bfoakbehaviorones. The
assignment of.count to the local variablg3 is translated by the partial equati@d ::= icount$1
when not T2 which assigns the previous valueigfount to the temporant3 at the clocknot T2 (i.e.
whenT1 is not0, Figure 21).

T3 = icount; T3 ::= icount$l when not T2
T4 = T1 & 1; | T4 : T1 & 1 when not T2

icount = T3 + T4; | icount ::= T3 + T4 when not T2
idata = T1 >> 1; | idata T1 >> 1 when not T2

Figure 23. Translating bative operations ir6SAL

The input and output clocks of an instruction may differ. This is the case(4uléor anif x goto L
instruction in a blockl.. Let e be the input clock of the instruction and define the fresh signal nabye
the equationy := x whene. Wheny is false, then control is passed to the rest of the block: the output
clock is not y. Otherwise, the control is passed to the bldgkat the clocky. The wait-notify protocol,
rules(5 — 6), is modeled using a boolean flip-flop variableMethodnotify, rule (5), defines the next
value of the locke by the negation of its current value at the input cleckrhewait method, rule(6),
activates its output clockiff the value of the lock: has changed at the input cloekOtherwise, control
goes back td..

For example, consider the wait-notify protocol at the blocks labeledndL3 in the ones counter.
The wait instruction receives control at the clagk. If the value ofistart changes (i.ewhen not TO0)
thenicount andidata are initialized and the control is passed to the blbgkOtherwise, at the clock
when TO, a transition back ta1 is scheduled.

L1: wait (istart); T1 ::= istart = istart$1 when L1$1
| L1 = true when T1
| Lib = true when not T1
L3: ocount = icount; | ocount ::= icount$1 when L3$1
notify (idone); | idone ::= not idone$1 when L3$1
goto L1; | L1 ::= true when L3$1

Figure 24. Model ofrait-notify in the BPC

All return instructions, ruleg7 — 9), define the output clock?” of the current blockL by their
input clocke. This is the right place to do that defines the very condition upon which the block
actually reaches its return statementgéto L, instruction, rule(7), passes control to block; uncon-
ditionally at the input clocke. A return instruction, rule(8), sets the exit clock ¢ to true at clock
e to inform the caller thaff is terminated. Athrowx Statement in bloci, rule (9), triggers the ex-
ception signalr at the input clocke by = ::= true whene. The matchingcatch statement, of the
formcatchx from L to L; using Lo passes the control to the handlerand then to the block; upon
termination of the handler. This requires, first, to activatierom L whenz is present and then to pass
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control to; upon termination of the handler.

Completion Table 22 requires all entry clocks;, andz; to be simultaneously present when tfe
is being executed. Each signat holds the valuetrue iff the block L is active during a transition
currently being executed. Otherwisg, is settofalse byL ::= defaultvalue false. The same
holds for local variables with the default equatiofi : := defaultvalue T$1. The SGNAL compiler
guarantees the completion of the next-state logic by aggregating partial equations.

L1 := true when (T1 default L3$1) default false
| L2 := true when (L1b$1 default not T3) default false
| L3 := true when T3 default false

| L1 "= L2 "= L3
Figure 25. Completion of the next-state-logic for thedce

The translation technique proposed in [35, 37] is modular (block-wise), conceptually simple (one
equation perinstruction) and language-independesa (S the input formalism). The host formalism,
SIGNAL, supports a scalable notion and a flexible degree of abstraction. Notice that the structure of the
original program is represented by program lalielghich play an essential role during modeling as they
represent clocks, i.e. the data-structure used by ther EHRONY workbench to represent the control
flow of programs. This information is propagated during modeling, verification and transformation. As a
result, traceability is easily provided by this information to relate an error to its original block, in addition
to the name of all variables it implies.

5.3. A Case Study: the Even-Parity Checker

We focus on a simple E=cC programming example: an even-parity checkepEigure 26), to il-
lustrate our refinement-based methodology. We shows how the specification ¢f¢heaik be refined
toward a G\Ls implementation with the help of the toolbbley CHRONY, showing in what respects and at
which critical design stages formal methods matter for engineering its architecture. This example demon-
strates the capabilities of the polychronous model of computationaA&. to provide formal modeling

and verification support for the capture of behavioral abstractions of high-level system descriptions.

idone done
istart start

ones |ocount| even Out I0
data In

Figure 26. Functional architecture of an even-parity checkec(E

The even-parity checker ), Figure 26, consists of three functionalities: an interface thi€ad
master test threaelven and a slave counting threades (gray elements areFEcC-specific). Numbers
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are sent from0 to even via the input portin. Then,I0 notifiesstart to even which forwardsIn to
ones via thedata port. Upon notificationistart, ones counts the number of bits set to onediaita
and returns it teeven via theocount port. Upon notificationidone, even forwards the result tao via
portOut and notifiesione.

5.3.1. Specification-Level Design iisPECC

In SPECC, the design level of specification defines the functionalities and behavior of a system composed
of hardware and software by means of parallel threads (chié@dvior$ of computations exchanging

data via ports and synchronized by wait and notify events. Behautat, Figure 27, first waits the event
istart before to load data from the input pa@rita into the variableidata. Then, it iteratively scans
idata to count the number of bits set to one in it. This is done by shifting the bitdana right and by
comparing the right-most one o When the data is processed (it equaksnd there is no more bit to

shift and count) the internal couitount is returned to thecount port and the evenidone is notified.

The behaviokven passes values from parh to portdata, notifiesistart, waitsidone, and returns
either0 (if ocount is odd) orl (it is even) along the pofaut before to notifyDone.

behavior ones (in unsigned int data, behavior even (in unsigned int In,
in event istart, in unsigned int ocount,
out unsigned int ocount, in event start,
out event idomne) { in event idone,
void main (void) { out unsigned int Out,
unsigned int idata; out unsigned int data,
unsigned int icount; out event istart,
while (true) { out event done) {
wait(istart); void main(void) {
idata = data; while (true) {
icount = 0; wait(start);
while (idata !'= 0) { data = In;
icount += idata & 1; notify(istart);
idata >> 1; } wait (idone);
ocount = icount; Out = ocount & 1;
notify(idone); notify(done) ;
1} i3

Figure 27. Specification-level design of the®&in SPECC.

5.3.2. Model of the Specification-Level Design iSIGNAL

Figure 28 gives a model of behavienes in SIGNAL. It displays partial equations obtained from the
translation algorithm of Figure 22. An endochronousi$L program which implements the specifica-
tion model of the BcCis given Appendix A. It is obtained from Figure 28 by completion of the next-state
logics and by the synchronization of local variables.

In stateL1, behaviorones waits for istart. It receives it at clockihen not TO and initializes
idata to data, icount to 0 and steps to state2. While in statel.2 (at clockwhen not T2) it adds
the right-most bit ofidata to icount, shifts idata right and goes back tb2. If idata is zero (at
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clock when T2), ones steps taL3, passes the value akount to ocount, notifiesidone and goes to
L1. Processven depicts a similar decomposition of thescC behavior in SA form.

process ones = () | L1 ::= true when L4$1
(1l T1 ::= istart = istart$l when L1$1 /) / L1, L2, L3, L4, T1, T2,
| L1 ::= true when T1 T3, T4, T5, idata, icount;
| L2 ::= true when not T1 process even = ()
| idata ::= data$l when L2$1 (]l T1 ::= start = start$1 when L1$1
| icount ::= 0 when L2%$1 | L1 = true when T1
| L3 ::= true when L2$1 | L2 = true when not T1
| T2 ::= idata$1l when L3$1 | data = In$1 when L2%1
| T3 ::= T2 = 0 when L3$1 | istart ::= not istart$l when L2%1
| L4 ::= true when T3 | L3 = true when L2$1
| T4 ::= icount$1l when not T3 | T2 = idone = idone$1 when L3$1
| T5 ::= T2 & 1 when not T3 | L3 = true when T2
| icount ::= T4 + T5 when not T3 | L4 = true when not T2
| idata ::= T2 >> 1 when not T3 | Out = ocount$l & 1 when L4$1
| L3 ::= true when not T3 | done = not done$l when L4$1
| ocount ::= icount$l when L4$1 | L1 = true when L4$1
| idone ::= not idone$1 when L4$1 | / L1, L2, L3, L4, T1, T2;

Figure 28. Specification-level design of the®&n SIGNAL.

5.3.3. Architecture-Level Design Refinement

The translation of the even-parity checker of Section 31 demonstrates the capabilipnei 3o model
components for specification-leveb8cC designs. The typicalEcC design-flow starts with the cap-

ture of Ip-blocks represented asfunctions and automatic partitioning according to an appropriate cost
function. After partitioning, double handshake protocols (message sequence below), or other appropriate
HW-SWw protocols (request-acknowledge) are inserted between the functional units.

In send ready TSV  channel ChMP() { unsigned int recv () {
bool ready = false, ack = false; unsigned int rtn;
eReady . .
event eReady, eAck; while (!ready)
data unsigned int data; wait (eReady);
ack void send (unsigned int in) { rtn = data;
data = in; ack = true;
eAck ready = true; notify (eAck);
—ready notify (eReady); while (ready)
while (lack) wait (eAck); wait (eReady);
eReady ready = false; ack = false;
—ack notify (eReady); notify (eAck);
while (ack) wait (eAck); return rtn;
ehck rdata } 1}

Figure 29. Implementation of a channel with double hand-shake#cS.
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At specification-level, data exchange between the behawiars andeven is performed by shared
variables and arbitrated by a wait-notify protocol. At architecture-level, this protocol is refined by a
double handshake protocol defined by the methadst andrecv of the moduleChMP, figure 29. The
channel encapsulates the wait and notify operations performed in the specification model together with
locally shared variablesck andready.

5.3.4. Model of the Architecture Refinement inSIGNAL

The SGNAL model of thesend method, Figure 30, of theecv method, of the architecture-layer re-
finement of the EC, are obtained in the very same way as for the behawoes and ones of the
specification level. Theend method of theChMP module assigns the current value of the inputto
the shared variablgata, sets the sharegkady flag to true and waits for the notificatiarick from the
recv process until the shared flagk becomes true. The same transaction is repeated to wait until the
transmission of its return data to ready a new transaction.

Processend receives two parameteks andL7 in addition to its input datan. The boolean signal
L1 is true whensend receives control from its caller. The boolean sighalis true whensend returns
control to its caller. Appendix B gives the complete listing of $wnd and recv functionalities of
the channeChMP which were checked endochronous using tkeYReHRONY workbench to qualify for
validation using our refinement checking methodology.

process send = (7?7 In, L1 ! L7) | ready ::= false when L4$1
(1 L2 ::= true when L1$1 | eReady ::= not eReady$l when L4$1
| data ::= In$1 when L1$1 | L5 ::= true when L4$1
| ready ::= true when L1$1 | T4 := ack$1l when L5%1
| eReady ::= not eReady$l when L1$1 | L6 ::= true when T4
| T2 := ack$1l when L2$1 | L7 ::= true when not T4
| L3 ::= true when not T2 | T3 := elAck = eAck$l when L63$1
| L4 ::= true when T2 | L5 ::= true when not T3
| T1 := eAck = eAck$1l when L3$1 | L6 ::= true when T3
| L2 ::= true when not Ti1 |y / L2, L3, L4, L5, L6,
| L3 ::= true when T1 T1, T2, T3, T4;

Figure 30. Model of the architecture-level channel (send method)adng .

5.3.5. Validation of the Specification-to-Architecture Refinement

The installation of a channel between the processea andones incurs an additional desynchroniza-
tion of the transmission between the andOut signals. Showing that the refinement of theddrom
the specification level, procespc1, to the architecture level, processc?, is correct requires checking
that the refinement is finitely flow-invariangpc1 <* epc2.

The verification of this property amounts to proving that, for all behavi@sdc of epc1 andepc2,
flow equivalence of the input signah, i.e. b1, ~ c|1, implies flow equivalence of the output signal
Out, i.e. b|gut ~ C’Out-

(1) : Vb € [epcl], Ve € [epc2], bln = ¢|1n = blout = C|out
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Preliminary observations are in order to facilitate the proof of equétiarilr he architecture model of the
EPc only differs from the specification model by the introduction of a channel in place of a wait-notify
protocol to synchronize concurrent accesses to shared variables. By contrast, the architecture model
epc2 uses the double handshake protocol of¢hed andrecv functionality of the modul&€hMP.

Figure 31 isolates the pattespecif that characterizes the wait-notify protocol in the specification
model. The variables of theAE modelsspecif andarchi are interfaced to signalk andOut for the
purpose of verification. The producer and consumer procgssed andcons1 are defined by infinite
loops that wrap the patterns of interest.

process specif = (? boolean In process consl = (7 ! Out)
! boolean Out) (| T1 := istart = istart$1l when L1$1
(| Out := cons1() | prodi(In) |) | L1 := true when (T1 default L2$1)
where boolean istart init false, default false
data init false; | L2 := true when not T1 default false
process prodl = (? In !) | Out := data$l when L2%1
(] data := In default data$i | L1 "= L2 "= istart "= data
| istart := not istart$l when ~In |) where boolean L1 init true, L2, T1;
default istart$1l |); end;

Figure 31. Isolation of the synchronization protocol in the specification model

Figure 32 isolates the matching communication pattern of the architecture model wrapped in the
procesarchi. In Figure 31, the presence of an infuttriggers a wait-notify protocol that synchronizes
the transmission odata from even to ones. In Figure 32, this synchronization is embedded in the call
to thesend andrecv methods. Control to and frosend andrecv is provided by the labels2 andL3.
The additional label.1 closes the infinite loop.

process archi = (? boolean In ! boolean Out) |[process prod2 = (? In !)

(I Out := cons2() | prod2(In) ) (] data := In when L1$1 default data$l
where process cons2 = (7 ! QOut) | T1 := true when "In when L1$1
(] L2 := L1$1 init true | L1 := true when (not T1 default L3$1)
| Out := data$1l when L3$1 default false
| L1 := true when L3$1 | L2 := true when T1 default false
default false | L3 := send(data$1l, L2)
| L1 ~= 12 "= L3 "= data | L1 "= L2 “= L3 "= data
| (L3, data) := recv(L2) |) where boolean T1, L1 init true,
|) where boolean L1, L2, L3, data; end; L2, L3, data; end;

Figure 32. Isolation of the synchronization protocol in the architecture model

Proving equatior{1) reduces to showing that the desynchronization protocol introduced by module
ChMP preserves the flow of the original wait-notify protocol of the specification model. This proof is
done by checking that, given desynchronized input flojysandc|,, the specification and architecture
modelsspec andarch provide equivalent flows along the outpittata

(2) : Vb € [specif], Vc € [archi], bltn = ¢|1n = blout =~ ¢|out

To formulate equatior{2) in the model checker I8ALI, we consider a formulation of the protocol
that manipulates boolean data andOut. This approximation still implies the expected propgy,
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since neitherln nor Out interfere with control inspecif andarchi. We obtain the formulation of
the appropriate observer function (see appendix C). It is be checked invariars by &ind yields the
expected proof of conformance, by application of Theorem 4.1.

(3) : cqfd := observer {specif, archi} (In)

5.3.6. Refinement of the Architecture Model Toward Implementation

The communication layer of therAg, Figure 33, consists of a refinement of the data structures manipu-
lated in theChMP channel and of modeling (inF&cC) the behavior of the actual bus of the architecture
in place of the channel abstractichMP. The model of the bus consists of the decomposition of the
methodssend andreceive into sub-processes that implement the beisd andwrite methods.

Showing this refinement correct reduces to proving that the model of the chaciméPsmethods
send andrecv are flow-equivalent to the methodead andwrite of the bus model. The control
structure of the bus model iNK&NAL is identical to that of the channel, except for the implementation
of the input/output integer signals as bit-vectors.

channel cBus() implements iBus { unsigned bit[31:0] read () {

unsigned bit[31:0] data; cSignal ready, ack; unsigned bit[31:0] rdata;

void write (unsigned bit[31:0] wdata) { ready.waitval(1);
ready.assign(1); rdata = data;
data = wdata; ack.assign(1);
ack.waitval(1l); ready.waitval(0);
ready.assign(0); ack.assign(0);
ack.waitval(0); return data;

} 3

Figure 33. Communication-level model of a bus iPESC.

behavior ones(in,event,clk, ...) { idata = inport;
void main(void) { icount = 0;
unsigned bit[31:0] idata, icount; state = 82;
enum state {SO, S1, S2, S3} state = S0; break;
while (1) { case S2: icount = icount + idata & 1;
wait(clk); idata = idata >> 1;
if (rst == 1b) state = S0; if (idata == 0) state=S3
switch (state) { else state=S2;
case SO: done = Ob; break;
ack_istart = Ob; case S3: outport=icount;
if (start == 1b) state=S1 done = 1b;
else state=S0; if (ack_idone == 1b) state=S0
break; else state=S3;
case S1: ack_istart = 1b; break;

Figure 34. RL-level implementation of the c-core in SPECC.

Compared to the communication model of Figure 33, thie & implementation model of there
in SPECC, Figure 34, consists of a cycle-accurate implementation of thetkat is materialized the
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introduction of a master clocklk and of a reset signalst together with the conversion of therE
communication-layer specification into finite-state machine code. The structurecaafas¢hread itself
is close to the original one ins3\ intermediate form. Each transition from a value of #ete variable
is guarded by an explicit synchronization to the simulation clark

5.4. Conclusive Remarks

By considering a simple =cC programming example, featuring all salient aspects of the language,
we demonstrated the capability of th@BcHRONY workbench to model the functionalities and the
architecture of a system and to provide the necessary services to express model transformations and
check them correct. The methodology of finite-flow invariance we employ is directly derived from
previous work pertaining on the design of globally asynchronous locally synchronous architectures. The
present case study departs from the very spectrum of GALS design by showing that imperative programs
in the style of communicating sequential processes are equally covered. In other words, flow equivalence
does not define the spectrum of architectures that are covered by our methodological principles but the
very criterion for checking design refinements correct.

Naturally, other criteria can be designed and other properties checked. Ole€PRONY work-
bench provides scalable abstraction @E8C design for verification. Previous results and case studies
span from the use theorem-proving [19, 25, 20] to prove properties on concrete models, model check-
ing [6, 36] to prove properties on models abstracted by finite-state machines, static checking [26, 37] to
prove properties over state-less boolean model abstractiamsy dRRONY further provides means to
optimally reuse, adapt, transform pre-defined system components and modules: hierarchization (com-
bines several threads into one), distributed protocol synthesis (split synchronous threads into a network
of communicating threads). Its current limitations are the absence of support for reasoning on dynamic
resources management (memory or threads) and the lake of connexions to other models of computation
(untimed, real-timed, continuous).

6. Related Works

Synchronous programming being a computational model which is popular in hardware design, and
desynchronization being a technigue to convert that computational model into a more general, globally
asynchronous and locally synchronous computational model, suitable for system-on-chip design, one
may naturally consider investigating further the links between these two models understood as Ptolemy
domains [9] and study the refinement-based design of GALS architectures starting from polychronous
specifications captured from heterogeneous elementary components.

Models of computation The aim of capturing both synchrony and asynchrony in a unifying model of
computation is shared by several approaches: the interaction categories of Abramsky et al. in [1], the
communicating sequential processes of Hoare [17] and Kahn networks [18] (communicating data-flow
functions) that is one of the models supported by Ptolemy [21] and the methodology of latency insensitive
protocols of Carloni et al. [10] and its extension to real-time [4]. All related models can be categorized

as stratified, in the sense that they dissociate the semantics structure representing synchronous islands
(the predefinegbearlsor Ips) from the one representing asynchrony. For instance, the heterogeneous
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model of [4] is layered into a model of tag-less asynchrony and of tagged synchrony (where tags model
stuttering equivalence in a way akin to clock equivalence yet without scheduling). The polychronous
model of computation does not feature such a decoupling between its synchronous and asynchronous
structures.

Refinement-checking Most of the existing formal frameworks to refinement-checking, such as B [2],
Unity [11], CSP [17, 29], are essentially specification-based, in that modeling, transformation and ver-
ification are entirely envisaged within the framework of a formal notation and its companion methods
and tools. By contrast, our data-flow oriented approach to refinement-checking is novel and allows us
to combine a programatic approach (afeE2C) with the scalable modeling and verification techniques

of the polychronous model of computation: theorem-proving [19, 25, 20], model checking [6, 36], static
checking [26, 37]. Being combined to a language-independent translation technique enabling the cap-
ture of high-level system descriptions in general purpose languages such as/&, andr workbench
departs from specification-oriented approaches, by combining software model-checking capabilities with
aggressive optimization services present in this workbench for the purpose of accelerated simulation and
synthesis.

7. Conclusions

Until now, the refinement of a system-level description toward its implementatiorp #@@S or Srs-

TEMC was primarily envisaged as a manual process and proving conformance from the system-level ab-
straction to the implementation an unsolved issue. To solve it, we proposed a formal refinement-checking
methodology for system-level design formalized within the polychronous model of computation of the
multi-clocked synchronous formalism@&\AL. We demonstrated the effectiveness of our approach by

the experimental case study of ai2C programming example, showing the benefits of our approach to
give an accurate model of successive design abstractions of the system: functional, architecture, com-
munication. We introduced, proved and applied a refinement-checking criterion allowing for comparing
and validating behavioral equivalence relations between these successive refinements. Our methodology
relies on an automated modeling technique that is conceptually minimal and supports a scalable notion
and a flexible degree of abstraction. Our presentation targets(S yet with a generic and language-
independent method. Applications of our technique range from the detection of local design errors to the
compositional design refinement and conformance checking.
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A. Listing of the Specification Model of theEPC

process epc = (7 boolean start; integer In ! boolean done; integer Out)
(| (idone, ocount) := ones (istart, data)
| (done, Out) := even(start, In)
|) where integer ocount init O, data init O;
boolean istart init false, idone init false;

process ones = (7 boolean istart; integer data ! boolean idone; integer ocount)

(] T1 := istart = istart$1l when L1$1
| T2 := idata$1l when L3$1 default T2$1
| T3 := T2 = 0 when L3$1
| T4 := icount$1 when not T3 default T4$1
| TS := X2(T2, 1) when not T3 default T5%$1
| L1 := true when (T1 default L4$1) default false
| L2 := true when not T1 default false
| L3 := true when (L2$1 default not T3) default false
| L4 := true when T3 default false
| idata := data$l when L2$1 default X1(T2, 1) when not T3 default idata$i
| icount := O when L2$1 default T4 + T5 when not T3 default icount$1
| ocount := icount$1 when L4$1 default ocount$il
| idone := not idone$1 when L4$1 default idone$l
|

idata "= icount "= ocount "= idone "= istart "= data

=11 "=L2 "=L3 =14 "=T2 "=T4 "= Th
|) where boolean L1 init true, L2 init false, L3 init false, L4 init false, T1, T3;
integer idata init O, icount init O, T2, T4, T5; end;

process even = (7 boolean start; integer In ! boolean done; integer Out)
(1 T1 := start = start$l when L1$1

| T2 := idone = idone$1 when L3$1

| L1 := true when (T1 default L4$1) default false

| L2 := true when not T1 default false

| L3 := true when (L2$1 default T2) default false

| L4 := true when not T2 default false

| data := In$1 when L2$1 default data$l

| istart := not istart$l when L2$1 default istart$i

| Out := X2(ocount$1, 1) when L4$1 default Out$l

| done := not done$l when L4$1 default done$i

| data "= istart "= Out "= done "= L1 "= 12 "= 13 "= 14

|

) where boolean L1 init true, L2 init false, L3 init false, L4 init false, T1, T2; end;

function X1 = (7 i1, i2 ! i3)
spec (| i1"=i2"=i3 | i1l --> i2 | i2 -—> i3 |)
pragmas C_CODE "&i3 = &il >> &i2" end pragmas;

function X2 = (7 i1, i2 ! i3)
spec (| i1"=i2"=i3 | i1 --> i2 | i2 --> i3 |)
pragmas C_CODE "&i3 = &il & &i2" end pragmas;
end;
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B. Listing of the Channel Model
module ChMP =
boolean ready init false, ack init false, eReady init false, eAck init false;

integer data init O;

process send = (7 In, L1 ! L7)

(1l T1 := eAck = eAck$l when L3$1
| T2 := ack$1l when L2$1
| T3 := eAck = eAck$l when L6$1
| T4 := ack$1l when L5$1
| L2 := true when (L1$1 default not T1) default false
| L3 := true when (not T2 default T1) default false
| L4 := true when T2 default false
| L5 := true when (L4$1 default not T3) default false
| L6 := true when (T4 default T3) default false
| L7 := true when not T4 default false
| data := In$1 when L1$1 default data$l
| ready := true when L1$1 default false when L4$1 default ready$i
| eReady := not eReady$l when (L1$1 default L4$1) default eReady$l
| L1 =12 =13 =14 "=1L5 =16 "= L7
| L1 "= ready "= ack "= eReady "= eAck ~"= data "= In
|

) where boolean L2, L3, L4, L5, L6, T1, T2, T3, T4; end;

process recv = (? L1 ! rtn, L7)

(I T1 := eReady = eReady$1l when L3$1
| T2  := not ready$l when L2$%1
| T3 := eReady = eReady$l when L6$1
| T4 := not ready$l when L5$1
| L2 := true when (L1$1 default not T1) default false
| L3 := true when (T2 default T1) default false
| L4 := true when not T2 default false
| L5 := true when (L4$1 default not T3) default false
| L6 := true when (T4 default T3) default false
| L7 := true when not T4 default false
| rtn := (data$l when L4$1) default rtn$il
| ack := (true when L4$1) default (false when L7$1) default ack$il
| eAck := (not eAck$l when (L4$1 default L7$1)) default eAck$l
| L1 =12 "=1L3 "=14 "=L1L5 "=1L6 "= L7
| L1 "= rtn "= ack "= eAck
|

) where boolean L2, L3, L4, L5, L6, T1, T2, T3, T4; end;
end;
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C. Listing of the Observer Function

process observer = (? boolean In ! boolean cqfd)
(| cqfd := fifo (specif (buffer (In))) = fifo (archi (buffer (In)))
[) where

use ChMP;
use Fifo;

process specif = (? boolean In ! boolean Out)

(I Out := cons1() | prodi(In) [)

where boolean istart init false, data init false;
process consl = (7 ! QOut)

(] T1 := istart = istart$1 when L1$1
| L1 := true when (T1 default L2$1) default false
| L2 := true when not T1 default false
| Out := data$l when L2$1
| L1 ~= L2 "= istart "= data

|) where boolean L1 init true, L2, T1; end;
process prodl = (? In !)
(| data := In default data$i
| istart := not istart$l when ~In default istart$i
1);

end;

process archi = (7 boolean In ! boolean Out)
(I Out := cons2() | prod2(In) |)
where process cons2 = (7 ! Out)
(] L2 := L1$1 init true
| Out := data$l when L3$1
| L1 true when L3$1 default false
| L1 "= L2 "= L3 "= data
| (L3, data) := recv(L2)
|) where boolean L1 init true, L2, L3, data; end;
process prod2 = (? In !)
(] data := In when L1$1 default data$il

| T1 := true when "“In when L1$1

| L1 := true when (not T1 default L3$1) default false

| L2 := true when T1 default false

| L3 := send(data$l, L2)

| L1 "= L2 "= L3 "= data

|) where boolean T1, L1 init true, L2, L3, data; end;
end;

end;



