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Abstract. Rising complexity, increasing performance requirements, and shortening time-to-market
demands necessitate newer design paradigms for embedded system design. Such newer design
methodologies require raising the level of abstraction for design entry, reuse of intellectual property
blocks as virtual components, refinement based design, and formal verification to prove correct-
ness of refinement steps. The problem of combining various components from different designers
and companies, designed at different levels of abstraction, and embodying heterogeneous models of
computation is a difficult challenge for the designer community today. Moreover, one of the gating
factors for widespread adoption of the system-level design paradigm is the lack of formal models,
method and tools to support refinement. In the absence of provably correct and adequate behavioral
synthesis techniques, the refinement of a system-level description towards its implementation is pri-
marily a manual process. Furthermore, proving that the implementation preserves the properties of
the higher system-level design-abstraction is an outstanding problem.

In this paper, we address these issues and define a formal refinement-checking methodology for
system-level design. Our methodology is based on a polychronous model of computation of the
multi-clocked synchronous formalism SIGNAL . This formalism is implemented in the POLYCHRONY

workbench. We demonstrate the effectiveness of our approach by the experimental case study of a
SPECC modeling example. First, we define a technique to systematically model SPECC programs
in the SIGNAL formalism. Second, we define a methodology to compare system-level models of
SPECC programs and to validate behavioral equivalence relations between these models at differ-
ent levels of abstraction. Although we use SPECC modeling examples to illustrate our technique,
our methodology is generic and language-independent and the model that supports it conceptually
minimal by offering a scalable notion and a flexible degree of abstraction.

Address for correspondence: INRIA-IRISA, Campus de Beaulieu, 35042 Rennes, France (Jean-Pierre.Talpin@irisa.fr)
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1. Introduction

Rising complexity and performances, shortening time-to-market demands, stress high-level embedded
system design as a prominent research topic Ad-hoc design methodologies, that lifts modeling to higher
levels of abstraction, the concept of intellectual property, that promotes reuse of existing components,
are essential steps to manage design complexity, gain performance, accelerate design cycle. However,
the issue of compositional correctness arises with these steps. Given components from different man-
ufacturers, designed at different levels of abstraction and with heterogeneous models of computation,
combining them in a correct-by-construction manner is a difficult challenge.

A gating factor for widespread adoption of the system-level design paradigm is a lack of formal mod-
els, method and tools to support refinement. In the absence of adequate behavioral synthesis techniques,
the refinement of a system-level description toward its implementation is primarily a manual process.
Furthermore, proving that the implementation preserves the properties of the higher system-level design
abstraction is an unsolved problem.

In this aim, system design based on the so-called “synchronous hypothesis” [5] consists of abstracting
the non-functional implementation details of a system away and let one benefit from a focused reason-
ing on the logics behind the instants at which the system functionalities should be secured. From this
point of view, synchronous design models and languages provide intuitive models for integrated circuits.
This affinity explains the ease of generating synchronous circuits and verify their functionalities using
compilers and related tools that implement this approach.

In the relational model of the POLYCHRONY workbench [28], this affinity goes beyond the domain
of purely synchronous circuits to embrace the context of globally asynchronous locally synchronous
(GALS) architectures. The unique features of this model are to provide a scalable capability to describe
partially clocked specifications or multi-clocked architectures and to support a formal notion of design
refinement, from the early stages of requirements specification, to the later stages of deployment and
synthesis, using formal verification.

We address the issue of conformance checking in system design by considering the polychronous
model of computation of the POLYCHRONY workbench to define a formal refinement-checking method-
ology. Our approach builds upon previous work on the multi-clocked synchronous paradigm of SIG-
NAL [7] and verification using the related model-checking tool SIGALI [24] (the POLYCHRONY work-
bench). We put the polychronous model of computation [22] to work in the context of emerging high-
level design languages such as SPECC [15] by the study of refinement relations between system design
levels in SPECC (Figure 1).
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Figure 1. Checking conformance of a design refinement
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Outline This paper is organized as follows. We start with an overview of the polychronous model
of computation in Section 2. In Section 3, we provide an informal introduction to the SIGNAL data-
flow notation of the POLYCHRONY workbench. Starting from this presentation, Section 4 develops a
methodology aimed at checking design refinement relations correct within the POLYCHRONY workbench
by introducing a suitable notion of flow-preservation. This model and methodology are put to work in
Section 5 in the context of system design using SPECC. A simple design example of an even-parity
checker (EPC) is used as a vehicle to explain our methodology. We outline a technique to automatically
derive a model of SPECC specifications in the POLYCHRONY workbench and apply our methodology to
checking the refinement of the EPC correct from its specification level design to its RTL-level design.
This exercise demonstrates the capability of POLYCHRONY to support high-level design transformations
operated on SPECC programs with the validation services offered by the POLYCHRONY workbench.

2. A Polychronous Model of Computation

We start with a brief overview of the polychronous model of computation, proposed in [22]. The poly-
chronous model of computation consists of adomainof traces and of semi-lattice structures that render
synchrony and asynchrony using timing equivalence relations: clock equivalence relates traces in the
synchronous structure and flow equivalence relates traces in the asynchronous structure.

Domain of polychrony We consider a partially-ordered set(T ,≤, 0) of tags. A tagt ∈ T denotes a
symbolic period in time. The relation≤ denotes a partial order. Its minimum is noted0. We noteC ∈ C
a (possibly infinite)chainof tags. Events, signals, behaviors and processes are defined as follows:

Definition 2.1. (polychrony)
- An evente ∈ E = T × V is the pair of a value and a tag.
- A signals ∈ S = C → V is a function from achainof tags to a set of values.
- A behaviorb ∈ B is a function from namesx ∈ X to signalss ∈ S.
- A processp ∈ P is a set of behaviors that have the same domain.

Figure 2 depicts a behaviorb over three signals namedx, y andz in the domain of polychrony. Two
frames depict timing domains formalized by chains of tags. Signalx andy belong to the same timing
domain:x is a down-sampling ofy. Its events are synchronous to odd occurrences of events alongy and
share the same tags, e.g.t1. Even tags ofy, e.g.t2, are ordered along its chain, e.g.t1 < t2, but absent
from x. Signalz belongs to a different timing domain. Its tags, e.g.t3 are not ordered with respect to the
chain ofy, e.g.t1 6≤ t3 andt3 6≤ t1.

x : •t1 • •
y : •t1 •t2 • • •

z : •t3 • • •

Figure 2. A behavior in the polychronous model of computation
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In the remainder, we writetags(s) and tags(b) = ∪x∈vars(b)tags (b(x)) for the tags of a signal
s and of a behaviorb, b|X for the projection of a behaviorb on X ⊂ X andb/X = b|vars(b)\X for its
complementary,vars(b) andvars(p) for the domains ofb andp. We writeB|X for the set of all behaviors
defined on the set of variablesX.

Synchronous composition is notedp || q and defined by the union of all behaviorsb (from p) andc
(from q) which are synchronous: all signals they share, i.e. inI = vars(p) ∩ vars(q), are equal.

p || q = {b ∪ c | (b, c) ∈ p× q, I = vars(p) ∩ vars(q), b|I = c|I }

Figure 3 depicts the synchronous composition, right, of the behaviorsb, left, and the behaviorc, middle,
of two processesp andq. Notice that the signaly, shared byp andq, must carry the same tags and the
same values in bothp andq in order forb ∪ c, right, to belong top || q.

 x : •t1 •
y : •t1 •t2 • •

 ||
 y : •t1 •t2 • •

z : •t3 • •

 =

 x : •t1 •
y : •t1 •t2 • •
z : •t3 • •


Figure 3. Synchronous composition ofb ∈ p andc ∈ q

Scheduling structure To render constraints between the occurrence of events during a periodt, we
refine the domain of polychrony with a scheduling relation. Figure 4 depicts a scheduling relation super-
imposed to the signalsx andy of Figure 2. The relationyt1 → xt1 denotes a scheduling constraint:y
should be calculated beforex at the periodt1.

x : •t1 • •
↑ ↑ ↑

y : •t1 •t2 • • •

Figure 4. Scheduling relations between simultaneous events

The pairxt of a time tagt and of a signal namex renders the dated of the event occurring at the
symbolic periodt along the signalx. The tagt represents the period during which multiple events take
place to form a reaction. It corresponds to an equivalence class between datesd, as in the synchronous
structures [27].

Definition 2.2. (scheduling relation)
The scheduling relation→b is a pre-order defined on datesD = X × T for a behaviorb which satisfies:

∀b ∈ B,∀x ∈ vars(b),∀t, t′ ∈ tags(b(x)), t < t′ ⇒ xt →b xt′ ∧ xt →b xt′ ⇒ ¬(t′ < t)

When no ambiguity is possible on the identity ofb in x →b y, we write it x → y. A scheduling
relation is implicitly transitive (xt →b yt′ →b zt′′ impliesxt →b zt′′) and its closure for restrictionb/X
is defined byxt →b/X yt′ iff xt →b yt′ andx, y 6∈ X.



J.-P. Talpin, P. Le Guernic, S. K. Shukla, F. Doucet, R. Gupta / Polychrony for Formal Refinement Checking5

Synchronous structure Building upon the domain of polychrony, we define the semi-lattice structure
which relationally denotes synchronous behaviors. The intuition behind this relation is depicted figure 5.
It is to consider a signal as an elastic with ordered marks on it (tags). If the elastic is stretched, marks
remain in the same relative and partial order but have more space (time) between each other. The same
holds for a set of elastics: a behavior. If elastics are equally stretched, the order between marks is
unchanged. In the figure 5, the time scale ofx andy change but the partial timing and scheduling relations
are preserved. Stretching is a partial-order relation which defines clock equivalence (definition 2.3).

x : •t1 • •
↑ ↑ ↑

y : •t1 •t2 • • •
≤

x : •t3 • •
↑ ↑ ↑

y : •t3 •t4 • • •

Figure 5. Relating synchronous behaviors by stretching.

Definition 2.3. (clock equivalence)
A behaviorc is astretchingof b, writtenb ≤ c, iff vars(b) = vars(c) and there exists a bijection on tags
f which satisfies

∀t, t′ ∈ tags(b), t ≤ f(t) ∧ (t < t′ ⇔ f(t) < f(t′))
∀x, y ∈ vars(b),∀t ∈ tags(b(x)),∀t′ ∈ tags(b(y)), tx →b t′y ⇔ f(t)x →c f(t′)y

∀x ∈ vars(b), tags(c(x)) = f(tags(b(x))) ∧ ∀t ∈ tags(b(x)), b(x)(t) = c(x)(f(t))
b andc areclock-equivalent, writtenb ∼ c, iff there exists a behaviord s.t.d ≤ b andd ≤ c.

Asynchronous structure The asynchronous structure of polychrony is modeled by weakening the
clock-equivalence relation to allow for comparing behaviors w.r.t. the sequences of values signals hold
regardless of the time at which they hold these values. Therelaxation relation allows to individually
stretch the signals of a behavior in a way preserving scheduling constraints. Relaxation is a partial-order
relation which defines flow-equivalence (definition 2.4). Two behaviors are flow-equivalent iff their
signals hold the same values in the same order.

Definition 2.4. (flow equivalence)
A behaviorc is a relaxationof b, written b v c, iff vars(b) = vars(c) and, for allx ∈ vars(b), b|{x} ≤
c|{x}. b andc areflow-equivalent, writtenb ≈ c, iff there exists a behaviord s.t.d v b andd v c.

Figure 6 depicts two asynchronously equivalent behaviors related by relaxation. The first event along
x has been shifted (and its scheduling constraint with an initially synchronous event alongy lost) as the
effect of delaying its transmission using e.g. a FIFO buffer.

x : •t1 • •
↑ ↑ ↑

y : •t1 •t2 • • •
v

x : •t3 • •

y : •t4 •t5 • • •

Figure 6. Relating asynchronous behaviors by relaxation.
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Asynchronous composition is notedp ‖ q and defined by considering the partial-order structure
induced by the relaxation relation. The parallel composition ofp andq consists of behaviorsd that are
relaxations of behaviorsb andc from p andq along shared signalsI = vars(p) ∩ vars(q) and that are
stretching ofb andc along the independent signals ofp andq.

p ‖ q =
{
d ∈ B|vars(p)∪vars(q) | ∃(b, c) ∈ p× q, d/I ≥ b/I ∧ d/I ≥ c/I ∧ b|I v d|I ∧ d|I w c|I}

Figure 7 depicts the asynchronous composition, right, of the behaviorb ∈ p, left, and of the behavior
c ∈ q, middle. Notice that the signalx andy are alternated inp, left, and synchronous inq, middle.
Asynchronous composition allows for these signals to be independently stretched in bothp and q in
order to find a common flow in the asynchronously composed process, right. x : •t1 •t3

y : •t2 •t4

 ‖
 x : •t1 •t2

y : •t1 •t2

z : • • •

 =

 x : • •
y : • •
z : • • •


Figure 7. Asynchronous composition ofb ∈ p andc ∈ q

3. A Polychronous Design Language

In the POLYCHRONY workbench, the polychronous model of computation is implemented by the multi-
clocked synchronous data-flow notation SIGNAL [7]. It will serve as the specification formalism used
for the case study of the present article.

Core syntax and semantics In SIGNAL , a processP consists of the composition of simultaneous
equationsx := f(y, z) over signalsx, y, z. A signalx ∈ X is a possibly infinite flow valuesv ∈ V
sampled at a discrete clock noted^x.

P,Q ::= x := y f z | P/x | P ||Q (SIGNAL process)

In the polychronous model of computation, Section 2, the denotation of a clock^x is the domain of the
signal associated tox: a chain of tags. We note[[P ]] for the denotation of a processP . The synchronous
composition of processesP ||Q consists of the simultaneous solution of the equations inP and inQ. The
processP/x restricts the signalx to the lexical scope ofP .

[[P ||Q]] = [[P ]] || [[Q]] and[[P/x]] = [[P ]]/x = {c ≤ b/{x} | b ∈ [[P ]]}

An equationx := y f z denotes a relation between the input signalsy andz and an output signalx by a
combinatorf . An equation is usually a ternary and infixed relation notedx := y f z but it can in general
be anm + n-ary relation noted(x1, . . . xm) := f(y1, . . . yn).
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Native combinators SIGNAL requires four primitive combinators to perform delayx := y$1 init v,
samplingx := y when z, mergex = y default z and specify scheduling constraintsx → y when ^z,
Figure 8. The equationx := y$1 init v initially defines the signalx by the valuev and then by the
previous value of the signaly. The signaly and its delayed copyx := y$1 init v are synchronous: they
share the same set of tagst1, t2, . . . . Initially, at t1, the signalx takes the declared valuev and then, at
tagtn, the value ofy at tagtn−1.

[[x→ y when ^z]]={b ∈ B|x,y,z | ∀t ∈ tags(b(x)) ∩ tags(b(y)) ∩ tags(b(z)), xt → yt}

[[x := y$1 init v]]=

{
b ∈ B|x,y

∣∣∣∣∣tags(b(x)) = tags(b(y)) = C ∈ C, b(x)(min(C)) = v

∀t ∈ C \min(C), b(x)(t) = b(y)(predC(t))

}

[[x := y when z]]=

{
b ∈ B|x,y,z

∣∣∣∣∣tags(b(x)) = {t ∈ tags(b(y)) ∩ tags(b(z)) | b(z)(t) = true }
∀t ∈ tags(b(x)), b(x)(t) = b(y)(t) ∧ yt → xt ∧ zt → xt

}

[[x := y default z]]=

b ∈ B|x,y,z

∣∣∣∣∣∣∣
tags(b(y)) ∪ tags(b(z)) = tags(b(x)) ∈ C
∀t ∈ tags(b(y)), b(x)(t) = b(y)(t) ∧ yt → xt

∀t ∈ tags(b(x))\tags(b(y)), b(x)(t) = b(z)(t) ∧ zt → xt


Figure 8. Semantics of polychronous operators

The equationx → y when ^z forcesx to occur beforey whenz is present. In the equationy →
x when ^z, for instance, there is no scheduling relation required fromx to y unless bothx, y, z are
present, e.g. at tagt.

y •t1,v1 •t2,v2 •t3,v3 . . .

(x := y$1 init v) x •t1,v •t2,v1 •t3,v2 . . .

y • • •t . . .
↓

(y → x when ^z) x • •t . . .

z • •t . . .

The equationx := y default z definesx by y wheny is present and byz otherwise. Ify is absent and
z present withv1 at t1 thenx holds(t1, v1). If y is present (att2 or t3) thenx holds its value whetherz
is present (att2) or not (att3). The equationx := y when z definesx by y whenz is true (and bothy and
z are present);x is present with the valuev2 at t2 only if y is present withv2 at t2 and if z is present at
t2 with the value true. When this is the case, one needs to schedule the calculation ofy andz beforex,
as depicted byyt2 → xt2 ← zt2 .

y • •t2,v2 . . .
↓

(x := y when z) x •t2,v2 . . .
↑

z • •t1,0 •t2,1 . . .

y •t2,v2 •t3,v3 . . .
↓ ↓

(x := y default z) x •t1,v1 •t2,v2 •t3,v3 . . .
↑

z •t1,v1 • . . .

Syntax and semantics of clocks In SIGNAL , the presence of a value along a signalx is the proposition
noted^x that is true whenx is present and that is absent otherwise. The syntax of clock expressionse and
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clock relationsE is a particular subset of SIGNAL that is defined by the induction grammar of Figure 9.
The clock expression̂x can be defined by the boolean operationx = x (i.e.y := ^x=defy := (x = x)).
Referring to the polychronous model of computation, it represents the set of tags at which the signal
holds a value. Clock expression naturally represent control, the clockwhenx represents the time tags
at which the boolean signalx is present and true (i.e.y := whenx=defy := true whenx). The clock
when notx represents the time tags at which the boolean signalx is present and false. We write0 for the
empty clock (the empty set of tags). A clock constraintE is a SIGNAL process. The constrainte^= e′

synchronizes the clockse ande′. It corresponds to the process(x := (e = e′))/x. CompositionE ||E′

corresponds to the union of constraints and restrictionE/x to the existential quantification ofE by x.

e ::= ^x | whenx | when notx | e ^+ e′ | e ^- e′ | e ^* e′ | 0 (clock expression)

E ::= () | e^= e′ | e^<e′ | x→ y when e | E ||E′ | E/x (clock constraint)

Figure 9. Clock and scheduling constraints

Scheduling constraints are transitive and distributive w.r.t. clocks:x → y when e || y → z when e′

impliesx→ z when e ^* e′ andx→ y when e ||x→ y when e′ impliesx→ y when e ^+ e′. Each process
P corresponds to a clock constraintE satisfying[[P ]] ⊆ [[E]] by the inference systemP : E of Figure 10
(we writex→ y for x→ y when ^x).

x := y$1 init v : ^x^= ^y

x := y when z : ^x^= ^ywhen z || y → x when z

x := y default z : ^x^= ^y ^+ ^z || y → x || z → x when (^z ^- ^y)

P : E Q : E′

P ||Q : E ||E′

P : E

P/x : E/x

Figure 10. Inference system

Hierarchization The clock and scheduling constraintsE of a processP hold the necessary information
to decide the property of endochrony [22]. The process accepts flow-equivalent inputsx andy (left).
Inputs are processed byp in clock equivalent ways (middle) so as to produce the same outputs in the
same order at clock-equivalent rates (right).

x :• • •
↘ ↓ ↘

y : •••• •

input

buffer

• • •
↓ ↓ ↓
• • • • •

endochronous

processp
• • • : z

x :• • •
↘ ↘ ↘

y : •• • • •

input

buffer

• • •
↓ ↓ ↓
• • • • •

endochronous

processp
• • • : z

Figure 11. Endochrony: from flow-equivalent inputs to clock-equivalent outputs
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A process is said endochronous iff, given a setI ⊂ vars(p) of external input signals, it has the
capability to reconstruct a unique synchronous behavior (up to clock-equivalence). Formally,p is en-
dochronous iff there existsI ⊂ vars(p) such that∀b, c ∈ p, (b|I)≈(c|I) ⇒ b ∼ c. The behavior of an
endochronous processp is depicted in Figure 11.

Clock constraints determine the order� in which events are processed endochronously, defini-
tion 3.1. Rule1 defines equivalence classes for signals of equivalent clocks. Rule2 constructs elementary
partial orders relations: the clockwhenx is smaller than̂ x. Rule3 defines the insertion of a partial or-
der of maximume3 under a clocke � e3. The insertion algorithm, specified in [3], yields a canonical
representation of the corresponding partial order by observing that there exists a unique minimum clock
e′ belowe such that3 holds. We writeE ⇒ E′ iff E′ is a proposition that is deductible fromE in the
semi-lattice of clocks.

E is hierarchical iff its clock relation� has a minimum, writtenmin� E ∈ vars(E), so that∀x ∈
vars(E),∃y ∈ vars(E), y � x. H is acyclic iff E ⇒ x → x when e implies E ⇒ e^=0 (for all
x ∈ vars(E)). In [22], we show that ifP : E and ifE is acyclic and hierarchical, thenP is endochronous.

Definition 3.1. The partial order� of E is the largest relation satisfying

1. if E ⇒ ^x^= ^y thenx � y (andy � x).

2. if E ⇒ ^x^= when y or E ⇒ ^x^= when not y theny � x.

3. if y � x � w andH ⇒ ^z = ^yf^w for anyf ∈ { ^+ , ^* , ^- } thenx � z.
x andy are equivalent, writtenx≺�y, iff x � y andy � x.

Example The implications of definition 3.1 can be outlined by considering a simple SIGNAL program,
Figure 12, left. Processbuffer implements two functionalities. One is the processcurrent. It defines
a cell in which values are stored at the input clock^i and loaded at the output clock̂o. cell is a
predefined SIGNAL operation defined by:

x := y cell z init v
def= (m := x$1 init v ||x := y defaultm || ^x^= ^y ^+ ^z) /m

The other functionality is the processalternate which desynchronizes the signalsi ando by synchro-
nizing them to the true and false values of an alternating boolean signalb.

Clock inference (Figure 12, middle) applies the clock inference system of Figure 10 to the process
buffer to determine three synchronization classes. We observe thatb, c b, zb, zo are synchronous
and define the master clock synchronization class ofbuffer. There are two other synchronization
classes,c i andc o, that corresponds to the true and false values of the boolean flip-flop variableb,
respectively. Recalling Definition 3.1, we write:

b≺�c b≺�zb≺�zo andb � c i≺�i andb � c o≺�o

This defines three nodes in the control-flow graph of the generated code, Figure 12, right. At the main
clock c b, b andc o are calculated fromzb. At the sub-clockb, the input signali is read. At the
sub-clockc o the output signalo is written. Finally,zb is determined. Notice that the sequence of
instructions follows the scheduling constraints determined during clock inference.
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process buffer = (? i ! o)
(| alternate (i, o)
| o := current (i)
|) where

process alternate = (? i, o ! )
(| zb := b$1 init true
| b := not zb
| o ^= when not b
| i ^= when b
|) / b, zb;

process current = (? i ! o)
(| zo := i cell ^o init false
| o := zo when ^o
|) / zo;

(| c_b ^= b
| b ^= zb
| zb ^= zo
| c_i := when b
| c_i ^= i
| c_o := when not b
| c_o ^= o
| i -> zo when ^i
| zb -> b
| zo -> o when ^o
|) / zb, zo, c_b,

c_o, c_i, b;

buffer_iterate () {
b = !zb;
c_o = !b;
if (b) {
if (!r_buffer_i(&i))
return FALSE;

}
if (c_o) {
o = i;
w_buffer_o(o);

}
zb = b;
return TRUE;

}

Figure 12. Specification, clock analysis and code generation

Some more concrete syntax In addition to the core syntax of SIGNAL presented so far, we make
extensive use of process declarations and partial equations for the purpose of modeling our case study. In
SIGNAL , a partial equationx ::= y f z when e is the partial definition of the variablex by the operation
y f z at the clock denoted by the expressione. The default equationx ::= defaultvalue v defines
the value of the variablex when it is present but no corresponding partial equationx ::= y f z when e
applies (becausee is absent). Letx be a variable defined usingn partial equations and a default valuev:

x ::= x1 when e1 || . . . ||x ::= xn when en ||x ::= defaultvalue v

Once parsed, the SIGNAL compiler processes this definition by first checking the clock expressions
e1, . . . en mutually exclusive and then handling the definition as the equivalent equation:

x := (x1 when e1) default . . . default (xn when en) default v

In SIGNAL , the declaration of a processP of namef , input signalsx1, . . . xm, output signalsxm+1, . . . xn

is noted
process f = (? x1, . . . xm !xm+1, . . . xn) (|P |);

Once declared, processf may be called(ym+1, . . . yn) := f(y1, . . . ym) with its actual parameters
y1, . . . yn and behave asP with x1,...n substituted byy1,...n. A variant declaration is that of a foreign
functionf , accessible, e.g. from a separately compiled C library. Its call can be wrapped into SIGNAL

by declaring its interface and by declaring an abstractionE of its behavior (consists of scheduling and
clock constraints).

process f = (? x1, . . . xm !x) spec (|E |) pragmas C CODE”&x = f(&x1, . . . &xm)” end pragmas;

4. A Refinement Checking Methodology

The definition of the polychronous model of computation [22] accurately renders the synchronous hy-
pothesis implemented in the multi-clocked data-flow notation SIGNAL and relates it to architectures
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using communication with unbounded delay. In an embedded architecture, however, the flow of a signal
usually slides from another as the result of finite delays incurred by resource-bounded protocols, e.g.
fifo buffers. In this section, we seek towards a formulation of the formal properties implied by this
practice to check correctness of a concrete design refinement methodology.

Finite relaxation We start from the model of a one-placefifo buffer in SIGNAL , Figure 13, which
we will use to draw the spectrum of possible timing relations considered, modelled and checked in the
context of the present case study. The processing of processfifo is decomposed into two functionalities.
One is the processaccesswhich defines the necessary timing constraints on the input signali and output
signalo via the delayed value of the boolean signalb: fifo can accepts an input at the next time sample
iff b is true.

process access = (? i, o ! )
(| a := ^o default (not ^i) default b
| b := a$1 init false
| i ^= when b
| o ^= when not b
|) / a, b

process current = (? i ! o)
(| o:= (i cell ^o init false) when ^o
|)

process fifo = (? i ! o)
(| access(i, o) | o := current (i)
|)

Figure 13. A one-place first-in first-out buffer in SIGNAL

The other functionality offifo is the processcurrent of Figure 12. Figure 14 depicts the relation
of the signalsx andy and the cellm defined by the equationy := fifo(x).

y := fifo(x)

d(x) : • • •
↓ ↓ ↓

d(m) : • • •→•
↓ ↘ ↓

d(y) = c(x) : • • •

Figure 14. Relation between events through a one-place FIFO buffer

Definition 4.1 formalizes this relation and accounts for the behavior offifo by implying a series
of (reflexive-anti-symmetric) relationsvN (for N > 0) which yields the (series of) reflexive-symmetric
flow relations≈N to identify processes of same flows up to a flow-preserving first-in-first-out buffer
of sizeN . In Definition 4.1, we writepredC(t) (resp.succC(t)) for the immediate predecessor (resp.
successor) of the tagt in the chainC.

Definition 4.1. (finite relaxation)
The behaviorc is a1-relaxation ofx in b, writtenb vx

1 c iff vars(b) = vars(c) and there existsd/m ≥ b
such thatd/x = c/x and a chainC = tags(d(m)) = tags(d(x)) ∪ tags(c(x)) such that:
∀t ∈ C, t ∈ tags(d(x)) ⇒ d(m)(t) = d(x)(t)

t 6∈ tags(d(x)) ⇒ d(m)(t) = d(m)(predC(t))
t ∈ tags(c(x)) ⇒ c(x)(t) = d(m)(t)

and satisfying∀t ∈ tags(c(x))∃t′ ∈ {t, succC(t)}, c(x)(t′) = d(x)(t). We writeb v1 c iff b vx
1 c for

all x ∈ vars(b), and, for alln > 0, b vn+1 c iff there existsd such thatb v1 d vn c.
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Desynchronization Now, recall the processbuffer of Figure 12. It essentially differs from process
fifo by the policy implemented by processalternate. Processalternate synchronizesi ando to
the true and false values of an alternating signalb.

This guarantees the independence or exclusion between the clocks ofi ando. Each tagt′i of an event
alongo can only happen strictly between the tagsti and ti+1 of two consecutive events alongi, i.e.
ti < t′i < ti+1, and vice-versa.

process alternate = (? i, o ! )
(| b := not (b$1 init true)
| i ^= when b
| o ^= when not b
|) / b

process buffer = (? i ! o)
(| alternate (i, o)
| o := current (i)
|)

i: • •
b: • • • •
o: • •

Figure 15. A desynchronization buffer in SIGNAL

Definition 4.2. (desynchronization)
The behaviorc is a desynchronization ofb, written b @ c iff vars(b) = vars(c) and there existsd ≥ b
such that, for allx ∈ vars(b), d(x) = (ti, vi)i≥0, c(x) = (t′i, vi)i≥0 and, for alli ≥ 0, ti < t′i < ti+1.

The relation between Definitions 4.1 and 4.2 and the implementation offifo andbuffer of Fig-
ure 13 and 15are brought together by the following proposition. The proof of property(1) consists of
formulating the four requirements of definition 4.1 by observers written in SIGNAL and of checking them
against the model offifo. Property(2) is proved by observing that all tags ofi ando satisfyti < t′i by
induction oni and thatti andt′i form two disjoint sub-chains of the domain ofb.

Proposition 4.1.

(1) ∀b ∈ [[x := fifo(y)]], [z 7→ b(y)] vz
1 [z 7→ b(x)]

(2) ∀b ∈ [[x := buffer(y)]], [z 7→ b(y)] @z [z 7→ b(x)]

Formal properties The series of relations(≈n)n≥0 defines a spectrum between synchrony and asyn-
chrony that can be modeled using the SIGNAL formalism. It is hence tempting to interpret the asyn-
chronous partial-orderv as the (inaccessible) limit or union∪N≥0 vN of this series.

Lemma 4.1.
- b ∼ b′ impliesb ≈1 b′,
- b ≈n b′ impliesb ≈ b′, for all n > 0
- b ≈m b′ ≈n b′′ impliesb ≈m+n b′′, for all m andn

Instead, we focus on the largest equivalence relation that can be modeled using SIGNAL . It consists
of behaviors equal up to a timing deformation performed by a finite FIFO protocol.

Definition 4.3. (finite flow-equivalence)
b andc are finitely flow-equivalent, writtenb ≈∗ c, iff there existsn > 0 andd s.t.d vn b andd vn c.
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We say that a processP is finitely flow-preserving iff given finitely flow-equivalent inputs, it can
only produce behaviors that are finitely flow equivalent. Example of finitely flow-preserving processes
are endochronous processes. An endochronous process which receives finitely flow equivalent inputs
produces clock-equivalent outputs.

Definition 4.4. (finite flow-preservation)
p is finitely flow-preservingwith I ⊂ vars(p) iff ∀b, c ∈ p, (b|I)≈(c|I)⇒ b ≈∗ c.

A refinement-based design methodology based on the property of finite flow-preservation consists of
characterizing sufficient invariants for a given model transformation to preserve flows.

Definition 4.5. (finite flow-invariance)
The refinement ofp by q is finitely flow-invariant, written p �∗ q, iff I ⊂ vars(p) = vars(q) and
∀(b, c) ∈ p× q, (b|I)≈(c|I)⇒ b ≈∗ c.

The property of finite flow-invariance is a very general methodological criterion. It is reflexive (p�∗

p) and transitive (p �∗ q �∗ r ⇒ p �∗ r) for all flow-preserving processes (p, q, r). For instance, it
can be applied to the characterization of correctness criteria for model transformations such as protocol
insertion or desynchronization.

Verification methodology Property 4.1 provides all necessary elements to define an observer giving
sufficient conditions for finite flow-preservation to hold and be provable by model checking. To this end,
we consider the template SIGNAL processobserver of Figure 16. It is parameterized by the notation
{P, Q} over two processes namedP andQ which we want to check finitely flow-equivalent.

process observer = {P, Q} (? i ! o)
(| o := fifo (P (buffer (i))) = fifo (Q (buffer (i))) |);

Figure 16. Observer function for the property of finite flow-equivalence

Theobserver receives an input signali. This input signal is used to generate two desynchronized
signals (i.e. satisfying the hypothesisb|i ≈ c|i) by using the processbuffer. The flowsb|i andc|i are
injected toP andQ and the outputs collected by usingfifo to avoid the synchronization of the out-
puts performed by the comparison=. If the output of theobserver is always true then the equality
is an invariant. For the sake of simplicity, processobserver is displayed Figure 16 for two processes
P andQ that have only one input and one output signal and with afifo buffer of length1. Extend-
ing theobserver to accept processes withm inputs,n outputs and a buffer of lenghtk is obtained
by structural induction starting fromfifo and buffer. Theorem 4.1 formalizes the implication of
processobserver for refinement checking by considering flow-preserving processesP andQ of same
cardinality i.e.vars(P ) = vars(Q) andin(P ) = in(Q).

Theorem 4.1. (refinement checking)
Let P andQ be finitely flow-preserving processes of same cardinalitym = |in(P )| = |in(Q)|. If, for all
b ∈ [[x := observer{P, Q}(y1, . . . ym)]] and, for allt ∈ tags(b(x)), b(x)(t) = true , thenP �∗ Q.
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Let p = [[P ]] andq = [[Q]] be two flow-preserving processes and letI = in(p) = in(q) be the input
signals. By definition of processobserver, Figure 16, and by Property 4.1, we have:

(1) : ∀b ∈ B|I , ∀(c, d) ∈ p× q, b @I c|I ∧ b @I d|I ⇒ c ≈1 d

By hypothesis,p andq are both finitely flow-preserving. By definition 4.4, this requires thatc|I ≈ d|I
impliesc ≈∗ d for all (c, d) ∈ p2 as well as all(c, d) ∈ q2. Applied to(1), this hypothesis means that
c|I ≈ d|I also impliesc ≈1 d for all (c, d) ∈ p × q. By lemma 4.1, this yields the result expected in
Theorem 4.1, asc ≈1 d impliesc ≈∗ d.

5. Formal Methods for Refinement-Based Besign inSPECC

The model and method presented in Sections 2 and 4 are applied to checking refinements between design
abstraction-levels correct. Section 5.2 proposes a technique to automatically represent SPECC programs
in the POLYCHRONY workbench. Section 5.3 applies the methodology of Section 4 to formally establish
the correctness of design refinements (Figure 17). We consider a simple SPECC programming example
as case study to illustrate our methodology. It demonstrate the usability of the POLYCHRONY workbench
to provide the needed model, method and tool to automatically derive conditions on specifications, veri-
fiable by static checking or model checking, and under which the refinement of a high-level specification
by its lower-level implementation can be formally checked, in a manner that is independent of a particular
formalism (we consider SPECC in [36], JAVA in [35], SYSTEMC in [37]).
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Figure 17. Checking conformance of a design refinement

Larger case studies applied to concrete examples (e.g. a finite input response filter and an ARM bus)
are currently under way to demonstrate the capability of our technique to provide modular verification
and an environmnent for co-simulation. In particular, modular verification is envisaged by considering
the verification of a property in a system by checking it against the model of the very components that
affects it while considering a static abstraction (in terms of clock and scheduling constraints) of all
other components in the system under validation. Cosimulation is being investigated by considering the
controller synthesis techniques provided in the POLYCHRONY workbench and with the aim of applying
them to the generation of optimized and control-sensitive simulators for large SYSTEMC designs.

5.1. Refinement-Based Design inSPECC

The SPECC system-level design methodology is depicted in Figure 18. It is based on the concept of
refinement: an initial system model is gradually refined through transformations performed at several
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levels of abstraction: specification, architecture, communication, and implementation. System design
starts with a set of requirements and constraints, both in terms of functionality and quality, possibly
captured in different models of computation.

The specification level describes the system functionality in a unified way as a starting point for
system synthesis. At the architecture level, the system functionality is partitioned and partitions are
assigned to different components. In the process, the computational parts of the system are ordered
based on execution times and a scheduling of computation on each component. At the communication
level, components are refined into bus-functional representations, which accurately describe the timing
of events on the wires of the busses. Finally, at the implementation level, the components are defined in
terms of their register-transfer or instruction-set architecture.

Figure 18. SPECC design methodology [15]

5.2. ModelingSPECC Behaviors in SIGNAL

The formal grammar of SPECC programs under consideration, Table 19, is represented in static single-
assignment intermediate form akin to that of the Tree-SSA package of the GCC project [34]. SSA
provides a language-independent, locally optimized intermediate representation (Tree-SSA currently ac-
cepts C, C++, Fortran 95, and Java inputs) in which language-specific syntactic sugar is absent. SSA
transforms a given programming unit (a function, a method or a thread) into a structure in which all
variables are read and written once and all native operations are represented by3-address instructions.
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An intermediate representation A programpgm consists of a sequence of labeled blocksL:blk . Each
block consists of a labelL and of a sequence of statementsstm terminated by a return statementrtn. In
the remainder, a block always starts with a label and finishes with a return statement:stm1;L:stm2 is
rewritten asstm1; gotoL;L:stm2. A wait is always placed at the beginning of a block:stm1; wait v;
stm2 is rewritten asstm1; gotoL; L:wait v; stm2. Block instructions consist of native method invo-
cationsx = f(y∗), lock monitoring and branchesifx gotoL. Blocks are returned from by either
a gotoL, a return or an exceptionthrowx. The declarationcatchx fromL1 toL2 usingL3 that
matches an exceptionx raised at blockL1 activates the exception handlerL3 and continues at blockL2.

(program) pgm ::= L:blk | pgm; pgm
(instruction)stm ::= x = f(y∗) (invoke)

| waitx (lock)

| notifyx (unlock)

| ifx gotoL (test)

(block) blk ::= stm; blk | rtn
(return)rtn ::= gotoL (goto)

| return (return)

| throwx; (throw)

catchx fromL toL usingL (catch)

Figure 19. SSA intermediate representation for SPECC programs

We depict the structure of the SSA for a typical SPECC program by considering the core of the EPC,
Figure 20. The behaviorones counts the number of bits set to1 in a bit-arraydata. It consists of three
blocks. The block labeledL1 waits for the lockistart before initializing the local state variableidata
to the value of the input signaldata andicount to 0. LabelL2 corresponds to a loop that shiftsidata
right and adds its right-most bit toicount until termination (conditionT2). Finally, in the blockL3,
icount is sent to the signalocount andidone is unlocked before going back toL1.

while true {
wait (istart);
idata = data;
icount = 0;
while (idata != 0) {

icount += (idata & 1);
idata >>= 1; }

ocount = icount;
notify (idone); }

L1: wait (istart);
idata = data;
icount = 0;
goto L2;

L3: ocount = icount;
notify (idone);
goto L1;

L2: T1 = idata;
T2 = T1 == 0;
if T2 goto L3;
T3 = icount;
T4 = T1 & 1;
icount = T3 + T4;
idata = T1 >> 1;
goto L2;

Figure 20. From SPECC to static single assignment

Translation algorithm The functionI[[pgm]], Table 22, implements the translation from SSA to SIG-
NAL . It was first developed for the JIMPLE intermediate representation of JAVA [35], then redesigned
and adapted to the wider spectrum of programming languages admitting the SSA intermediate represen-
tation [34] and its used exemplified for SYSTEMC in [37].

To each block of labelL ∈ Lf , the functionI[[pgm]] associates aninput clockxL and anoutput clock
xexit

L . The clockxL is true iff L has been activated in the previous transition. The boolean signalxexit
L
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is true iff execution of blockL is terminates. The default activation condition of a block is hencexL$1
(equation(1) of Table 22).

For a return instruction or for a block, functionI returns a typeP . For a block instructionstm,
functionI[[stm]]e1

L = 〈P 〉e2 takes three arguments: an instructionstm, the labelL of the block it belongs
to, and an input clocke1. It returns the typeP of the instruction and its output clocke2. The output clock
of stm corresponds to the input clock of the instruction that immediately follows it in the execution
sequence of the block.

For instance, consider blockL2 of behaviorones, Figure 21. The instructionT1 = idata, left, is
associated with the partial equationT1 ::= idata$1 when L2$1, right. It means that, if the labelL2 is
being executed, thenT1 is equal toidata$1. Next, consider instructionif T2 goto L3. It corresponds
to the partial equationL3 ::= true when T2. It means that control is passed toL3 whenT2 is true.
Instructions that follow are conditioned by the negativenot T2 to means: ”in the blockL2 and not in its
branch going toL3”.

L2: T1 = idata;
T2 = T1 == 0;
if T2 goto L3;
T3 = icount;
...

T1 ::= idata$1 when L2$1
| T2 ::= T1 = 0 when L2$1
| L3 ::= true when T2
| T3 ::= icount$1 when not T2
...

Figure 21. From SSA to SIGNAL

Rules(1− 2) are concerned with the iterative decomposition of a programpgm into blocksblk and
with the decomposition of a block intostm andrtn instructions. In rule(2), the input clocke of the
block stm; blk is passed tostm. The output clocke1 of stm becomes the input clock ofblk .

(1) I[[L:blk ; pgm]] =I[[blk ]]xL$1
L || I[[pgm]]

(2) I[[stm; blk ]]eL=let 〈P 〉e1 = I[[stm]]eL inP || I[[blk ]]e1
L

(3) I[[x = f(y1...n)]]eL=〈E(f)(x1...ne)〉e

(4) I[[ifx gotoL1]]eL=〈y := x when e ||xL1 ::= true when y〉 not y〉
(5) I[[notifyx]]eL=〈x ::= not x$1 when e〉e

(6) I[[waitx]]eL=〈 y := (x = x$1) when e ||xL ::= true when y

|| z := true when y default false 〉z$1

(7) I[[gotoL1]]eL=xexit
L ::= true when e ||xL1 ::= true when e

(8) I[[return]]eL=xexit
L ::= true when e ||xexit

f ::= true when e

(9) I[[throwx]]eL=xexit
L ::= true when e ||x ::= true when e

(10) I[[catchx fromL toL1 usingL2]]eL= xL2 ::= true when ^x whenxexit
L

||xL1 ::= true whenxexit
L2

Figure 22. Modeling of SSA expressions into SIGNAL

Rule (3) is concerned with the translation of native and external method invocationsx = f(y1...n).
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The generic type off is taken from an environmentE(f). It is given the name of the resultx, of the
actual parametersy1...n and of the input clocke to obtain the type ofx = f(y1...n).

For instance, Figure 23 depicts the translation of native operations in blockL2 of behaviorones. The
assignment oficount to the local variableT3 is translated by the partial equationT3 ::= icount$1
when not T2 which assigns the previous value oficount to the temporaryT3 at the clocknot T2 (i.e.
whenT1 is not0, Figure 21).

T3 = icount;
T4 = T1 & 1;
icount = T3 + T4;
idata = T1 >> 1;

T3 ::= icount$1 when not T2
| T4 ::= T1 & 1 when not T2
| icount ::= T3 + T4 when not T2
| idata ::= T1 >> 1 when not T2

Figure 23. Translating bative operations in SIGNAL

The input and output clocks of an instruction may differ. This is the case, rule(4), for anifx gotoL1

instruction in a blockL. Let e be the input clock of the instruction and define the fresh signal namey by
the equationy := x when e. Wheny is false, then control is passed to the rest of the block: the output
clock is not y. Otherwise, the control is passed to the blockL1 at the clocky. The wait-notify protocol,
rules(5− 6), is modeled using a boolean flip-flop variablex. Methodnotify, rule(5), defines the next
value of the lockx by the negation of its current value at the input clocke. Thewait method, rule(6),
activates its output clocky iff the value of the lockx has changed at the input clocke. Otherwise, control
goes back toL.

For example, consider the wait-notify protocol at the blocks labeledL1 andL3 in theones counter.
The wait instruction receives control at the clockxL1. If the value ofistart changes (i.e.when not T0)
thenicount andidata are initialized and the control is passed to the blockL2. Otherwise, at the clock
when T0, a transition back toL1 is scheduled.

L1: wait (istart);

...
L3: ocount = icount;

notify (idone);
goto L1;

T1 ::= istart = istart$1 when L1$1
| L1 ::= true when T1
| L1b ::= true when not T1
...

| ocount ::= icount$1 when L3$1
| idone ::= not idone$1 when L3$1
| L1 ::= true when L3$1

Figure 24. Model ofwait-notify in the EPC

All return instructions, rules(7 − 9), define the output clockxexit
L of the current blockL by their

input clock e. This is the right place to do that:e defines the very condition upon which the block
actually reaches its return statement. AgotoL1 instruction, rule(7), passes control to blockL1 uncon-
ditionally at the input clocke. A return instruction, rule(8), sets the exit clockxf to true at clock
e to inform the caller thatf is terminated. Athrowx statement in blockL, rule (9), triggers the ex-
ception signalx at the input clocke by x ::= true when e. The matchingcatch statement, of the
form catchx fromL toL1 usingL2 passes the control to the handlerL2 and then to the blockL1 upon
termination of the handler. This requires, first, to activateL2 from L whenx is present and then to pass
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control toL1 upon termination of the handler.

Completion Table 22 requires all entry clocksxL andxf to be simultaneously present when thef
is being executed. Each signalxL holds the valuetrue iff the block L is active during a transition
currently being executed. Otherwise,xL is set tofalse by L ::= defaultvalue false. The same
holds for local variablesT with the default equationT ::= defaultvalue T$1. The SIGNAL compiler
guarantees the completion of the next-state logic by aggregating partial equations.

L1 := true when (T1 default L3$1) default false
| L2 := true when (L1b$1 default not T3) default false
| L3 := true when T3 default false
| L1 ^= L2 ^= L3

Figure 25. Completion of the next-state-logic for the EPC

The translation technique proposed in [35, 37] is modular (block-wise), conceptually simple (one
equation perinstruction) and language-independent (SSA is the input formalism). The host formalism,
SIGNAL , supports a scalable notion and a flexible degree of abstraction. Notice that the structure of the
original program is represented by program labelsL which play an essential role during modeling as they
represent clocks, i.e. the data-structure used by the POLYCHRONY workbench to represent the control
flow of programs. This information is propagated during modeling, verification and transformation. As a
result, traceability is easily provided by this information to relate an error to its original block, in addition
to the name of all variables it implies.

5.3. A Case Study: the Even-Parity Checker

We focus on a simple SPECC programming example: an even-parity checker (EPC, figure 26), to il-
lustrate our refinement-based methodology. We shows how the specification of the EPC can be refined
toward a GALS implementation with the help of the tool POLYCHRONY, showing in what respects and at
which critical design stages formal methods matter for engineering its architecture. This example demon-
strates the capabilities of the polychronous model of computation of SIGNAL to provide formal modeling
and verification support for the capture of behavioral abstractions of high-level system descriptions.
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Figure 26. Functional architecture of an even-parity checker (EPC).

The even-parity checker (EPC), Figure 26, consists of three functionalities: an interface threadIO, a
master test threadeven and a slave counting threadones (gray elements are SPECC-specific). Numbers
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are sent fromIO to even via the input portIn. Then,IO notifiesstart to even which forwardsIn to
ones via thedata port. Upon notificationistart, ones counts the number of bits set to one indata
and returns it toeven via theocount port. Upon notificationidone, even forwards the result toIO via
portOut and notifiesdone.

5.3.1. Specification-Level Design inSPECC

In SPECC, the design level of specification defines the functionalities and behavior of a system composed
of hardware and software by means of parallel threads (calledbehaviors) of computations exchanging
data via ports and synchronized by wait and notify events. Behaviorones, Figure 27, first waits the event
istart before to load data from the input portdata into the variableidata. Then, it iteratively scans
idata to count the number of bits set to one in it. This is done by shifting the bits inidata right and by
comparing the right-most one to1. When the data is processed (it equals0 and there is no more bit to
shift and count) the internal counticount is returned to theocount port and the eventidone is notified.
The behavioreven passes values from portIn to portdata, notifiesistart, waitsidone, and returns
either0 (if ocount is odd) or1 (it is even) along the portOut before to notifyDone.

behavior ones (in unsigned int data,
in event istart,
out unsigned int ocount,
out event idone) {

void main (void) {
unsigned int idata;
unsigned int icount;
while (true) {

wait(istart);
idata = data;
icount = 0;
while (idata != 0) {
icount += idata & 1;
idata >> 1; }

ocount = icount;
notify(idone);

}}}

behavior even (in unsigned int In,
in unsigned int ocount,
in event start,
in event idone,
out unsigned int Out,
out unsigned int data,
out event istart,
out event done) {

void main(void) {
while (true) {
wait(start);
data = In;
notify(istart);
wait(idone);
Out = ocount & 1;
notify(done);

}}}

Figure 27. Specification-level design of the EPC in SPECC.

5.3.2. Model of the Specification-Level Design inSIGNAL

Figure 28 gives a model of behaviorones in SIGNAL . It displays partial equations obtained from the
translation algorithm of Figure 22. An endochronous SIGNAL program which implements the specifica-
tion model of the EPC is given Appendix A. It is obtained from Figure 28 by completion of the next-state
logics and by the synchronization of local variables.

In stateL1, behaviorones waits for istart. It receives it at clockwhen not T0 and initializes
idata to data, icount to 0 and steps to stateL2. While in stateL2 (at clockwhen not T2) it adds
the right-most bit ofidata to icount, shiftsidata right and goes back toL2. If idata is zero (at
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clock when T2), ones steps toL3, passes the value oficount to ocount, notifiesidone and goes to
L1. Processeven depicts a similar decomposition of the SPECC behavior in SSA form.

process ones = ()
(| T1 ::= istart = istart$1 when L1$1
| L1 ::= true when T1
| L2 ::= true when not T1
| idata ::= data$1 when L2$1
| icount ::= 0 when L2$1
| L3 ::= true when L2$1
| T2 ::= idata$1 when L3$1
| T3 ::= T2 = 0 when L3$1
| L4 ::= true when T3
| T4 ::= icount$1 when not T3
| T5 ::= T2 & 1 when not T3
| icount ::= T4 + T5 when not T3
| idata ::= T2 >> 1 when not T3
| L3 ::= true when not T3
| ocount ::= icount$1 when L4$1
| idone ::= not idone$1 when L4$1

| L1 ::= true when L4$1
|) / L1, L2, L3, L4, T1, T2,

T3, T4, T5, idata, icount;
process even = ()
(| T1 ::= start = start$1 when L1$1
| L1 ::= true when T1
| L2 ::= true when not T1
| data ::= In$1 when L2$1
| istart ::= not istart$1 when L2$1
| L3 ::= true when L2$1
| T2 ::= idone = idone$1 when L3$1
| L3 ::= true when T2
| L4 ::= true when not T2
| Out ::= ocount$1 & 1 when L4$1
| done ::= not done$1 when L4$1
| L1 ::= true when L4$1
|) / L1, L2, L3, L4, T1, T2;

Figure 28. Specification-level design of the EPC in SIGNAL .

5.3.3. Architecture-Level Design Refinement

The translation of the even-parity checker of Section 31 demonstrates the capability of SIGNAL to model
components for specification-level SPECC designs. The typical SPECC design-flow starts with the cap-
ture of IP-blocks represented asC functions and automatic partitioning according to an appropriate cost
function. After partitioning, double handshake protocols (message sequence below), or other appropriate
HW-SW protocols (request-acknowledge) are inserted between the functional units.

send recvIn - ready -

eReady-

data -

ack�

eAck�

¬ready-
eReady-

¬ack�

eAck� rdata-

channel ChMP() {
bool ready = false, ack = false;
event eReady, eAck;
unsigned int data;
void send (unsigned int in) {

data = in;
ready = true;
notify (eReady);
while (!ack) wait (eAck);
ready = false;
notify (eReady);
while (ack) wait (eAck);

}

unsigned int recv () {
unsigned int rtn;
while (!ready)
wait (eReady);

rtn = data;
ack = true;
notify (eAck);
while (ready)
wait (eReady);

ack = false;
notify (eAck);
return rtn;

}};

Figure 29. Implementation of a channel with double hand-shake in SPECC.
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At specification-level, data exchange between the behaviorsones andeven is performed by shared
variables and arbitrated by a wait-notify protocol. At architecture-level, this protocol is refined by a
double handshake protocol defined by the methodssend andrecv of the moduleChMP, figure 29. The
channel encapsulates the wait and notify operations performed in the specification model together with
locally shared variablesack andready.

5.3.4. Model of the Architecture Refinement inSIGNAL

The SIGNAL model of thesend method, Figure 30, of therecv method, of the architecture-layer re-
finement of the EPC, are obtained in the very same way as for the behaviorseven andones of the
specification level. Thesend method of theChMP module assigns the current value of the inputIn to
the shared variabledata, sets the sharedready flag to true and waits for the notificationeAck from the
recv process until the shared flagack becomes true. The same transaction is repeated to wait until the
transmission of its return data to ready a new transaction.

Processsend receives two parametersL1 andL7 in addition to its input dataIn. The boolean signal
L1 is true whensend receives control from its caller. The boolean signalL7 is true whensend returns
control to its caller. Appendix B gives the complete listing of thesend andrecv functionalities of
the channelChMP which were checked endochronous using the POLYCHRONY workbench to qualify for
validation using our refinement checking methodology.

process send = (? In, L1 ! L7)
(| L2 ::= true when L1$1
| data ::= In$1 when L1$1
| ready ::= true when L1$1
| eReady ::= not eReady$1 when L1$1
| T2 := ack$1 when L2$1
| L3 ::= true when not T2
| L4 ::= true when T2
| T1 := eAck = eAck$1 when L3$1
| L2 ::= true when not T1
| L3 ::= true when T1

| ready ::= false when L4$1
| eReady ::= not eReady$1 when L4$1
| L5 ::= true when L4$1
| T4 := ack$1 when L5$1
| L6 ::= true when T4
| L7 ::= true when not T4
| T3 := eAck = eAck$1 when L6$1
| L5 ::= true when not T3
| L6 ::= true when T3
|) / L2, L3, L4, L5, L6,

T1, T2, T3, T4;

Figure 30. Model of the architecture-level channel (send method) in SIGNAL .

5.3.5. Validation of the Specification-to-Architecture Refinement

The installation of a channel between the processeseven andones incurs an additional desynchroniza-
tion of the transmission between theIn andOut signals. Showing that the refinement of the EPC from
the specification level, processepc1, to the architecture level, processepc2, is correct requires checking
that the refinement is finitely flow-invariant:epc1�∗ epc2.

The verification of this property amounts to proving that, for all behaviorsb andc of epc1 andepc2,
flow equivalence of the input signalIn, i.e. b|In ≈ c|In implies flow equivalence of the output signal
Out, i.e. b|Out ≈ c|Out.

(1) : ∀b ∈ [[epc1]], ∀c ∈ [[epc2]], b|In ≈ c|In ⇒ b|Out ≈ c|Out
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Preliminary observations are in order to facilitate the proof of equation(1). The architecture model of the
EPC only differs from the specification model by the introduction of a channel in place of a wait-notify
protocol to synchronize concurrent accesses to shared variables. By contrast, the architecture model
epc2 uses the double handshake protocol of thesend andrecv functionality of the moduleChMP.

Figure 31 isolates the patternspecif that characterizes the wait-notify protocol in the specification
model. The variables of the EPC modelsspecif andarchi are interfaced to signalsIn andOut for the
purpose of verification. The producer and consumer processesprod1 andcons1 are defined by infinite
loops that wrap the patterns of interest.

process specif = (? boolean In
! boolean Out)

(| Out := cons1() | prod1(In) |)
where boolean istart init false,

data init false;
process prod1 = (? In !)
(| data := In default data$1
| istart := not istart$1 when ^In

default istart$1 |);

process cons1 = (? ! Out)
(| T1 := istart = istart$1 when L1$1
| L1 := true when (T1 default L2$1)

default false
| L2 := true when not T1 default false
| Out := data$1 when L2$1
| L1 ^= L2 ^= istart ^= data
|) where boolean L1 init true, L2, T1;
end;

Figure 31. Isolation of the synchronization protocol in the specification model

Figure 32 isolates the matching communication pattern of the architecture model wrapped in the
processarchi. In Figure 31, the presence of an inputIn triggers a wait-notify protocol that synchronizes
the transmission ofdata from even to ones. In Figure 32, this synchronization is embedded in the call
to thesend andrecv methods. Control to and fromsend andrecv is provided by the labelsL2 andL3.
The additional labelL1 closes the infinite loop.

process archi = (? boolean In ! boolean Out)
(| Out := cons2() | prod2(In) |)

where process cons2 = (? ! Out)
(| L2 := L1$1 init true
| Out := data$1 when L3$1
| L1 := true when L3$1

default false
| L1 ^= L2 ^= L3 ^= data
| (L3, data) := recv(L2)
|) where boolean L1, L2, L3, data; end;

process prod2 = (? In !)
(| data := In when L1$1 default data$1
| T1 := true when ^In when L1$1
| L1 := true when (not T1 default L3$1)

default false
| L2 := true when T1 default false
| L3 := send(data$1, L2)
| L1 ^= L2 ^= L3 ^= data
|) where boolean T1, L1 init true,

L2, L3, data; end;

Figure 32. Isolation of the synchronization protocol in the architecture model

Proving equation(1) reduces to showing that the desynchronization protocol introduced by module
ChMP preserves the flow of the original wait-notify protocol of the specification model. This proof is
done by checking that, given desynchronized input flowsb|In andc|In, the specification and architecture
modelsspec andarch provide equivalent flows along the outputidata

(2) : ∀b ∈ [[specif]], ∀c ∈ [[archi]], b|In ≈ c|In ⇒ b|Out ≈ c|Out
To formulate equation(2) in the model checker SIGALI , we consider a formulation of the protocol
that manipulates boolean dataIn andOut. This approximation still implies the expected property(2),
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since neitherIn nor Out interfere with control inspecif andarchi. We obtain the formulation of
the appropriate observer function (see appendix C). It is be checked invariant by SIGALI and yields the
expected proof of conformance, by application of Theorem 4.1.

(3) : cqfd := observer {specif, archi} (In)

5.3.6. Refinement of the Architecture Model Toward Implementation

The communication layer of the EPC, Figure 33, consists of a refinement of the data structures manipu-
lated in theChMP channel and of modeling (in SPECC) the behavior of the actual bus of the architecture
in place of the channel abstractionChMP. The model of the bus consists of the decomposition of the
methodssend andreceive into sub-processes that implement the busread andwrite methods.

Showing this refinement correct reduces to proving that the model of the channel’sChMP methods
send andrecv are flow-equivalent to the methodsread andwrite of the bus model. The control
structure of the bus model in SIGNAL is identical to that of the channel, except for the implementation
of the input/output integer signals as bit-vectors.

channel cBus() implements iBus {
unsigned bit[31:0] data; cSignal ready, ack;
void write (unsigned bit[31:0] wdata) {

ready.assign(1);
data = wdata;
ack.waitval(1);
ready.assign(0);
ack.waitval(0);

}

unsigned bit[31:0] read () {
unsigned bit[31:0] rdata;
ready.waitval(1);
rdata = data;
ack.assign(1);
ready.waitval(0);
ack.assign(0);
return data;

}}

Figure 33. Communication-level model of a bus in SPECC.

behavior ones(in,event,clk, ...) {
void main(void) {
unsigned bit[31:0] idata, icount;
enum state {S0, S1, S2, S3} state = S0;
while (1) {
wait(clk);
if (rst == 1b) state = S0;
switch (state) {
case S0: done = 0b;

ack_istart = 0b;
if (start == 1b) state=S1
else state=S0;
break;

case S1: ack_istart = 1b;

idata = inport;
icount = 0;
state = S2;
break;

case S2: icount = icount + idata & 1;
idata = idata >> 1;
if (idata == 0) state=S3
else state=S2;
break;

case S3: outport=icount;
done = 1b;
if (ack_idone == 1b) state=S0
else state=S3;
break;

Figure 34. RTL-level implementation of the EPC-core in SPECC.

Compared to the communication model of Figure 33, the RTL or implementation model of the EPC

in SPECC, Figure 34, consists of a cycle-accurate implementation of the EPC that is materialized the
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introduction of a master clockclk and of a reset signalrst together with the conversion of the EPC

communication-layer specification into finite-state machine code. The structure of theones thread itself
is close to the original one in SSA intermediate form. Each transition from a value of thestate variable
is guarded by an explicit synchronization to the simulation clockclk.

5.4. Conclusive Remarks

By considering a simple SPECC programming example, featuring all salient aspects of the language,
we demonstrated the capability of the POLYCHRONY workbench to model the functionalities and the
architecture of a system and to provide the necessary services to express model transformations and
check them correct. The methodology of finite-flow invariance we employ is directly derived from
previous work pertaining on the design of globally asynchronous locally synchronous architectures. The
present case study departs from the very spectrum of GALS design by showing that imperative programs
in the style of communicating sequential processes are equally covered. In other words, flow equivalence
does not define the spectrum of architectures that are covered by our methodological principles but the
very criterion for checking design refinements correct.

Naturally, other criteria can be designed and other properties checked. The POLYCHRONY work-
bench provides scalable abstraction of SPECC design for verification. Previous results and case studies
span from the use theorem-proving [19, 25, 20] to prove properties on concrete models, model check-
ing [6, 36] to prove properties on models abstracted by finite-state machines, static checking [26, 37] to
prove properties over state-less boolean model abstractions. POLYCHRONY further provides means to
optimally reuse, adapt, transform pre-defined system components and modules: hierarchization (com-
bines several threads into one), distributed protocol synthesis (split synchronous threads into a network
of communicating threads). Its current limitations are the absence of support for reasoning on dynamic
resources management (memory or threads) and the lake of connexions to other models of computation
(untimed, real-timed, continuous).

6. Related Works

Synchronous programming being a computational model which is popular in hardware design, and
desynchronization being a technique to convert that computational model into a more general, globally
asynchronous and locally synchronous computational model, suitable for system-on-chip design, one
may naturally consider investigating further the links between these two models understood as Ptolemy
domains [9] and study the refinement-based design of GALS architectures starting from polychronous
specifications captured from heterogeneous elementary components.

Models of computation The aim of capturing both synchrony and asynchrony in a unifying model of
computation is shared by several approaches: the interaction categories of Abramsky et al. in [1], the
communicating sequential processes of Hoare [17] and Kahn networks [18] (communicating data-flow
functions) that is one of the models supported by Ptolemy [21] and the methodology of latency insensitive
protocols of Carloni et al. [10] and its extension to real-time [4]. All related models can be categorized
as stratified, in the sense that they dissociate the semantics structure representing synchronous islands
(the predefinedpearlsor IPs) from the one representing asynchrony. For instance, the heterogeneous
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model of [4] is layered into a model of tag-less asynchrony and of tagged synchrony (where tags model
stuttering equivalence in a way akin to clock equivalence yet without scheduling). The polychronous
model of computation does not feature such a decoupling between its synchronous and asynchronous
structures.

Refinement-checking Most of the existing formal frameworks to refinement-checking, such as B [2],
Unity [11], CSP [17, 29], are essentially specification-based, in that modeling, transformation and ver-
ification are entirely envisaged within the framework of a formal notation and its companion methods
and tools. By contrast, our data-flow oriented approach to refinement-checking is novel and allows us
to combine a programatic approach (of SPECC) with the scalable modeling and verification techniques
of the polychronous model of computation: theorem-proving [19, 25, 20], model checking [6, 36], static
checking [26, 37]. Being combined to a language-independent translation technique enabling the cap-
ture of high-level system descriptions in general purpose languages such as C orJAVA , our workbench
departs from specification-oriented approaches, by combining software model-checking capabilities with
aggressive optimization services present in this workbench for the purpose of accelerated simulation and
synthesis.

7. Conclusions

Until now, the refinement of a system-level description toward its implementation, in SPECC or SYS-
TEMC was primarily envisaged as a manual process and proving conformance from the system-level ab-
straction to the implementation an unsolved issue. To solve it, we proposed a formal refinement-checking
methodology for system-level design formalized within the polychronous model of computation of the
multi-clocked synchronous formalism SIGNAL . We demonstrated the effectiveness of our approach by
the experimental case study of a SPECC programming example, showing the benefits of our approach to
give an accurate model of successive design abstractions of the system: functional, architecture, com-
munication. We introduced, proved and applied a refinement-checking criterion allowing for comparing
and validating behavioral equivalence relations between these successive refinements. Our methodology
relies on an automated modeling technique that is conceptually minimal and supports a scalable notion
and a flexible degree of abstraction. Our presentation targets SPECC yet with a generic and language-
independent method. Applications of our technique range from the detection of local design errors to the
compositional design refinement and conformance checking.
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A. Listing of the Specification Model of theEPC

process epc = (? boolean start; integer In ! boolean done; integer Out)
(| (idone, ocount) := ones (istart, data)
| (done, Out) := even(start, In)
|) where integer ocount init 0, data init 0;

boolean istart init false, idone init false;

process ones = (? boolean istart; integer data ! boolean idone; integer ocount)
(| T1 := istart = istart$1 when L1$1
| T2 := idata$1 when L3$1 default T2$1
| T3 := T2 = 0 when L3$1
| T4 := icount$1 when not T3 default T4$1
| T5 := X2(T2, 1) when not T3 default T5$1
| L1 := true when (T1 default L4$1) default false
| L2 := true when not T1 default false
| L3 := true when (L2$1 default not T3) default false
| L4 := true when T3 default false
| idata := data$1 when L2$1 default X1(T2, 1) when not T3 default idata$1
| icount := 0 when L2$1 default T4 + T5 when not T3 default icount$1
| ocount := icount$1 when L4$1 default ocount$1
| idone := not idone$1 when L4$1 default idone$1
| idata ^= icount ^= ocount ^= idone ^= istart ^= data

^= L1 ^= L2 ^= L3 ^= L4 ^= T2 ^= T4 ^= T5
|) where boolean L1 init true, L2 init false, L3 init false, L4 init false, T1, T3;

integer idata init 0, icount init 0, T2, T4, T5; end;

process even = (? boolean start; integer In ! boolean done; integer Out)
(| T1 := start = start$1 when L1$1
| T2 := idone = idone$1 when L3$1
| L1 := true when (T1 default L4$1) default false
| L2 := true when not T1 default false
| L3 := true when (L2$1 default T2) default false
| L4 := true when not T2 default false
| data := In$1 when L2$1 default data$1
| istart := not istart$1 when L2$1 default istart$1
| Out := X2(ocount$1, 1) when L4$1 default Out$1
| done := not done$1 when L4$1 default done$1
| data ^= istart ^= Out ^= done ^= L1 ^= L2 ^= L3 ^= L4
|) where boolean L1 init true, L2 init false, L3 init false, L4 init false, T1, T2; end;

function X1 = (? i1, i2 ! i3)
spec (| i1^=i2^=i3 | i1 --> i2 | i2 --> i3 |)
pragmas C_CODE "&i3 = &i1 >> &i2" end pragmas;

function X2 = (? i1, i2 ! i3)
spec (| i1^=i2^=i3 | i1 --> i2 | i2 --> i3 |)
pragmas C_CODE "&i3 = &i1 & &i2" end pragmas;

end;
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B. Listing of the Channel Model

module ChMP =
boolean ready init false, ack init false, eReady init false, eAck init false;
integer data init 0;

process send = (? In, L1 ! L7)
(| T1 := eAck = eAck$1 when L3$1
| T2 := ack$1 when L2$1
| T3 := eAck = eAck$1 when L6$1
| T4 := ack$1 when L5$1
| L2 := true when (L1$1 default not T1) default false
| L3 := true when (not T2 default T1) default false
| L4 := true when T2 default false
| L5 := true when (L4$1 default not T3) default false
| L6 := true when (T4 default T3) default false
| L7 := true when not T4 default false
| data := In$1 when L1$1 default data$1
| ready := true when L1$1 default false when L4$1 default ready$1
| eReady := not eReady$1 when (L1$1 default L4$1) default eReady$1
| L1 ^= L2 ^= L3 ^= L4 ^= L5 ^= L6 ^= L7
| L1 ^= ready ^= ack ^= eReady ^= eAck ^= data ^= In
|) where boolean L2, L3, L4, L5, L6, T1, T2, T3, T4; end;

process recv = (? L1 ! rtn, L7)
(| T1 := eReady = eReady$1 when L3$1
| T2 := not ready$1 when L2$1
| T3 := eReady = eReady$1 when L6$1
| T4 := not ready$1 when L5$1
| L2 := true when (L1$1 default not T1) default false
| L3 := true when (T2 default T1) default false
| L4 := true when not T2 default false
| L5 := true when (L4$1 default not T3) default false
| L6 := true when (T4 default T3) default false
| L7 := true when not T4 default false
| rtn := (data$1 when L4$1) default rtn$1
| ack := (true when L4$1) default (false when L7$1) default ack$1
| eAck := (not eAck$1 when (L4$1 default L7$1)) default eAck$1
| L1 ^= L2 ^= L3 ^= L4 ^= L5 ^= L6 ^= L7
| L1 ^= rtn ^= ack ^= eAck
|) where boolean L2, L3, L4, L5, L6, T1, T2, T3, T4; end;
end;
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C. Listing of the Observer Function

process observer = (? boolean In ! boolean cqfd)
(| cqfd := fifo (specif (buffer (In))) = fifo (archi (buffer (In)))
|) where

use ChMP;
use Fifo;

process specif = (? boolean In ! boolean Out)
(| Out := cons1() | prod1(In) |)
where boolean istart init false, data init false;
process cons1 = (? ! Out)
(| T1 := istart = istart$1 when L1$1
| L1 := true when (T1 default L2$1) default false
| L2 := true when not T1 default false
| Out := data$1 when L2$1
| L1 ^= L2 ^= istart ^= data
|) where boolean L1 init true, L2, T1; end;

process prod1 = (? In !)
(| data := In default data$1
| istart := not istart$1 when ^In default istart$1
|);

end;

process archi = (? boolean In ! boolean Out)
(| Out := cons2() | prod2(In) |)
where process cons2 = (? ! Out)
(| L2 := L1$1 init true
| Out := data$1 when L3$1
| L1 := true when L3$1 default false
| L1 ^= L2 ^= L3 ^= data
| (L3, data) := recv(L2)
|) where boolean L1 init true, L2, L3, data; end;

process prod2 = (? In !)
(| data := In when L1$1 default data$1
| T1 := true when ^In when L1$1
| L1 := true when (not T1 default L3$1) default false
| L2 := true when T1 default false
| L3 := send(data$1, L2)
| L1 ^= L2 ^= L3 ^= data
|) where boolean T1, L1 init true, L2, L3, data; end;

end;
end;


