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Abstract. Iterative arrays are one-dimensional arrays of interconnected inter-
acting finite automata. The cell at the origin is equipped with a one-way read-only
input tape. We consider iterative arrays as transducers. To this end, the cell at
the origin is additionally equipped with a one-way write-only output tape. The
families of transductions computed are classified with regard to the time allowed
to compute the input and the output, respectively. In detail, the time complexities
of real-time and linear-time are of particular interest, for which a proper hierarchy
is shown. In the second part of the paper, iterative array transducers are com-
pared with the conventional transducer models, namely, finite state transducers
and pushdown transducers. It turns out that all deterministic variants can be
simulated by iterative array transducers. Moreover, nondeterministic but unam-
biguous finite state transducers can be simulated as well. When considering time
constraints, incomparability results to almost all families are derived.

1. Introduction

Parallel processes and cooperating systems appear almost everywhere in to-
day’s world. However, the behavior of such systems, the interaction of different
components, or the predictability of the behavior in the future is far from being
completely understood. Iterative arrays (IA) are a model which allows to describe
massive parallel systems, since they are arrays of identical copies of deterministic
finite automata. Furthermore, the single nodes, except the node at the origin, are
homogeneously connected to both their immediate neighbors, and they work syn-
chronously at discrete time steps. The distinguished cell at the origin, which is
called the communication cell, is equipped with a one-way read-only input tape.

In connection with formal language recognition IA have been introduced in [5].
To recognize a formal language, every word is read symbolwise from the input tape
by the communication cell. An input is accepted if the communication cell enters an
accepting state during the course of its computation. The computational capacity
of IA has been widely studied in the literature and a recent survey may be found
in [12].

Computational models are not only interesting from the viewpoint of recognizing
some input, but also from the viewpoint of transforming some input into some
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output. For example, a parser for a formal language should not only return the
information whether or not the input word can be parsed, but also the parse tree in
the positive case. The simplest model in this context is the finite state transducer
which is a finite automaton with an output alphabet that assigns to each input
accepted at least one output word. Transductions computed by different variants
of such transducers are studied in detail in [2]. Similarly, pushdown transducers
are conventional pushdown automata where each input accepted is assigned to at
least one output. Deterministic and nondeterministic variants are investigated in [1].
Furthermore, characterizations of pushdown transductions as well as applications to
the parsing of context-free languages are given. In [9] the model of “one-way linear
iterative arrays” is introduced. In this model an input is read at one end of the array
and an output is written at the other end of the array. Additionally, the number of
cells is a priori defined as the length of the input, the information flow is only from
left to right, and the output does not depend on the fact whether or not the input
is accepted.

In this paper, we will consider IA not only as a language recognizing device but as
a language transforming device. Moreover, we are interested in the comparison with
the conventional transducer models. To this end, we enhance the definition slightly
by adding an output alphabet to an IA and, additionally, its communication cell is
equipped with a one-way write-only output tape. Since IA are deterministic devices
every input accepted corresponds to exactly one output. It is known that conven-
tional IA can accept rather complicated languages such as { ap | p is prime } [7] or
{ a2

n

| n ≥ 1 } [4] in real time. Thus, we are interested in fast transductions of IAs as
well and consider the time complexities of real-time and linear-time. Additionally,
we consider the time complexities of accepting the input and computing the output
separately.

The paper is organized as follows. In Section 2 we define iterative array trans-
ducers and their computed transductions with respect to the time complexities of
real-time and linear-time. The relations of the families of transductions with cer-
tain time constraints are investigated in Section 3. It turns out that there exists a
proper inclusion between the transductions where input and output are computed
in real time and those where input and output are computed in linear time. More-
over, the transductions where the input is computed in real time and the output is
computed in linear time are located properly in between both families. Section 4
is devoted to comparing iterative array transducers with finite state transducers. If
the given finite state transducer is deterministic, it can be simulated by an itera-
tive array transducer where input and output are computed in real time. This is
no longer true, if the given finite state transducer is nondeterministic, but unam-
biguous. However, such finite state transducers can be simulated by iterative array
transducers where the output is computed in linear time. Finally, we compare iter-
ative array transducers with pushdown transducers in Section 5. The main result is
that an iterative array transducer may need linear time to simulate a deterministic
pushdown transduction. On the other hand, there are iterative array transductions
where input and output are computed in real time which cannot be realized by any
nondeterministic pushdown transducer. Thus, several incomparability results can
be derived.
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2. Preliminaries and Definitions

We denote the rational numbers by Q, and the non-negative integers by N. For
the empty word we write λ, the reversal of a word w is denoted by wR, and for the
length of w we write |w|. The cardinality of a set M is denoted by |M |. We write ⊆
for set inclusion, and ⊂ for strict set inclusion.

A (one-dimensional) iterative array transducer is a linear array of finite au-
tomata, sometimes called cells, where each cell except the leftmost one is connected
to its both nearest neighbors. The distinguished leftmost cell is the so-called com-
munication cell that is connected to its neighbor to the right and to the input/output
supply. For convenience we identify the cells by non-negative integers.

Initially, all cells are in the so-called quiescent state. At each time step the
communication cell reads an input symbol and writes a possibly empty string of
output symbols. To this end, we have different local transition functions. All cells
but the communication cell change their state depending on their current state
and the current states of their neighbors. The state transition and output of the
communication cell depends on its current state, the current state of its neighbor,
and on the current input symbol (or if the whole input has been consumed on a
special end-of-input symbol). The cells work synchronously at discrete time steps.

· · ·s0 s0 s0 s0 · · ·

a1a2a3 · · · an⊳

b1b2b3 · · · bm

Figure 1: An iterative array transducer.

Definition 2.1. A deterministic iterative array transducer (IAT) is a system
〈S,A,B, F,⊳, s0, δ, δ0〉, where

(1) S is the finite, nonempty set of cell states,
(2) A is the finite, nonempty set of input symbols,
(3) B is the finite set of output symbols,
(4) F ⊆ S is the set of accepting states,
(5) ⊳ /∈ A is the end-of-input symbol,
(6) s0 ∈ S is the quiescent state,
(7) δ : S3 → S is the total local transition function for non-communication cells

satisfying δ(s0, s0, s0) = s0,
(8) δ0 : (A ∪ {⊳})× S2 → B∗ × S is the partial local transition function for the

communication cell.

Let M be an IAT. A configuration of M at some time t ≥ 0 is a description
of its global state which is a triple (wt, vt, ct), where wt ∈ A∗ is the remaining input
sequence, vt ∈ B∗ is the output emitted so far, and ct : N → S is a mapping
that maps the single cells to their current states. The configuration (w0, λ, c0) at
time 0 is defined by the input word w0, an empty output string, and the mapping
c0(i) = s0, 0 ≤ i, while subsequent configurations are chosen according to the global
transition function ∆. Let (wt, vt, ct), t ≥ 0, be a configuration. Then its successor
configuration (wt+1, vt+1, ct+1) = ∆(wt, vt, ct) is as follows.

ct+1(i) = δ(ct(i− 1), ct(i), ct(i+ 1)),
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for all i ≥ 1. Furthermore, let a = ⊳, wt+1 = λ if wt = λ, and a = a1, wt+1 =
a2 · · · an if wt = a1 · · · an. Then, for δ0(a, ct(0), ct(1)) = (v′, s) we have

ct+1(0) = s and vt+1 = vtv
′.

Thus, the global transition function ∆ is induced by δ and δ0. The IAT halts when
it enters a halting configuration, i.e., the transition function δ0 is not defined for
the current configuration. As usual we extend ∆ to sequences of configurations
and denote it by ∆∗. That is, ∆0 is the identity, ∆t = ∆(∆t−1), 1 ≤ t, and
∆∗ =

⋃
0≤t ∆

t. Thus, (wt, vt, ct) ∈ ∆∗(w, v, c) indicates that it is possible for M to
go from the configuration (w, v, c) to the configuration (wt, vt, ct) in a sequence of
zero or more steps.

An input w is accepted by an IAT M if at some time t during the course of
its computation the communication cell enters an accepting state. In most cases t
will be greater than |w|, but it is no restriction to accept earlier. An iterative array
transducer M transforms input words w ∈ A∗ into output words v ∈ B∗. For a
successful transformation M has to accept the input, otherwise the output is not
recorded:

M(w) = v,

if w is accepted by M and (λ, v, c′) ∈ ∆∗(w, λ, c0), and (λ, v, c′) is a halting con-
figuration. The transduction realized by M, denoted by T (M), is the set of pairs
(w, v) ∈ A∗ ×B∗ such that M(w) = v.

Let ti, to : N → N, n + 1 ≤ ti(n) ≤ to(n), be two mappings. If for all (w, v) ∈
T (M), the input w is accepted after at most ti(|w|) time steps and M halts after at
most to(|w|) time steps, then M is said to be of time complexity (ti, to) and we write
IATti,to . The family of transductions realized by IATti,to is denoted by T (IATti,to).
If ti, to are the function n+ 1, we call it real time and write rt. Since for nontrivial
computations an IAT has to read at least one end-of-input symbol, real time has to
be defined as (n+1)-time. If ti(n), to(n) are of the form r ·n, for some r ∈ Q, r ≥ 1,
we call it linear time and write lt.

If we build the projection on the first components of T (M), then the iterative
array transducer degenerates to an iterative acceptor (IA). The projection on the
first components is denoted by L(T (M)). In order to clarify the notation we give
an example.

Example 2.2. The transduction

Texpo = { (a2
n

, a1ba1ba2ba4b · · · a2
n−1

b) | n ≥ 1 }

belongs to T (IATrt,rt).
In [4], an iterative array has been presented that uses signals in order to construct

the mapping n 7→ 2n in real time, that is, the communication cell recognizes the time
steps 2n, n ≥ 1. At initial time the communication cell emits a signal which moves
with speed 1

3
to the right. In addition, another signal is emitted which moves with

maximal speed (speed 1). It bounces between the slow signal and the communication
cell. One can verify that the signal passes through the communication cell exactly
at the time steps 2n, n ≥ 1 (see Figure 2).

An IATrt,rt M which realizes Texpo basically simulates the time constructor
for 2n. It reads an input symbol a at every time step and writes the output ab
when it is in a distinguished state at times 2n, and outputs a otherwise. Finally, M
accepts and halts if and only if the end-of-input symbol appears while it is in a
distinguished state.
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Figure 2: Space-time diagram showing signals of a time-constructor for the function
n 7→ 2n.

One part of the computation of an IAT is the acceptance of the input. The pre-
vious example shows that iterative arrays can accept rather complicated languages
even in real time. The language { a2

n

| n ≥ 1 } is neither context free nor semilin-
ear. Here, we consider iterative arrays from the computational point of view, that is,
they are seen as massively parallel computing devices. So, we are mainly interested
in fast computations, that is, small time complexities. In the sequel we focus on
IATrt,rt, IATrt,lt, and IATlt,lt. For further reading on iterative language acceptors
we refer to [10, 12].

3. Computational Capacity of Iterative Array Transducers

Roughly speaking, any transduction computed by an iterative array can be di-
vided into two tasks. One is the acceptance of the input, the other one the transfor-
mation of the input into the output. Both tasks have to end successfully in order to
obtain a valid computation. In particular, this observation implies that a language,
which is not accepted by any iterative array in time ti, cannot be the projection on
the first components of any transduction belonging to any class T (IATti,to).

Lemma 3.1. The family T (IATrt,lt) is strictly included in T (IATlt,lt).

Proof. The language {a, b}∗{w | w ∈ {a, b}∗∧|w| ≥ 3∧w = wR } is not accepted by
any real-time IA [5], but can easily be accepted by some linear-time IA. Therefore,
the transduction { (vw, a|vw|) | v, w ∈ {a, b}∗ ∧ |w| ≥ 3 ∧ w = wR } is a witness for
the assertion.

Since the complexity of the projections on the first components of an iterative
array transduction is characterized by the power of iterative arrays when used as
language acceptors, the question for the possible complexity of the projections on
the second components follows immediately. It turns out that they can be arbitrarily
complex within the limits of being computable.

Theorem 3.2. Let L be an arbitrary recursively enumerable set. Then there is a

transduction T belonging to T (IATrt,rt) such that L is the projection on the second

elements of T .
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Proof. Since L is recursively enumerable we may assume that it is represented by
some deterministic one-tape one-head Turing machine M such that any accepting
computation has at least three and, in general, an odd number of steps. There-
fore, it is represented by an even number of configurations. Moreover, we may
assume that M cannot print blanks, and that a configuration is halting if and only
if it is accepting. A configuration of M can be written as a string of the form
Z∗SZ∗ where z1 · · · ziszi+1 · · · zn is used to express that M is in state s ∈ S, scan-
ning tape symbol zi+1, and z1 to zn is the support of the tape inscription. The
set of valid computations VALC(M) is now defined to be the set of words of the
form w1$w3$ · · · $w2k−1¢w

R
2k$ · · · $w

R
4 $w

R
2 , where wi are configurations, $ and ¢ are

symbols not appearing in wi, w1 is an initial configuration, w2k is an accepting
configuration, and wi+1 is the successor configuration of wi, for 1 ≤ i ≤ 2k.

For some u = w1$w3$ · · · $w2k−1¢w
R
2k$ · · · $w

R
4 $w

R
2 ∈ VALC(M) we define I(u)

to be the support of the tape inscription of w1, that is, the input word from L which
is accepted by M with the computation represented by u. In [12, 13] it is shown
that the set of valid computations is a real-time IA language.

Now, the transduction { (u, v) | u ∈ VALC(M), v = I(u) } can be realized by
some IATrt,rt that writes I(u) while reading the input prefix w1, and then continues
to simulate an acceptor for VALC(M) whereby the empty word is written in every
step.

Next we turn to separate the families T (IATrt,rt) and T (IATrt,lt). To this end,
we recall the capability of iterative arrays to simulate data structures as pushdown
stores, rings and queues without any loss of time. First we consider pushdown stores
(stacks). The top of the stack is simulated by the communication cell. Assume
without loss of generality that at most one symbol is pushed onto or popped from
the stack at each time step. Then it suffices to use three additional tracks for the
simulation. Let the three pushdown registers of each cell be numbered one, two, and
three from top to bottom, and suppose that the third register is connected to the
first register of the right neighbor. The content of the pushdown store is identified
by scanning the registers in their natural ordering beginning in the communication
cell, whereby empty registers are ignored. The pushdown store dynamics of the
transition function is defined such that each cell prefers to have only the first two
registers filled. The third register is used as a buffer (see Figure 3). Details of the
construction can be found in [3, 6, 11].

Lemma 3.3. The family T (IATrt,rt) is strictly included in T (IATrt,lt).

Proof. The transduction { (u, uR) | u ∈ {a, b}∗ } belongs to T (IATrt,lt). An IATrt,lt

realizing the transduction simulates a pushdown store. It first reads and pushes u
while the empty word is written. When the end-of-input symbol appears it accepts
in real time, pops uR from the stack and writes it with λ moves. Finally, it halts in
linear time when the stack is emptied.

In contrast to the assertion assume that some IATrt,rt M realizes the trans-
duction. On input u = u1u2 · · · un long enough M cannot write the first symbol
of uR before it reads the last symbol of u. Otherwise on input u = u1u2 · · · un−1u

′
n,

where un 6= u′
n, the same output prefix is written but (u1u2 · · · un−1u

′
n, unvn−1 · · · v1)

does not belong to the transduction, for any v1, v2, . . . , vn−1 ∈ {a, b}∗. This implies,
that uR has to be written after reading the last input symbol in the single remaining
step. If u has been chosen long enough, this is impossible. The contradiction shows
that the transduction does not belong to T (IATrt,rt).
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Figure 3: Principle of a pushdown store simulation. Subfigures are in row-major
order.

We conclude this section with an example that utilizes the capability of an IA to
simulate queues and rings without any loss of time (see [11]). The main difference
between pushdown stores and rings or queues is the way how to access the data.
A ring obeys the principle first in first out, that is, the first symbol of the stored
string is read and possibly erased while, in addition, a new symbol may be added
at the end of the string. So, a ring can write and erase at the same time. A queue

is a special case of a ring. It can either write or erase a symbol, but not both at the
same time.

Example 3.4. For any k ≥ 1, the transduction { (u, uk) | u ∈ {a, b}∗ } belongs to
T (IATrt,lt).

An IATrt,lt realizing the transduction simulates a ring. It first reads and stores u
where the first symbol of u in the ring is marked. When the end-of-input symbol
appears the transducer accepts in real time. Then it starts to read u successively
from the ring, where each symbol read is written and stored again into the ring. By
the marked symbol the transducer recognizes when u has completely been processed.
After the last process has been repeated k times it halts in linear time.

4. Comparison with and Simulation of Unambiguous Finite

State Transducers

A nondeterministic finite state (rational) transducer is basically a nondetermin-
istic finite automaton with output. At each time step the transducer reads a symbol
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or the empty word from the input tape in some internal state, goes nondeterministi-
cally into another state, and writes a symbol or the empty word to the output tape.
So, the partial transition function δ maps from S × (A ∪ {λ}) into the subsets of
S × (B ∪ {λ}). Alternatively, one could allow that longer input words may be read
and longer output words may be emitted at every time step. This generalization
yields the same family of transductions. Here, we use the single symbol mode which
is called standard form in [15]. A nondeterministic finite state transducer M is said
to be single valued (SFST) if for all (u1, v1), (u2, v2) ∈ T (M) either (u1, v1) = (u2, v2)
or u1 6= u2. An SFST is said to be unambiguous (UFST) if for all (u, v) ∈ T (M)
there is a unique computation transforming u into v. It has been shown in [14] that
every single-valued finite state transducer can be simulated by an unambiguous one.
A UFST is deterministic (DFST) if any computation is deterministic.

Since, in general, nondeterministic transducers can transform an input into dif-
ferent outputs, which is impossible for a deterministic device such as an IAT, we
consider single-valued transducers only. While deterministic and nondeterministic
finite automata accept the same family of languages, deterministic and nondeter-
ministic finite state transducers have different power.

Lemma 4.1. The family T (DFST) is strictly included in T (IATrt,rt).

Proof. The transduction of Example 2.2 does not belong to T (DFST) since the
language { a2

n

| n ≥ 1 } is not regular. On the other hand, any DFST can effectively
be converted into an equivalent DFST without λ-moves [14], which in turn can be
simulated in the communication cell of an IATrt,rt.

The next result shows that even the computational power of a massively parallel
iterative array cannot compensate the presence of a little bit of nondeterminism.

Lemma 4.2. The families T (SFST) and T (IATrt,rt) are incomparable.

Proof. As in the previous lemma the transduction of Example 2.2 does not belong
to T (SFST) since { a2

n

| n ≥ 1 } is not regular. So, it remains to be shown that
there is a transduction belonging to T (SFST) but not to T (IATrt,rt). To this end,
we use T = { (anc, an) | n ≥ 1 } ∪ { (and, bn) | n ≥ 1 } as witness. Transduction T
is realized by an SFST that guesses initially whether the last input symbol is a c or
a d. Accordingly it reads the input and emits a’s or b’s. If the guess was correct, the
input is accepted and the transduction is recorded, otherwise the input is rejected
and the transduction is not recorded.

Assume that some IATrt,rt M realizes T . On input anc, M cannot write the
first symbol a before it reads the last input symbol. Otherwise on input and always
a symbol a would be emitted. So, an has to be written after reading the last input
symbol in the sole remaining step. Since n can be arbitrary long, this is impossible.
The contradiction shows that the transduction does not belong to T (IATrt,rt).

Interestingly, if the iterative array is allowed to emit its output in linear time,
the presence of a little bit of nondeterminism can be compensated.

Theorem 4.3. The family T (SFST) is strictly included in T (IATrt,lt).

Proof. Let M = 〈S,A,B, F, s0, δ〉 be an unambiguous finite state transducer. By
the construction given in [14], we may assume that M works in real time.

The idea of the construction of an equivalent IATrt,lt M
′ is as follows. In order to

find out whether an input w is accepted byM, we first consider the nondeterministic
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finite automaton (without output) MNFA = 〈S,A, F, s0, δ
′〉 accepting L(T (M)). It

is converted into an equivalent deterministic finite automaton MDFA.
Automaton MDFA is simulated in the communication cell of M′ while reading

the input w. Additionally, w is stored in a stack-like manner with the help of two
tracks (see Figure 4). The IAT M′ accepts if and only if the simulation of MDFA

accepts.
In order to compute the output of M we have to determine the accepting com-

putation path of MNFA on input w. As a first step, MNFA is converted into an
equivalent right linear grammar GNFA with axiom X. The productions of GNFA have
three forms, namely,

(1) X → a[q′] for all transitions q′ ∈ δ′(s0, a) such that a ∈ A,
(2) [q] → a[q′] for all transitions q′ ∈ δ′(q, a) such that q ∈ S, a ∈ A,
(3) [q] → a for all transitions q′ ∈ δ′(q, a) such that q ∈ S, q′ ∈ F , and a ∈ A.

So, each production in GNFA corresponds to a transition rule of MNFA and, thus,
of M. For each transition rule there is a unique output z ∈ B∗ emitted when the
rule is applied.
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Figure 4: Schematic simulation of a single-valued finite state transducer on input
a1a2a3a4a5a6. The first six cells of a simulating IATrt,lt are depicted. In
the first six time steps the input a1a2a3a4a5a6 is read, and in the last
seven time steps the string z1z2z3z4z5z6 is emitted. The simulation of the
deterministic finite automaton MDFA in the communication cell is not
depicted.

When reading the end-of-input symbol, M′ starts to compute on an additional
track all nonterminals of GNFA from which suffixes of the input can be derived. More
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precisely, let w = a1a2 · · · an and, thus, in the first n cells of some track, say the first
one, anan−1 · · · a1 is stored. Now, the first cell computes the set V1 which includes
all nonterminals Y for which the production Y → an belongs to GNFA, and stores
it on a second track. Next, the second cell computes the set V2 which includes
all nonterminals Y for which the production Y → an−1[q

′] belongs to GNFA and [q′]
belongs to V1. In general, the ith cell (2 ≤ i ≤ n) computes the set Vi which includes
all nonterminals Y for which the production Y → an−i+1[q

′] belongs to GNFA and [q′]
belongs to Vi−1. Since each Vi with 1 < i ≤ n can be computed from Vi−1, an−i+1,
and GNFA, the sets V1, V2, . . . , Vn can be computed in the first n cells in n time
steps. It can be shown by induction that Y ∈ Vi if and only if there is a derivation
Y ⇒∗ anan−1 · · · an−i+1 of GNFA. Therefore, we obtain that w ∈ L(GNFA) if and only
if X ∈ Vn.

Now, we can extract the accepting computation path from the sets Vi moving
from right to left and starting in the nth cell as follows. First, some production
p1 : X → a1Y1 is chosen, where Y1 ∈ Vn−1. The next productions p2, p3, . . . , pn−1

are chosen as pi : Yi−1 → aiYi such that Yi ∈ Vn−i. Finally, pn is chosen as some
production pn : Yn−1 → an. The productions are stored on a third track of M′ and
their computation takes n time steps.

Finally, the information on the output zi of M which is associated with each
production pi has to be sent to the communication cell where it is emitted. To this
end, after having determined p1, the nth cell sends the information z1 to the left.
In the following time step, a signal e is sent to the left as well. The other cells i
send their information zi followed by e to the left when they receive the e from
their neighbor to the right. The computation halts when the signal e arrives in the
communication cell.

The overall simulation takes n time steps for reading the input, another n time
steps to compute the sets Vi, and further 2n time steps to transmit signal e from
the nth cell to the communication cell, that is, it takes linear time.

5. Iterative Arrays versus Pushdown Transducers

Similar as for finite state transducers, a nondeterministic pushdown transducer
can be seen as nondeterministic pushdown automaton with output. So, the partial
transition function δ maps from S× (A∪{λ})×G into the finite subsets of S×B∗×
G∗, where G denotes the stack alphabet. A nondeterministic pushdown transducer
M is said to be single valued (SPDT) if for all (u1, v1), (u2, v2) ∈ T (M) either
(u1, v1) = (u2, v2) or u1 6= u2. An SPDT is said to be unambiguous (UPDT) if
for all (u, v) ∈ T (M) there is a unique computation transforming u into v. As
opposed to finite state transducers, single-valued pushdown transducers have more
computational power than unambiguous pushdown transducers. For example, the
transduction T = { (anbnambm, a2m+2n) | m,n ≥ 1 } ∪ { (anbmambn, a2m+2n) | m,n ≥
1 } belongs to T (SPDT) but not to T (UPDT) because the projection on the first
components is known to be an inherently ambiguous context-free language [8]. A
UPDT is deterministic (DPDT) if any computation is deterministic, and it is real-
time deterministic (DPDTλ) if it is not allowed to move on empty input. Due to
known results on the recognizability of context-free languages by different types of
pushdown automata we have the proper hierarchy T (DPDTλ) ⊂ T (DPDT) ⊂
T (UPDT) ⊂ T (SPDT).
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We have already seen that the computational power of a massively parallel
iterative array cannot compensate the presence of a little bit of nondeterminism.
The same is true for the resource pushdown store equipped to a deterministic finite
state device.

Lemma 5.1. The family T (SFST) is incomparable with both families T (DPDTλ)
and T (DPDT).

Proof. Since there are deterministic real-time context-free languages that are not
regular there are transductions realized by some DPDTλ and DPDT but not by any
SFST.

Conversely, we define the homomorphism h : {a, b} → {a′, b′}∗ by h(a) = a′,
h(b) = b′, and consider the transduction T = { (uc, h(u)) | u ∈ {a, b}∗ } ∪ { (ud, u) |
u ∈ {a, b}∗ }. An SFST realizing T initially guesses whether the input ends with a c
or with a d. Dependent on the guess it then computes the transduction as expected
and records the transduction (accepts the input) when reading the last input symbol
if and only if the guess was correct.

Now assume in contrast to the assertion that T is realized by some DPDT M.
On input ud, M cannot write the first output symbol a or b before it reads the
last input symbol. Otherwise on input uc always a symbol a or b would be emitted.
So, u has to be written after reading the last input symbol in a sequence of λ-moves.
Next, a DPDT M′ is constructed as follows. It starts to simulate M until a d
appears in the input. Then it continues the simulation but, in addition, tries to
read the symbols it emits from the input. On input c, M′ rejects. So, M′ realizes
the transduction { (udu, u) | u ∈ {a, b}∗ }. This is a contradiction since L(T (M′))
is not context free.

In order to draw an almost complete picture we next show the incomparability of
transductions realizable by DPDT, UPDT or SPDT, and IATrt,rt or IATrt,lt, that is,
the computational power of a massively parallel iterative array cannot compensate
the presence of a pushdown store and vice versa.

Lemma 5.2. Each of the families T (DPDT), T (UPDT), and T (SPDT) is in-

comparable with both families T (IATrt,rt) and T (IATrt,lt).

Proof. The incomparability follows from the incomparability of the languages ac-
cepted by real-time iterative arrays and deterministic as well as nondeterministic
context-free languages [12].

However, by simulating pushdown stores as shown above IATrt,rt can simulate
DPDTλ, and IATlt,lt can simulate DPDT. Together with the previous incomparabil-
ity results proper inclusions follow. It is known that Turing machines can simulate
linear-time iterative arrays in quadratic time. On the other hand, it is not known
whether every Turing machine working in quadratic time can be simulated by a
linear-time iterative array. Since unambiguous context-free languages can be parsed
in quadratic time using a variant of Earley’s algorithm [1], it is an open problem to
find out whether this approach can be applied for simulating UPDT or SPDT on
linear-time iterative arrays.

Although nondeterministic devices in general have been excluded a priori, we
conclude the section with an example emphasizing that there are structurally inter-
esting “non-unary” transductions realizable by some IATrt,lt but not realizable by
any nondeterministic pushdown transducer.
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Example 5.3. The transductions { (ucv, vcu) | u, v ∈ {a, b}+} and { (uc, uRcu) |
u ∈ {a, b}+} belong to T (IATrt,lt), but cannot be realized by any, even nondeter-
ministic, pushdown transducer [1].

T (IATlt,lt) T (SPDT)

T (IATrt,lt) T (DPDT) T (UPDT)

T (IATrt,rt) T (DPDTλ) T (SFST)

T (DFST)

Figure 5: Summary of inclusions. Solid lines are proper inclusions, dashed lines are
conjectured inclusions. All families which are not linked by a path are
pairwise incomparable.
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[6] Čulik II, K., Yu, S.: Iterative tree automata. Theoret. Comput. Sci. 32 (1984) 227–247
[7] Fischer, P.C.: Generation of primes by a one-dimensional real-time iterative array. J. ACM

12 (1965) 388–394
[8] Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Reading (1978)
[9] Ibarra, O.H., Jiang, T., Wang, H.: Parallel parsing on a one-way linear array of finite-state

machines. Theoret. Comput. Sci. 85 (1991) 53–74
[10] Kutrib, M.: Automata arrays and context-free languages. In Where Mathematics, Computer

Science and Biology Meet. Kluwer Academic Publishers (2001) 139–148
[11] Kutrib, M.: Cellular automata – a computational point of view. In New Developments in

Formal Languages and Applications. Springer (2008) 183–227
[12] Kutrib, M.: Cellular automata and language theory. In Encyclopedia of Complexity and

System Science. Springer (2009) 800–823
[13] Malcher, A.: On the descriptional complexity of iterative arrays. IEICE Trans. Inf. Syst.

E87-D (2004) 721–725
[14] Weber, A., Klemm, R.: Economy of description for single-valued transducers. Inform. Comput.

118 (1995) 327–340
[15] Yu, S.: Regular languages. In Handbook of Formal Languages. Volume 1. Springer, Berlin

(1997) 41–110

This work is licensed under the Creative Commons Attribution-NoDerivs Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nd/3.0/.


