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Robin inequality for7—free integers
Patrick Soé Michel Planat

Abstract

Recall that an integer is-free iff it is not divisible byp’ for some primep. We give a method to check Robin
inequalityo(n) < e'nloglogn, for t—free integers: and apply it fort = 6, 7. We introduce¥,, a generalization
of DedekindV¥ function defined for any integer> 2 by

y(n) =n][A+1/p+--+1/p').
pln
If n is t—free then the sum of divisor functiann) is < ¥,;(n). We characterize the champions for~ ¥, (z)/x,
as primorial numbers. Define the rati® (n) := n]f;(ﬁ;n. We prove that, for alk, there exists an integer; (¢),
such that we hav&,(N,,) < e” for n > ny, whereN,, = [[,_, pi. Further, by combinatorial arguments, this can
be extended tdr:(N) < e” for all N > N,,, such thatn > ny(¢). This yields Robin inequality fot = 6, 7. For
t varying slowly with N, we also deriveR;(N) < e7.
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I. INTRODUCTION

The Riemann Hypothesis (RH), which describes the non trxemoes of Riemanr( function has
been deemed the Holy Grail of Mathematics by several autfidrg[7]. There exist many equivalent
formulations in the literature [5]. The one of concern her¢hiat of Robin[[12], which is given in terms
of o(n) the sum of divisor function

o(n) < e'nloglogn,

for n > 5041. Recall that an integer is—free iff it is not divisible byp' for some primep. The above
inequality was checked for many infinite families of integén [3], for instances—free integers. In the
present work we introduce a method to check the inequality-fdree integers for larger values ofand
apply ittot = 6,7. The idea of our method is to introduce the generalized Dedieki function defined
for any integert > 2 by
Uy(n) =n]J+1/p+---+1/p7).
pln
If ¢ = 2 this is just the classical Dedekind function which occurgha theory of modular forms [4], in
physics [10], and in analytic number theory [9]. By constiam, if n is t—free then the sum of divisors
functiono(n) is < ¥,(n). To see this note that the multiplicative functiersatisfies for any integer in
the rangel > a > 2
o) =1+p+---+p"

when the multiplicative functionr; satisfies
Uy(p*) =p* + - L 1 p

It turns out that the structure of champion numbers for ththmetic functionz — W,(z)/z is much
easier to understand than that:of- o(z)/z, the super abundant numbers. They are exactly the so-called
primorial numbers (product of first consecutive primes). p¥eve that, in order to maximize the ratio
R, it is enough to consider its value at primorial integers. ©tfus reduction is made, bounding above
unconditionallyR; is easy by using classical lemmas on partial eulerian ptsduée conclude the article

by some results on—free integersV > N,,, valid for ¢ varying slowly with V.
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I[I. REDUCTION TO PRIMORIAL NUMBERS
Define the primorial numben,, of indexn as the product of the first primes

n
N, = lem
k=1

so thatNy = 1, N; = 2, N, = 6,--- and so on. The primorial numbers (OEIS sequeA662110 [11])

play the role here of superabundant numbers$_in [12] or piisem [8]. They are champion numbers (ie

left to right maxima) of the function: — ¥, (z)/z :
Wy (m) < Py(n)

m

for anym < n. (1)

We give a rigorous proof of this fact.
Proposition 1: The primorial numbers and their multiples are exactly thanspion numbers of the
function z — U, (z)/x.

Proof: The proof is by induction om. The induction hypothesi#/,, is that the statement is true up
to N,,. Sloane sequenc&002110 begins1,2,4,6... so thatH, is true. Assuméef,, true. LetN,, < m <
N,+1 denote a generic integer. The prime divisorsmoére< p,,. ThereforeW,(m)/m < W,(N,)/N,, with
equality iff m is a multiple of N,,. Further¥,(N,,)/N,, < ¥;(N,+1)/Npy1. The proof of H,; follows.

[ |
In this section we reduce the maximization Bf(n) over all integersn to the maximization over
primorials.
Proposition 2: Let n be an integeg> 2. For anym in the rangeN,, < m < N,,; one hasRk;(m) <
Ri(N,).
Proof: Like in the preceding proof we have

U, (m)/m < W(N,)/N,.

Since0 < loglog N,, < loglogm, the result follows. [ |

[1l. W, AT PRIMORIAL NUMBERS

We begin by an easy application of Mertens formula.
Proposition 3: For n going tooc we have

lim Ry(N,) = %

Proof: Writing 1+1/p = (1—1/p?)/(1—1/p) in the definition of¥(n) we can combine the Eulerian
product for((t) with Mertens formula

[[a-1/p)7" ~ e log()

to obtain

o

W(N,) ~ @ log(pn).

Now the Prime Number Theorem|[6, Th. 6, Th. 420] shows that §(x) for x large, whered(x) stands
for Chebyshev’s first summatory function:

0(z) = Z log p.

p<w



This shows that, taking = p,, we have

Pn ~ 6(])”) = log(NTL)'

The result follows. ]
This motivates the search for explicit upper bounds#,,) of the form %(1 + o(1)). In that
direction we have the following bound.
Proposition 4: For n large enough to havg, > 20000, we have

< loglog N,, + ——).
N, ¢(t) (loglog Ingn>

We prepare for the proof of the preceding Proposition by ste®mmas. First an upper bound on a
partial Eulerian product froni [13, (3.30) p.70].
Lemma 1:Forz > 2, we have

H(l —1/p) ' <e'(logz + @)

p<wm

Next an upper bound on the tail of the Eulerian productdfa.
Lemma 2:Forn > 2 we have

[T -1/ < exp(2/pa).

p>p7L

Proof: Use Lemma 6.4 in([3] withc = p,. Bound Z2'~* above by2/x. [
Lemma 3:Forn > 2263, we have

0.1253
log py, -

log p, < loglog N,, +

Proof: If n > 2263, thenp,, > 20000. By [13], we know then that

1
log N,, > p,(1 — —).
0g Pl Spn)

On taking log's we obtain
0.1253
loglog N,, > log p,, — ,

n

upon using .
log(1 — g) > —0.1253x
for x small enough. In particular < 1/20000 is enough. [ |
We are now ready for the proof of Propositian 4.
Proof:
Write . .
\Ijt(Nn) :H].—l/pk;t _ Hp>pn(1_]‘/p) H<1_1/p>_1
Noo S 1= Ume ()
and use both Lemmas to derive
U, (N, 2/Pn 1
t( ) S eXp(’}/+ /p )(1ngn+ )
Ny ¢(t) log pn

Now we get rid of the firstog in the RHS by Lemmal3.



The result follows.

So, armed with this powerful tool, we derive the followingsificant Corollaries.

For convenience let 1.1253

log p,, loglog N,, "

Fn) =1+

Corollary 1: Let ny = 2263. Let n,(t) denote the least > ny such thate??- f(n) < ((t). For
n > ny(t) we haveR,(N,) < €.
Proof:
Let n > ny. We need to check that

1.1253
exp(2/pn)(1

* log p,, loglog N,,

) < ¢(t).

which, for fixedt holds forn large enough. Indeed(t) > 1 and the LHS goes monotonically o~ for
n large.

[
We give a numerical illustration of Corollafy 1 in Table 1.
t nl(t) an (t)
3 10 6.5 x 107
4 24 2.4 x 1034
5 79 | 4.1 x 1063
6 509 | 5.8 x 10'%5!
7| 10596 2.5 x 108337
TABLE I: The numbers in Corollary] 1.
We can extend this Corollary to all integersn, by using the reduction of preceding section.
Corollary 2: For all N > N,, such thatn > n,(t) we haveR;(N) < ¢7.
Proof: Combine Corollary 11 with Propositidd 2. [

We are now in a position to derive the main result of this note.
Theorem 1:If N is a7—free integer, thew(N) < Ne? loglog N.
Proof: If N is > N,, with n > n,(7), then the above upper bound holds f&¢(N) by Corollary
[2, hence foro(NN) by the remark in the Introduction. If not, we invoke the résuf [2], who checked
Robin inequality for5040 < N < 10'°", and observe that afl—free integers are- 5040. [ |

IV. VARYING ¢
We begin with an easy Lemma.

Lemma 4:Let ¢ be a real variable. Forlarge, we have(t) = 1+ & + o(Z).
Proof: By definition, fort > 1 we may write

1
C(t) = i
n=1
so that |
Ct)y>1+ 5t

In the other direction, we write



and compare the remainder of the series expansion of faaction with an integral:

3 1
Z / T (- 1)3 = 0(3).

The result follows. ]
We can derive a result whengrows slowly withn.
Theorem 2:Let S,, be a sequence of integers such that> N,, for n large, and such tha&t, is t—free
with ¢ = o(loglogn). For n large enough, Robin inequality holds f6,.
Proof: For Corollary(2 to hold we need

e*P f(n) < C(t)
to hold, or , taking logs, the exact bound

2/pn +log f(n) <log((t),
or up too(1) terms

1.1253
2/Dn <1 t).
/p log p, loglog N,, — 0g ((?)

In the LHS, the dominant term is of ordeéf (log p,,)?, since, like in the proof of Propositidd 3, we may
write p,, ~ log N,, . Now p,, ~ nlogn by [6, Th. 8], entailinglog p,, ~ logn and (log p,)*> ~ (logn)?.
In the RHS, with the hypothesis made bmwe have, by Lemmal4, the estimdte; ((¢) ~ % The result
follows after comparing logarithms of both sides. [ ]

V. CONCLUSION

In this article we have proposed a technique to check Roleqguality fort—free integers for some
values oft. The main idea has been to investigate the complex strucfureedivisor functiono though
the sequence of Dedekind psi functions The latter are simpler for the following reasons

« U,(n) solely depends on the prime divisors:ofand not on their multiplicity

. the champions ofl;, are the primorials instead of the colossally abundant nusnbe

« U, is easier to bound for large because of connections with Eulerian products

Further,o(n) < W,(n) for t—free integersn. We checked Robin inequality far—free integers for
t = 6,7 andt = o(loglogn). It is an interesting and difficult open problem to apply Treni2 to
superabundant numbers or colossally abundant numbersidtance. We do not believe it is possible.
New ideas are required to prove Robin inequality in full gaiity.
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