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Recall that an integer is t-free iff it is not divisible by p t for some prime p. We give a method to check Robin inequality σ(n) < e γ n log log n, for t-free integers n and apply it for t = 6, 7. We introduce Ψ t , a generalization of Dedekind Ψ function defined for any integer t ≥ 2 by

If n is t-free then the sum of divisor function σ(n) is ≤ Ψ t (n). We characterize the champions for x → Ψ t (x)/x, as primorial numbers. Define the ratio R t (n) := Ψt(n) n log log n . We prove that, for all t, there exists an integer n 1 (t), such that we have R t (N n ) < e γ for n ≥ n 1 , where N n = n k=1 p k . Further, by combinatorial arguments, this can be extended to R t (N ) ≤ e γ for all N ≥ N n , such that n ≥ n 1 (t). This yields Robin inequality for t = 6, 7. For t varying slowly with N , we also derive R t (N ) < e γ .

I. INTRODUCTION

The Riemann Hypothesis (RH), which describes the non trivial zeroes of Riemann ζ function has been deemed the Holy Grail of Mathematics by several authors [START_REF] Borwein | The Riemann hypothesis. A resource for the afficionado and virtuoso alike[END_REF], [START_REF] Lachaud | L'hypothèse de Riemann : le Graal des mathématiciens[END_REF]. There exist many equivalent formulations in the literature [START_REF] Conrey | The Riemann hypothesis[END_REF]. The one of concern here is that of Robin [START_REF] Robin | Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann[END_REF], which is given in terms of σ(n) the sum of divisor function σ(n) < e γ n log log n, for n ≥ 5041. Recall that an integer is t-free iff it is not divisible by p t for some prime p. The above inequality was checked for many infinite families of integers in [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF], for instance 5-free integers. In the present work we introduce a method to check the inequality for t-free integers for larger values of t and apply it to t = 6, 7. The idea of our method is to introduce the generalized Dedekind Ψ function defined for any integer t ≥ 2 by

Ψ t (n) := n p|n (1 + 1/p + • • • + 1/p t-1
).

If t = 2 this is just the classical Dedekind function which occurs in the theory of modular forms [START_REF] Csirik | On the genera of X0(N )[END_REF], in physics [START_REF] Planat | Riemann hypothesis from the Dedekind psi function[END_REF], and in analytic number theory [START_REF] Solé | Extreme values of the Dedekind Ψ function[END_REF]. By construction, if n is t-free then the sum of divisors function σ(n) is ≤ Ψ t (n). To see this note that the multiplicative function σ satisfies for any integer a in the range

t > a ≥ 2 σ(p a ) = 1 + p + • • • + p a ,
when the multiplicative function Ψ t satisfies

Ψ t (p a ) = p a + • • • + 1 + • • • + 1/p t-1-a .
It turns out that the structure of champion numbers for the arithmetic function x → Ψ t (x)/x is much easier to understand than that of x → σ(x)/x, the super abundant numbers. They are exactly the so-called primorial numbers (product of first consecutive primes). We prove that, in order to maximize the ratio R t it is enough to consider its value at primorial integers. Once this reduction is made, bounding above unconditionally R t is easy by using classical lemmas on partial eulerian products. We conclude the article by some results on t-free integers N ≥ N n , valid for t varying slowly with N. II. REDUCTION TO PRIMORIAL NUMBERS Define the primorial number N n of index n as the product of the first n primes

N n = n k=1 p k , so that N 0 = 1, N 1 = 2, N 2 = 6,
• • • and so on. The primorial numbers (OEIS sequence A002110 [11]) play the role here of superabundant numbers in [START_REF] Robin | Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann[END_REF] or primorials in [START_REF] Nicolas | Petites valeurs de la fonction d'Euler[END_REF]. They are champion numbers (ie left to right maxima) of the function x → Ψ t (x)/x :

Ψ t (m) m < Ψ t (n) n for any m < n. (1) 
We give a rigorous proof of this fact. Proposition 1: The primorial numbers and their multiples are exactly the champion numbers of the function x → Ψ t (x)/x.

Proof: The proof is by induction on n. The induction hypothesis H n is that the statement is true up to N n . Sloane sequence A002110 begins 1, 2, 4, 6 . . . so that H 2 is true. Assume

H n true. Let N n ≤ m < N n+1 denote a generic integer. The prime divisors of m are ≤ p n . Therefore Ψ t (m)/m ≤ Ψ t (N n )/N n with equality iff m is a multiple of N n . Further Ψ t (N n )/N n < Ψ t (N n+1 )/N n+1 . The proof of H n+1 follows.
In this section we reduce the maximization of R t (n) over all integers n to the maximization over primorials.

Proposition 2: Let n be an integer ≥ 2. For any m in the range

N n ≤ m < N n+1 one has R t (m) < R t (N n ).
Proof: Like in the preceding proof we have

Ψ t (m)/m ≤ Ψ t (N n )/N n .
Since 0 < log log N n ≤ log log m, the result follows.

III. Ψ t AT PRIMORIAL NUMBERS We begin by an easy application of Mertens formula. Proposition 3: For n going to ∞ we have

lim R t (N n ) = e γ ζ(

t) .

Proof:

Writing 1 + 1/p = (1 -1/p 2 )/(1 -1/p) in the definition of Ψ(n) we can combine the Eulerian product for ζ(t) with Mertens formula p≤x (1 -1/p) -1 ∼ e γ log(x) to obtain Ψ(N n ) ∼ e γ ζ(t) log(p n ).
Now the Prime Number Theorem [6, Th. 6, Th. 420] shows that x ∼ θ(x) for x large, where θ(x) stands for Chebyshev's first summatory function:

θ(x) = p≤x log p.
This shows that, taking x = p n we have

p n ∼ θ(p n ) = log(N n ).
The result follows. This motivates the search for explicit upper bounds on R t (N n ) of the form e γ ζ(t) (1 + o(1)). In that direction we have the following bound.

Proposition 4: For n large enough to have p n ≥ 20000, we have

Ψ t (N n ) N n ≤ exp(γ + 2/p n ) ζ(t) (log log N n + 1.1253 log p n ).
We prepare for the proof of the preceding Proposition by some Lemmas. First an upper bound on a partial Eulerian product from [13, (3.30) ).

On taking log's we obtain log log N n > log p n -0.1253 p n ,

upon using log(1 - x 8 ) > -0.1253x
for x small enough. In particular x < 1/20000 is enough.

We are now ready for the proof of Proposition 4.

Proof:

Write Ψ t (N n ) N n = n k=1 1 -1/p k t 1 -1/p k = p>pn (1 -1/p t ) -1 ζ(t) p≤pn (1 -1/p) -1
and use both Lemmas to derive

Ψ t (N n ) N n ≤ exp(γ + 2/p n ) ζ(t) (log p n + 1 log p n ).
Now we get rid of the first log in the RHS by Lemma 3.

The result follows.

So, armed with this powerful tool, we derive the following significant Corollaries. For convenience let

f (n) = (1 + 1.1253 log p n log log N n ).
Corollary 1:

Let n 0 = 2263. Let n 1 (t) denote the least n ≥ n 0 such that e 2/pn f (n) < ζ(t). For n ≥ n 1 (t) we have R t (N n ) < e γ .
Proof:

Let n ≥ n 0 . We need to check that exp(2/p n )(1 + 1.1253 log p n log log N n ) ≤ ζ(t).
which, for fixed t holds for n large enough. Indeed ζ(t) > 1 and the LHS goes monotonically to 1 + for n large.

We give a numerical illustration of Corollary 1 in Table 1. We can extend this Corollary to all integers ≥ n 0 by using the reduction of preceding section. Corollary 2: For all N ≥ N n such that n ≥ n 1 (t) we have R t (N) < e γ .

t
Proof: Combine Corollary 1 with Proposition 2. We are now in a position to derive the main result of this note. Theorem 1: If N is a 7-free integer, then σ(N) < Ne γ log log N.

Proof: If N is ≥ N n with n ≥ n 1 (7), then the above upper bound holds for Ψ 7 (N) by Corollary 2, hence for σ(N) by the remark in the Introduction. If not, we invoke the results of [START_REF] Briggs | Abundant numbers and the Riemann hypothesis[END_REF], who checked Robin inequality for 5040 < N ≤ 10 10 10 , and observe that all 7-free integers are > 5040.

IV. VARYING t

We begin with an easy Lemma. Lemma 4: Let t be a real variable. For t large, we have

ζ(t) = 1 + 1 2 t + o( 1 2 t
). Proof: By definition, for t > 1 we may write

ζ(t) = ∞ n=1 1 n t so that ζ(t) ≥ 1 + 1 2 t .
In the other direction, we write

ζ(t) = 1 + 1 2 t + 1 3 t + ∞ n=4 1 n t ,
and compare the remainder of the series expansion of the ζ function with an integral:

∞ n=4 1 n t < ∞ 3 du u t = 3 (t -1)3 t = O( 1 3 t ).
The result follows.

We can derive a result when t grows slowly with n. Theorem 2: Let S n be a sequence of integers such that S n ≥ N n for n large, and such that S n is t-free with t = o(log log n). For n large enough, Robin inequality holds for S n .

Proof: For Corollary 2 to hold we need

e 2/pn f (n) < ζ(t)
to hold, or , taking logs, the exact bound

2/p n + log f (n) < log ζ(t),
or up to o(1) terms

2/p n + 1.1253 log p n log log N n ≤ log ζ(t).
In the LHS, the dominant term is of order 1/(log p n ) 2 , since, like in the proof of Proposition 3, we may write p n ∼ log N n . Now p n ∼ n log n by [6, Th. 8], entailing log p n ∼ log n and (log p n ) 2 ∼ (log n) 2 . In the RHS, with the hypothesis made on t we have, by Lemma 4, the estimate log ζ(t) ∼ 1 2 t . The result follows after comparing logarithms of both sides.

V. CONCLUSION

In this article we have proposed a technique to check Robin inequality for t-free integers for some values of t. The main idea has been to investigate the complex structure of the divisor function σ though the sequence of Dedekind psi functions ψ t . The latter are simpler for the following reasons

• Ψ t (n) solely depends on the prime divisors of n and not on their multiplicity • the champions of Ψ t are the primorials instead of the colossally abundant numbers • Ψ t is easier to bound for n large because of connections with Eulerian products Further, σ(n) ≤ Ψ t (n) for t-free integers n. We checked Robin inequality for t-free integers for t = 6, 7 and t = o(log log n). It is an interesting and difficult open problem to apply Theorem 2 to superabundant numbers or colossally abundant numbers for instance. We do not believe it is possible. New ideas are required to prove Robin inequality in full generality.
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Next an upper bound on the tail of the Eulerian product for ζ(t).

Lemma 2: For n ≥ 2 we have

p>pn (1 -1/p t ) -1 ≤ exp(2/p n ).

Proof: Use Lemma 6.4 in
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with x = p n . Bound t t-1 x 1-t above by 2/x. Lemma 3: For n ≥ 2263, we have Proof: If n ≥ 2263, then p n ≥ 20000. By [13], we know then that log N n > p n (1 -1 8p n

TABLE I :

 I The numbers in Corollary 1.

		n 1 (t)	N n1(t)
	3	10	6.5 × 10 9
	4	24	2.4 × 10 34
	5	79	4.1 × 10 163
	6	509	5.8 × 10 1551
	7 10 596 2.5 × 10 48337