
HAL Id: hal-00541986
https://hal.science/hal-00541986

Submitted on 1 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A compositional behavioral modeling framework for
embedded system design and conformance checking
Jean-Pierre Talpin, Paul Le Guernic, Sandeep Kumar Shukla, Rajesh K.

Gupta

To cite this version:
Jean-Pierre Talpin, Paul Le Guernic, Sandeep Kumar Shukla, Rajesh K. Gupta. A compositional
behavioral modeling framework for embedded system design and conformance checking. Interna-
tional Journal of Parallel Programming, 2005, 33 (6), pp.613-643. �10.1007/s10766-005-8907-y�. �hal-
00541986�

https://hal.science/hal-00541986
https://hal.archives-ouvertes.fr

International Journal of Parallel Programming, Vol. 32, No. 3, June 2004 (c©2004)

A compositional behavioral modeling
framework for embedded system design
and conformance checking

Jean-Pierre Talpin1, Paul Le Guernic1, Sandeep Kumar
Shukla2 and Rajesh Gupta3

1 INRIA-IRISA, Rennes, France. E-mail: talpin@irisa.fr
2 Virginia Tech, Blacksburg, USA. E-mail: shukla@vt.edu
3 University of California San Diego, La Jolla, USA. E-mail: rgupta@ucsd.edu

We propose a framework based on a synchronous multi-clocked model of com-
putation to support the inductive and compositional construction of scalable be-
havioral models of embedded systems engineered withde factostandard design
and programming languages. Behavioral modeling is seen under the paradigm of
type inference. The aim of the proposed type system is to capture the behavior
of a system under design and to re-factor it by performing global optimizing and
architecture-sensitive transformations on it. It allows to modularly express a wide
spectrum of static and dynamic behavioral properties and automatically or man-
ually scale the desired degree of abstraction of these properties for efficient veri-
fication. The type system is presented using a generic and language-independent
static single assignment intermediate representation.

KEY WORDS: Embedded system design, formal methods, models of computa-
tion, program transformation, verification.

1. INTRODUCTION

The popular slogan ”write once, run anywhere” effectively renders the ex-
pressive capabilities of general purpose programming languages for devel-
oping, deploying, and reusing target-independent applications. Generality
and simplicity has driven most attention of the compiler technology com-
munity to developing local and compositional compiler optimization tech-
niques. When it comes to the implementation of embedded software, this

1

2 J.-P. Talpin et al.

approach is however far from satisfactory, especially in hard real-time sys-
tem design (e.g. airborne systems, digital circuits) where conformance to
real-time specifications is critical.

Domain-specific models and languages, such as these proposed under
the synchronous programming paradigm, provides the necessary formal
engineering models and design methodologies to allow for a program writ-
ten once to be mapped on any distributed execution architecture by using
global transformation and optimization techniques. Our aim is to relate this
domain-specific model to embedded software development using general-
purpose environments. To this end, we set the methodological framework
of our synchronous model of computation within the general and reusable
concept of a type system targeting the generic programming language set-
ting of GCC’s intermediate representations (three-address code and static
single assignment). We give formal semantics to both our type system and
the functional subset of SSA under consideration, define a type inference
system and prove its correctness, before to depict the applications of our
technique as developed in our project and presented in previous works.

A functional application domain.We consider embedded software imple-
mented by resource-constrained4 multi-threaded programs on a specific
runtime sub-system (e.g. , the real-time JVM, an RTOS, or simply hard-
ware) which we call its execution architecture. Our technique consists of
a type inference system that relates threads (imperative programs in inter-
mediate form) to propositions expressed by synchronous transition systems
that describe their behaviour.
Example. On the right, we out-
line the extent of our technique
by depicting a test-case studied
in (14). We consider modeling a
real-time Java program consist-
ing of three threads (right), a
scheduler (top-left) and shared
resources control (bottom-left).

Active_partition_ID

initialize

Throwable_5_1
end_processing1

SemaMonitor_lock
var_istart
var_ocount
var_data
var_idone

ONES{priority_value}

Throwable_6_2
Throwable_10_2

end_processing2

SemaMonitor_lock
var_istart
var_idone
var_data
var_occount
var_start
var_inport
var_outport
var_done

EVEN{priority_value}

Throwable_3_3
Throwable_7_3

end_processing3

SemaMonitor_lock
var_reset
var_start
var_inport
var_done
var_outport

IO{priority_value}

var_inport
var_start
var_reset
var_data
var_done

var_istart
var_idone
var_ocount
var_outport
SemaMonitor_lock

SHARED_RESOURCES{}

Active_process_ID
timedout

PARTITION_LEVEL_OS{1}

This decomposition is obtained by partitioning the executable program
and its environment into:

– the execution architecture: a hardware platform, a middle-ware library,
a real-time operating system, a virtual machine (e.g. in Java), a simula-

4 It is common sense to restrict ourselves to programs where all objects are first created and
initialized to elaborate the application architecture. Then, threads implement reactions to
inputs in the nominal phase of execution and do not allocate any new object (to comply with
certification requirement in software design or simply with common sense in SoC design).

A behavioral modeling framework 3

tion kernel (e.g. in SystemC). The execution architecture describes an
API of generic process and communication management services.

– the application architecture: a program, starting from themain() pro-
cedure, which initializes and links objects to form a hierarchical struc-
ture of shared data and communicating threads. The application map-
ping constructively describes the architecture of the system.

– the application functionalities: a set of program threads which period-
ically or sporadically react to inputs from the environment by interact-
ing with each other for the access to shared data.

Our methodology consists of considering the three elements of an em-
bedded system (its execution and application architectures, its application
functionalities) in specific ways.

– modeling: the execution architecture, viewed through an application
programming interface (API) of generic services, is modeled by tem-
plate propositions. For instance, the procedure for thread creation in an
RTOS API corresponds to a template proposition in the RTOS model
whose parameters are the number of threads supported by the appli-
cation scheduler, the period and deadline of the thread (for a real-time
thread), etc.

– analysis: the application architecture, viewed as a hierarchical struc-
ture, is interpreted to elaborate a model by the instantiation of generic
API services to the parameters and initial values provided in the pro-
gram (e.g. thread parameters).

– translation: each thread consists of a sequential program that describes
a functionality to be periodically or sporadically executed by the sched-
uler and corresponds to a particular model.

This allows for a complete separation of the virtual (threading or func-
tional) architecture of an application from its actual, real-time and resource-
constrained implementation: it provides an implementation of the ”write
once run anywhere” slogan in embedded system design.

Context.Our methodology arises from previous work on real-time operat-
ing systems modeling, embedded systems modeling and verification in the
Polychrony workbench5, a tool-set for embedded system design based on a
multi-clocked synchronous model of computation and implemented by the

5 URL: http://www.irisa.fr/espresso/Polychrony

4 J.-P. Talpin et al.

data-flow notation Signal(3). In (7), the authors describe the implementa-
tion of a real-time operating system standard for avionics application: AR-
INC (7). The commercial implementation of this library, RT-Builder from
TNI-Valiosys, is used for industrial-scale embedded software engineering
project in avionics.

In (14), this model is used to describe key services of the real-time Java
virutal machine. It is applied to rethreading multi-threaded real-time Java
programs by global optimization. In(15), the application of our method-
ology to system-level design is further developped by studying its appli-
cation to checking behavioral conformance between embedded systems
described in SpecC and at heterogeneous levels of abstraction. In(16), a
generic translation scheme of SystemC programs to the Polychrony work-
bench is described by considering a static single assignement intermediate
representation due to the GCC project(11). It is applied to design checking
(e.g. race and lock detection). In(5), it is applied to modular verification by
model checking and component-wise model abstraction.

We set our methodological framework within the general paradigm of
a behavioral type system that associates meaning to software functionali-
ties. The type system is cast in the generic programming language-oriented
context of the three-address code (TAC) and static single assignment (SSA)
intermediate representations (IR) of GCC.

2. RATIONALE

To allow for an easy grasp on the type system proposed for modeling be-
haviors, we outline the analysis of an imperative program, Figure 1, and
depict the construction of its type, Figure 2. Figure 1 depicts a simple C
code fragment consisting of an iterative program that counts the number of
bits set to one in the variableidata. While idata is not equal to zero, it adds
its right-most bit to an output count variableocount and shifts it right in
order to process the next bit. In the intermediate representation (IR) of the
program (Figure 1, second column), all variables (idata andocount) are
read and written once per cycle.

while (idata != 0) {
ocount = ocount + (idata & 1);
idata = idata >> 1;

}

L2:T1 = idata;
T0 = T1 == 0;
if T0 then goto L3;
T2 = ocount;

T3 = T1 & 1;
ocount = T2 + T3;
idata = T1 >> 1;
goto L2;

Fig. 1. From a C-like program to its intermediate representation.

This IR can equally be one of the TAC and SSA formats of GCC. Label
L2 is the entry point of the block associated with the while loop. The first

A behavioral modeling framework 5

instruction loads the input variableidata into the registerT1. The second
instruction stores the result of its comparison with 0 in the registerT0. If
T0 is false, control is passed to blockL3. Otherwise, the next instruction is
executed: the variableocount is loaded intoT2, the last bit ofT1 is loaded
into T3, the sum ofT2 andT3 assigned toocount and the right-shift ofT1
assigned toidata. The block terminates with an unconditional branch back
to labelL2.

A behavioral type system.The meaning of this C program fragment is
given in a minimalist formalism akin to Pnueli’s synchronous transition
systems(12). It not only describes a behavior of the program suitable for its
formal verification but also allows for global model transformations to be
performed on it. Let us zoom on the blockL2 in the example of Figure 2.
The behavioral type of the blockL2, middle, consists of the simultane-
ous composition of logical propositions that form a synchronous transition
system. Each proposition is associated with one instruction: it specifies its
invariants: it tells when the instruction is executed, what it computes, when
it passes control to the next statement, when it branches to another block.

L2:T1 = idata;
T0 = T1 == 0;
if T0 then goto L3;
T2 = ocount;
T3 = T1 & 1;
ocount = T2 + T3;
idata = T1 >> 1;
goto L2;

L2⇒T1 := idata
T0 := (T1 = 0)
T0 ⇒L3′

¬T0⇒T2 := ocount
T3 := T1&1
ocount′ := T2+T3
idata′ := T1 >> 1
L2′

Fig. 2. From a generic intermediate representation to propositions.

On line 1 for instance, we associate the instructionT1 := idata to the
propositionL2⇒ T1 := idata. The variableL2 is a boolean that is true iff
the block of labelL2 is being executed. Hence, the proposition says that, if
the labelL2 is being executed, thenT1 is equal toidata. All propositions
are conditioned byL2 to mean that they hold when blockL2 is executed.
The extent of a proposition is the duration of a reaction.

A reaction can be an arbitrarily long yet finite period of time provided
that every variable or register changes its value at most once during that
period. For instance, consider the instructionif T0 then L3. It is likely that
labelL3 will, just asL2, perform some operation on the inputidata. There-
fore, its execution is delayed until after the current reaction. We refer toL3′

as the next value of the state variableL3, to indicate that it will be active

6 J.-P. Talpin et al.

during the next reaction. Hence, the propositionL2⇒ T0⇒ L3′ says that
control will be passed toL3 at the next reaction when control is presently
at L2 and whenT0 is true. The instructions that follow this test are con-
ditioned by the negative¬T0, this means: ”in the blockL2 and not in its
branch toL3”.

3. A BEHAVIORAL TYPE SYSTEM

The central element of the type system is a process. It consists of simulta-
neous propositions that manipulate signals. A signal is an infinite flow of
values that is sampled by a discrete series of reactions. This series is called
a clock. An event corresponds to the value carried by a signal during a
reaction. The formal syntax of propositions in the behavioral type system
is defined by the inductive grammarP. A propositon or processP manip-
ulates boolean values notedv ∈ {false , true} and signals notedx,y,z.
A location l refers to the initial valuex0, the present valuex and the next
valuex′ of a signal. A referencer is either a valuev or a signalx.

(reference) r ::= x|v (location) l ::= x0 |x|x′

A clock expressione is a proposition on boolean values that, when true,
defines a particular period in time. The clocks 0 and 1 denote events that
never/always happen. The clockx= r denotes the proposition: ”x is present
and holds the valuer”. Particular instances are: the clock ˆx=def(x = x),
which stands for ”x is present”; the clockx=def(x = true) for ”x is true”,
and the clock¬x=def(x = false) for ”x is false”. Clocks are propositions
combined using the logical combinators of conjunctione∧ f , to mean that
bothe and f hold, disjunctione∨ f , to mean that eithere or f holds, and
symmetric differencee\ f , to mean thateholds and notf .

(clock) e, f ::= 0|x = r |e∧ f |e∨ f |e\ f |1
A processPconsists of the simultaneous composition of elementary propo-
sitions. 1 is the process that does nothing. The propositionl = r means that
” l holds the valuer”. The processe⇒ P is a guarded command. It means:
”if e is present thenP holds”. Processes are combined using synchronous
compositionP||Q to denote the simultaneity of the propositionsP andQ.
Restricting a signal namex to the lexical scope of a processP is written
P/x.

(process) P,Q ::= 1| l = r |x→ l |e⇒ P|(P||Q) |P/x

An order of execution is imposed to a proposition by a scheduling con-
straint, notedx→ l , to mean that ”l cannot happen beforex”. Consequently,
a proposition, e.g.x= y, is seen as the abstraction of an assignment, written
x := y, defined byx = y||y→ x.

A behavioral modeling framework 7

3.1. A synchronous model of computation

The meaning of our notation is given in the synchronous model of compu-
tation of (8). We consider a partially-ordered set(T ,≤,0) of tags. A tag
t ∈ T denotes a symbolic period in time. The relation≤ denotes a partial
order and its minimum is noted 0. We noteC∈ C achainof tags (a totally
ordered subset ofT). We define anevent e∈T ×V by the pair of a value
and a tag, asignal s∈S = {C→ V |C∈C } by a function from achainof
tagsC to values, abehavior b∈B = X ⇀ S by a finite map from signal
namesX to signalsS , a process p∈ P by a set of behaviors of same
domain. We write tags(s) for the tags of a signals, b|X for the projection
of a behaviorb on X ⊂ X andb/X = b|vars(b)\X for its complementary,
vars(b) and vars(p) for the domains ofb andp.

Example 1.Figure 3 depicts a behaviorb over three signals namedx, y and
z. Two frames depict timing domains formalized by chains of tags. Signal
x andy belong to the same timing domain:x is a down-sampling ofy. Its
events are synchronous to odd occurrences of events alongy and share the
same tags, e.g.t1. Even tags ofy, e.g.t2, are ordered along its chain, e.g.
t1 < t2, but absent fromx (we write t < t ′ if t ≤ t ′ and t ′ 6≤ t). Signalz
belongs to a different timing domain. Its tags, e.g.t3 are not ordered with
respect to the chain ofy, e.g.t1 6≤ t3 andt3 6≤ t1.

x : •t1 • •
y : •t1 •t2 • • •

z : •t3 • • •

Fig. 3. behaviorb over three signalsx, y andz in two clock domains.

Scheduling structure.To schedule the occurrence of events during a period
or an instantt, we consider the fact that the pairxt of a time tagt and of a
signal namex renders its very dated. The tagt represents the period during
which the event takes place and the signalx its location. This considera-
tion defines scheduling→ by a pre-order relation between dates. Figure 4
depicts such a relation superimposed to the signalsx andy of Figure 3.
The relationyt1 → xt1, for instance, requiresy to be calculated beforex
at the periodt1. A scheduling relation naturally satisfies containment with
respect to the timing partial order≤ of every signalx in a behaviorb, in

8 J.-P. Talpin et al.

that for allt, t ′ ∈ tags(b(x)), t < t ′ naturally impliesxt →b xt ′ and, conver-
salyxt →b xt ′ implies t ′ 6< t. A scheduling relation is implicitly transitive
(xt →b yt ′ →b zt ′′ implies xt →b zt ′′) and its closure for restrictionb/X is
defined byxt →b/X yt ′ iff xt →b yt ′ andx,y 6∈ X.

x : •t1 • •
↑ ↑ ↑

y : •t1 •t2 • • •

Fig. 4. Scheduling relations between simultaneous events.

Synchronous compositionis notedp||q and defined by the union of all
behaviorsb (from p) andc (from q) which are synchronous. All signalsx
shared bybandcbelong toI = vars(p)∩vars(q) and are equal i.e.b|I = c|I :
p||q = {b∪c |(b,c) ∈ p×q, I = vars(p)∩vars(q),b|I = c|I }.

x : •t1 •
y : •t1 •t2 •

 ||
y : •t1 •t2 •

z : •t3 •

 =

x : •t1 •
y : •t1 •t2 •
z : •t3 •

Fig. 5. Synchronous composition ofb∈ p andc∈ q.

3.2. Meaning of clocks.

The denotation[[e]]b of a clock expressione(table 6) is defined relatively to
a given behaviorb and consists of the set of tags satisfied by the proposition
e in the behaviorb.

[[0]]b= /0 [[1]]b = tags(b)
[[e∧ f]]b=[[e]]b∩ [[f]]b
[[e∨ f]]b=[[e]]b∪ [[f]]b
[[e\ f]]b=b[[e]]b\ [[f]]b
[[x = v]]b={t ∈ tags(b(x)) |b(x)(t) = v}
[[x = y]]b={t ∈ tags(b(x))∩ tags(b(y)) |b(x)(t) = b(y)(t)}

Fig. 6. Denotational semantics of clocks.

A behavioral modeling framework 9

In Figure 6, the meaning of the clockx= v (resp.x= y) in b is the set of
tagst ∈ tags(b(x)) (resp.t ∈ tags(b(x))∩ tags(b(y))) such thatb(x)(t) =
v (resp.b(x)(t = b(y)(t)). In particular,[[x̂]]b = tags(b(x)). The meaning
of a conjunctione∧ f (resp. disjunctione∨ f and differencee\ f) is the
intersection (resp. union and difference) of the meaning ofe and f . Clock
0 has no tags.

3.3. Meaning of propositions.

The meaning[[P]]e of a propositionP is defined with respect to a clock
expressione. Where this information is absent, we assume[[P]] = [[P]]1 to
mean thatP is an invariant (and is hence independent of a particular clock).
The meaning of an initialization[[x0 = v]]e consists of all behaviors defined
onx, writtenb∈B|x such that the initial value of the signalb(x) equalsv.
Notice that it is independent from the clock expressione provided by the
context. We writeB|X for the set of all behaviors of domainX, min(C) for
the minimum of the chain of tagsC, succt(C) for the immediate successor
of t in the chainC, vars(P) and vars(e) for the sets of signal names ofP
ande.

[[x = y]]e={b∈B|vars(e)∪{x,y} |∀t ∈ [[e]]b,
t ∈ tags(b(x))∧ t ∈ tags(b(y))∧b(x)(t) = b(y)(t)}

[[y→ x]]e={b∈B|vars(e)∪{x,y} |∀t ∈ [[e]]b,
t ∈ tags(b(x))⇒ t ∈ tags(b(y))∧yt →b xt}

[[x′ = y]]e={b∈B|vars(e)∪{x,y} |∀t ∈ [[e]]b,
t ∈C = tags(b(x))∧ t ∈ tags(b(y))∧b(x)(succt(C)) = b(y)(t)}

[[y→ x′]]e={b∈B|vars(e)∪{x,y} |∀t ∈ [[e]]b,
t ∈C = tags(b(x))⇒ t ∈ tags(b(y))∧yt →b xsucct (C)}

[[x0 = v]]e={b∈B|x |b(x)(min(tags(b(x)))) = v}
[[f ⇒ P]]e=[[P]]e∧ f [[P||Q]]e = [[P]]e|| [[Q]]e [[P/x]]e = [[P]]e/x

Fig. 7. Denotational semantics of propositions.

The meaning of a propositionx= y at the clockeconsists of all behav-
iors b defined on vars(e)∪{x,y} such that all tagst ∈ [[e]]b at the clocke
belong tob(x) andb(y) and are associated with the same value. A schedul-
ing specificationy→ x at the clockedenotes the set of behaviorsb defined
on vars(e)∪{x,y}which, for all tagst ∈ [[e]]b, requiresx to preceedy: if t is
in b(x) then it is necessarily inb(y) and satisfiesyt →b xt . The propositions

10 J.-P. Talpin et al.

x′ = y andy→ x′ is interpreted similarly by considering the tagt ′ that is
the successor oft in the chainC of x. The behavior of a guarded command
f ⇒ P at the clocke is equal to the behavior ofP at the clocke∧ f . The
behavior ofP||Q consists the synchronous composition of the behaviors of
P andQ.

4. AN INTERMEDIATE REPRESENTATION

We are now equipped with the required mathematical framework to ad-
dress the modeling of embedded systems described by communicating
program threads. This model is described in terms of a type inference sys-
tem and extended to the structuring elements of a generic module system.
This framework allows to give a behavioral signature of the component of
the system, compositionally check the correct composition of such com-
ponents to form architecture, to optimize the described software elements
from the imposed hardware elements by, first, detaching the formal model
from the functional architecture description and, second, using the model
to regenerate an optimized software matching the requirements of the exe-
cution architecture.

Formal syntax. Imperative programs are represented in an intermediate
form that is common to the TAC and SSA IRs of GCC which provides
language-independence and local optimization. A programpgmconsists
of a sequence of labeled blocksL:blk. Each block consists of a labelL and
of a sequence of statementsstmterminated by a return statementrtn.

(program) pgm::=L:blk|pgm;pgm
(block) blk ::=stm;blk| rtn
(instruction)stm ::=x = f (y1..n)

| ifxthenL
(return) rtn ::=gotoL

| returnx
| throwx
| catchxfromLtoLusingL

Fig. 8. Syntax for an intermediate representation of imperative programs.

Block instructions consist of native method invocationsx = f (1..n),
lock monitoring and branchesifxthenL. Blocks are returned from by ei-
ther agotoL, areturn or an exceptionthrowx. The declarationcatchx

A behavioral modeling framework 11

fromL1toL2 usingL3 that matches an exceptionx raised at blockL1 ac-
tivates the exception handlerL3 and continues at blockL2.

In the remainder, we only assume that a block always starts with a
label and finishes with a return statement:stm1;L:stm2 is rewritten asstm1;
gotoL;L:stm2. A call x = f (y) to a possibly blocking external method
f , such aswaitx in SystemC or Java, is always placed at the beginning
of a blockL. For instance,stm1;waitx;stm2 is rewritten asstm1;gotoL;
L:waitv;stm2. By contrast, primitive operationsx = f (y,z) are assumed
to take an insignificant amount of time and are executed with the normal
control-flow of the block.

Example 2.To outline the construction of the intermediate representation
of a program, let us reconsider the example of Section 2 and detail the func-
tion that counts the number of bits set to 1 in a bit-arraydata (Figure 9). It
consists of three blocks. The block labeledL1 waits for the signallock be-
fore initializing the local state variableidata to the value of the input signal
data andocount to 0. LabelL2 corresponds to a loop that shiftsidata right
to add its right-most bit toocount until termination (conditionT0). In the
block L3, ocount is sent to the signalcount and lock is unlocked before
going back toL1.

L1:wait (lock);
idata=data;
ocount=0;
goto L2;

L2:T1 = idata;

T0 = T1 == 0;
if T0 then goto L3;
T2 = ocount;
T3 = T1 & 1;
ocount = T2 + T3;

idata = T1 >> 1;
goto L2;

L3:notify (lock);
count = ocount;
goto L1;

Fig. 9. From three address code ...

The SSA form of the program differs in the function-wise guarantee
that all variable be assigned once during an execution cycle. It consists
of performing assignments toidata and ocount in blocks L1 and L2 to
temporary variables and branch to a merge blockL4 where the appropriate
copy is assigned to the variable upon the value of a boolean conditionφ

(to mean fromL1 or not).

Meaning of instructions.The denotation of instructions for programs which
strictly adhere either of the TAC or SSA requirements (i.e. all variables are
written at most once per block) is given figure 11. To ligthen notations,
we writeC = chainb(X) iff for all x∈ X, C = tags(b(x)) and writeb(x)(t)
for b(x)(t) = true and¬b(x)(t) for b(x)(t) = false . The denotation of

12 J.-P. Talpin et al.

L1:. . . idata1=data;
ocount1=0;
goto L4;

L2:. . . ocount2 = T2 + T3;
idata2 = T1 >> 1;
goto L4;

L4:idata=φ?idata1,idata2;
ocount=φ?ocount1,ocount2;
goto L2;

Fig. 10. ... to static single assignment.

a program〈〈pgm〉〉E takes an environment giving the meaning of external
functions f using call-by-nameλ -expressions and returns the set of behav-
iorsb corresponding to the execution ofpgm.

For an instructionstm, the function〈〈stm〉〉EL1L2
takes two labels which

represent the entry labelL1 of the statement and its continuation by the
pseudo-labelL2. The denotation of a function callx= f (x1..k) is that given
by E for the variable namesx1..kx and the entry and exit labelsL1 andL2.

The meaning of anifxthenL1 instruction consists of all behaviorsb
defined onx, L1, L2 and L3 which share the same chain of tagsC and
such that, ifb(L1)(t) is true, then the continuation labelL3 is active iff x
if false, i.e.b(L3)(t) = ¬b(x)(t); and if x is true thenL2 is active next, i.e.
b(x)(t) true impliesb(L2)(succt(C)) true. For a return instructionrtn, the
denotation function〈〈rtn〉〉EL only takes one (entry) labelL. The meaning
of returnx, gotoL and throwx instructions are given using the same
principle as for theifxthenL.

〈〈x = f (x1..k〉〉EL1L2=E(f)(x1..kxL1L2)
〈〈ifxthenL1〉〉EL2L3

={b∈B|xL123 |∀t ∈C = chainb(xL123),
b(L1)(t)⇒ (b(L3)(t) = ¬b(x)(t)
b(x)(t)⇒ b(L2)(succt(C)))}

〈〈returnx〉〉EL ={b∈B|Lxy|E(return) = y, ∀t ∈C = chainb(Lxy),
b(L)(t)⇒ b(y)(t) = b(x)(t)}

〈〈gotoL1〉〉EL2
={b∈B|L1L2 |∀t ∈C = chainb(L1L2),

b(L2)(t)⇒ b(L1)(succt(C))}
〈〈throwx〉〉EL ={b∈B|Lx|∀t ∈C = chainb(Lx),

b(L)(t)⇒ b(x)(t)}
〈〈stm;blk〉〉EL1

=(〈〈stm〉〉EL1L2
|| 〈〈blk〉〉EL2

)/L2

〈〈L : blk;pgm〉〉E=〈〈blk〉〉EL || 〈〈pgm〉〉E

〈〈m f(x1...k) {pgm}〉〉E=E[f : λx1..kxyyexit.(p/L1.. j)] |
p = 〈〈pgm〉〉E[return:y]∧ labs(pgm) = L1.. j

Fig. 11. Denotational semantics of instructions.

A behavioral modeling framework 13

Notice the introduction of a pseudo-label to handle a sequence of in-
structions. The meaning of a sequencestm;blk starting at blockL1 is de-
fined by using a local peudo-labelL2 to denote the continuation ofstmby
〈〈stm〉〉EL1L2

and hence the entry point ofblk by 〈〈blk〉〉EL2
. The meaning of

the sequence is finalized by synchronous composition and the scope ofL2
restricted to it. The meaning of a programL : blk;pgm is similar yet sim-
pler as there is no continuation between blocks. The meaning of a function
declarationm f(x1...k) {pgm} is listed just to show the order in which the
argument, result, entry and exit label names are used to parameterize the
meaning of the function body.

5. BEHAVIORAL TYPE INFERENCE

The behavioral type inference system is defined by induction on the formal
syntax of programspgm. To define it, we assume that the finite setL of
program labelsL. To each block of labelL, the inference system associates
a boolean propositionL of the same name, called theinput clock, and a
boolean propositionLexit, called itsoutput clock. The propositionL is true
iff the block L is active during a given transition. The propositionLexit is
true iff the execution of blockL terminates during a given transition. The
relation defined by the behavioral type system has the form:

e0,E ` L : blk : 〈P,e1〉

wheree0 denotes the input clock of the block of instructionsblk, L is its
label,P the proposition to denote its behavior, ande1 its output or contin-
uation clock. The type environmentE gives the behavior of methods and
functions defined in the context of the program. It associates a variablex to
a typem (a class name), a class namem to a class typeT (described in the
next section) and a methodf to a propositionP and an output clocke pa-
rameterized by the sequencex1..n formed of its input and output variables
and input clock name (see rule (8) below).

E ::= [] |E [x : m] |E [m : T] |E [f : λ (1..n).〈P,e〉]

Rules(1−8) define the behavioral type inference system. Rules(1−2) are
concerned with the iterative decomposition of a programpgminto blocks
blk and with the decomposition of a block into statementsstmand return
instructionrtn.

(1)
L,E ` L : blk : P E ` pgm: Q

E ` L : blk;pgm: P|Q

14 J.-P. Talpin et al.

Notice that, in rule(2), the input clocke of the blockstm;blk is passed to
stm. The output clocke1 of stmbecomes the input clock ofblk. The input
and output clocks of an instruction may differ.

(2)
e1,E ` L : stm: P,e2 e2,E ` L : blk : Q

e1,E ` L : stm;blk : P|Q

This is the case, rule(3), for instructionifxthenL1. Let e be the input
clock of the instruction. Ifx is false then control is passed to the continua-
tion of this instruction in the block, at the output clocke∧¬x. Otherwise,
control is passed to blockL1, at the clocke∧x. Hence the type(e∧x)⇒ L′2
to mean that the next value ofL2 is true whene is active and whenx is true.

(3) e,E ` L : ifxthenL1 : 〈(e∧x)⇒ (Lexit ||L′1),e∧¬x〉

All return instructions, rules(4−7), define the output clockLexit of the cur-
rent blockL by the input clocke. This is the right place to do that:edefines
the condition upon which the block actually reaches its return statement.
A gotoL1 instruction, rule(4), passes control to blockL1 unconditionally
at the input clocke.

(4) e,E ` L : gotoL1 : e⇒ (Lexit ||L′1)

A return instruction, rule(5), fetches the variabley used as return vari-
able for the current method or function and setsyexit to true at clocke in
order to notify the caller that the method terminates execution.

(5)
E (return) = y

e,E ` L : returnx : e⇒ (Lexit ||yexit ||y := x)

A throwx instruction, rule(6), produces an event along the signalx at the
input clockeby e⇒ x̂.

(6) e,E ` L : throwx : e⇒ (Lexit || x̂)

Example 3.Let us zoom on the blockL2 of Figure 2. On the first line,
for instance, we associate the instructionT1 = idata of block labelL2 to
the propositionL2⇒ T1 = idata. In this proposition, the variableL2 is a
boolean that is true iff the blockL2 is being executed. So, the proposition
says that, ifL2 is being executed, thenT1 is always equal toidata. If it
not, another proposition may hold. All subsequent propositions are condi-
tioned byL2 to mean that they hold whenL2 is executed. Next, consider

A behavioral modeling framework 15

the instructionif T0 then L3. Its invariantL2 ⇒ T0 ⇒ L3′ says that con-
trol passes toL3 when control is presently atL2 and whenT0 is true. The
instructions that follow this test are conditioned by the negative¬T0, this
means: ”in the blockL2 and not in its branch toL3”.

L2:. . . if T0 then goto L3;...
goto L2;

L2⇒ . . .T0 ⇒L3′

¬T0⇒. . . L2′

Fig. 12. Modeling control flow in an imperative program.

Thecatch statementcatchxfromLtoL1usingL2 matching rule(6),
passes control in rule(7) to the exception handlerL2 and then to the block
L1 upon termination ofL2 notified byLexit

2 . This requires, first, to activate
L2 from L whenx is present and then to pass the control toL1 upon termi-
nation of the handler.

(7) e,E ` L : catchxtoL1usingL2 : (x̂∧Lexit)⇒ L′2 ||L2
exit ⇒ L′1

Rule(8) is concerned with type assignement for native and external method
invocationsx = f (x1..k). The generic type off is taken from an environ-
mentE (f). It is given the name of the actual parametersx1...k, of the result
x and of the input clocke. E (f)(x1...kxe) yields the corresponding behav-
ioral type〈P,e1〉.

(8) e,E ` L : x = f (x1...k) : E (f)(x1...k,x,e)

Example 4.As an example, the wait-notify protocol used in SystemC of
Java to arbiter access to shared data is modeled using a boolean flip-flop
variablex. The notify method defines the next value of the lockx by
the negation of its current value at the input clocke. The wait method
continues activates iff the value of the lockx has changed at the input clock
L: L∧ (x 6= x′). Otherwise, at the clockL∧ (x = x′), the control is passed
to L by a delayed transitione\ ŷ⇒ L′.

E (notify) = λxe.〈e⇒ (x′ = ¬x),e〉
E (wait) = λxL.〈L∧ (x = x′)⇒ L′,L∧ (x 6= x′)〉

Consider the wait-notify protocol at blocksL1 and L3, Figure 13. The
wait instruction continues ifL1 receives control and if the lock is toggled
(propositionlock 6= lock′). If so, the block is executed and control passes
to the blockL2 and, if not, to the blockL1.

16 J.-P. Talpin et al.

L1:wait (lock);...
goto L2;

L1∧ (lock = lock′)⇒L1′...
L1∧ (lock 6= lock′)⇒L2′

L3:notify (lock);...
goto L1;

L3⇒lock′ = ¬lock...
L1′

Fig. 13. Modeling the access to locks.

Completion.By definition, a propositionL holds the valuetrue iff the
block L is active during execution. Otherwise,L should befalse . This
default value requires a completion of the next-state logic for the typeP of
a given programpgm. We writeP this completion. It is simply defined by
considering the propositioneL ⇒ L′ implied by the typeP for all labelsL of
a given programpgm. The clockeL is defined by the union (disjunction) of
all clockse⇒ L′ present inP. The default rule is defined bŷL\eL ⇒¬L′.
The same holds for output clocksLexit.

Correspondence.The correspondance between instructions and proposi-
tions defined through our type systemE ` pgm: P can now be formally
established by stating Property 1. We write[[E]] for the interpretation of
the environmentE defined by

[[E [f : λ (x1..kxL).〈P,xexit〉]]] = [[E]][f : λ (x1..kxLxexit).[[P]]]

Property 1 established a classical soundness property by stating that when-
everpgmhas typeP and the typing environmentE has meaningE thenb is
a behavior ofP (guarded by 1 to mean always) if and only if it is a behavior
of pgmwith the environment E. Notice that the top-level environmentE
defines the model of the runtime communication and processes manage-
ment API for the application programpgm. The proof of property 1 con-
sists of showing that both implications[[P]] ⊆ 〈〈pgm〉〉 and[[P]] ⊇ 〈〈pgm〉〉
hold by induction on the structure ofpgmending up in a case analysis on
the correspondence between each instruction.

Property 1.
If E ` pgm: P andE = [[E]] thenb∈ [[P]]1 iff b∈ 〈〈pgm〉〉E

From TAC to SSA.The type system and its semantics rely on the property
of the TAC IR that every variable is defined at once within a block (this hy-
pothesis is sound for a program in SSA form as well). As a consequence,
each block delimits an atomic reaction in the type system and, therefore,
transition from a block to another cannot be immediate (by sayingL for
”label L is active”) but delayed (by sayingL′ for ”label L will be active
next time”). In SSA, this guarantee is provided for the whole ”text” of the

A behavioral modeling framework 17

function. In particular, for a goto from a blockL1 to a blockL2 textually
afterL1 (written L1 < L2), SSA guarantees that all variables defined inL1
are different from those inL2. This is of course not the case for a loop, in
which case we haveL1 ≥ L2. To take advantage of this additional guaran-
tee, our type inference system can be refined by considering the following
rule to handlegotos (and similarly,if-thens andthrow-catchs). It consists
of activating the target blockL2 immediately.

(4b)
L1 < L2

e,E ` L1 : gotoL2 : e⇒ (L1
exit ||L2)

The translation of the EPC in SSA form using rule(3b) outlines the bene-
fits of this optimization. The resulting type has strictly fewer delayed tran-
sitions: one toL2 in L3 and another toL1 in L4. All other transitions are
immediate and considered within the same reaction.

L1:wait (lock);
idata1=data;
ocount1=0;
goto L3;

L2:T1 = idata;
T0 = T1 == 0;
if T0 then goto L3;
T2 = ocount;
T3 = T1 & 1;
ocount2 = T2 + T3;
idata2 = T1 >> 1;
goto L3;

L3:idata=φ?idata1,idata2;
ocount=φ?ocount1,ocount2;
goto L2;

L4:notify (lock);
count = ocount;
goto L1;

L1⇒lock=lock’ ⇒ L1’
lock6=lock’ ⇒ idata1:=data

ocount1:=0
L3

L2⇒T1 := idata
T0 := T1 == 0
T0 ⇒ L4
¬T0 ⇒ T2 := ocount

T3 := T1 & 1
ocount2 := T2 + T3
idata2 := T1 >> 1
L3

L3⇒L1⇒idata:=idata1
ocount:=ocount1

L2⇒ idata:=idata2
ocount:=ocount2

L2’
L4⇒lock’:=¬ lock

count := ocount
L1’

Fig. 14. Model of the even-parity checker in SSA form.

6. CONFORMANCE CHECKING

Just as the multi-clocked synchronous formalism Signal it is based upon,
our type system allows for the refinement-based design methodologies

18 J.-P. Talpin et al.

considered in(15) to be easily implemented. Checking the correct refine-
ment of an initial module, of typeP, by its upgrade, of typeQ, amounts
to checking that the final guaranteeQ satisfies the initial assumptionsP.
In (15), this is implemented by compositionally model checking thatQ is
finitely flow-equivalent toP.

ones even

wait
notify

� �
- -

�
-

�
-

⇓
P

SpecC
refinement

⇒

conformance
checking

⇐

ones even

chan

send
recv�

-
�

-
�

-
�

-

⇓
Q

Fig. 15. Conformance-checking the refinment of an even-parity checker.

Figure 15 describes a typical case study of conformance checking. We
consider the refinement of the C model of an even parity checker (EPC)
from a high-level design abstraction, left, where communication is ab-
stracted by shared variables and a lock, to an architecture-level design
abstraction, right, where the communication medium is refined by the in-
sertion of a channel implementing a double handshake protocol, Figure 16.

send recvIn- ready-
eReady-
data -
ack�
eAck�
¬ready-
eReady-
¬ack�
eAck� rdata-

Fig. 16. Refinement of locks with a double handshake protocol.

Checking conformance of the architecture-level design with respect to
its system-level abstraction amounts to checking that both designs are flow
equivalent. The very notion of flow equivalence under consideration con-

A behavioral modeling framework 19

sists is defined in the asynchronous structure of our model of computation
that is presented next.

6.1. Asynchronous structure

The asynchronous structure of polychrony is modeled by weakening the
clock-equivalence relation to allow for comparing behaviors whose suc-
cessive values match regardless of time: two behaviors are flow-equivalent
iff their signals hold the same values in the same order. Therelaxation
relation allows to individually stretch the signals of a behavior in a way
preserving scheduling constraints. A behaviorc is a relaxationof b, writ-
tenbv c, iff vars(b) = vars(c) and, for allx∈ vars(b), b|{x} ≤ c|{x}.

x : •t1 • •
↑ ↑ ↑

y : •t1 •t2 • • •
v

x : •t3 • •

y : •t4 •t5 • • •

Fig. 17. Relating asynchronous behaviors by relaxation.

Relaxation is a partial-order relation which defines flow-equivalence:
b andc areflow-equivalent, writtenb≈ c, iff there exists a behaviord s.t.
d v b andd v c. Figure 17 illustrates two asynchronously equivalent be-
haviors related by relaxation. The first event alongx has been shifted (and
its scheduling constraint with an initially synchronous event alongy lost)
as the effect of finitely delaying its transmission. Asynchronous composi-
tion is notedp ‖ q and defined using the partial-order structure induced by
the relaxation relation. The composition ofp andq consists of behaviorsd
that are relaxations of behaviorsb andc from p andq along shared signals
I = vars(p)∩vars(q), i.e.b|I v d|I w c|I , and that are stretching ofb andc
along the independent signals ofp andq, i.e.b/I ≤ d/I ≥ c/I .

x : •t1 •t3

y : •t2 •t4

 ‖

x : •t1 •t2

y : •t1 •t2

z : • • •

 3

x : • •
y : • •
z : • • •

Fig. 18. Asynchronous composition.

Figure 18 illustrates the asynchronous composition of a behaviorb and
of a behaviorc. Signalsx andy are alternated inb, left, and synchronous in
c, middle. Asynchronous composition allowsx andy to be independently

20 J.-P. Talpin et al.

stretched inb andc in order to find a common flow in the asynchronous
composition, right.

6.2. Flow preservation

To check the existence of a flow-preserving timing relation between the
two systems outlined in the previous section, the refinement-based method-
ology similar of(15) shows that the typesP andQ of Figure 15 are finitely
flow-equivalent. To this end, we formulate the timing deformation allowed
by finite buffering protocols starting from the model of a one-place FIFO
buffer which we will use to draw the spectrum of possible timing rela-
tions under consideration. Figure 19 depicts the timing deformation al-
lowed along a signalx by a one place buffer.

y : •t1 •t2 • • •
↓ ↓ ↓

x : •t1 • •
vx

1

y : •t1 •t2 • • •−→ ↓ −→
x : •t3 • •

Fig. 19. Relation between events through a one place buffer alongx.

Finite relaxation. Definition 1 formalizes this relation by considering the
timing deformation between an initial behaviorb and a final behaviorc
performed by a one-place FIFO buffer of internal signalm and behavior
d. The behaviord is defined by stretchingb ≤ d/m and c/x by d/mx.
Let us write predC(t) (resp. succC(t)) for the immediate predecessor (resp.
successor) of the tagt in the chainC.

Definition 1 (finite relaxation). The behavior c is a1-relaxation of x in b,
written bvx

1 c iff vars(b) = vars(c) and there exists a signal m, a behavior
d and a chain C= tags(d(m)) = tags(d(x))∪ tags(c(x)) such that d/m≥ b,
d/mx= c/x and, for all t∈C,

(1) t ∈ tags(d(x)) ⇒ d(x)(t) = d(m)(t)∧xt →d mt

(2) t 6∈ tags(d(x)) ⇒ d(m)(t) = d(m)(predC(t))
(3) t ∈ tags(c(x)) ⇒ c(x)(t) = d(m)(t)∧∀y∈ vars(d)\m,yt →d xt

(4) t ∈ tags(c(x)) ⇒ c(x)(t) = d(x)(t)∨c(x)(succC(t)) = d(x)(t)

For all t ∈C, rule (1) says that, when an inputd(x) is present at some
time t, thend(m) takes its value. If no input is present alongx at t, rule(2),

A behavioral modeling framework 21

thend(m) takes its previous value. Rule(3) says that, if the outputc(x)
is present att, then it is defined byd(m)(t). Finally, rule(4) requires this
value to either be the present or previous value of the input signald(x),
binding the size of the buffer to one place.

d(x) : • • • •↓(1) ↓(1) ↓(1) ↓(1)d(m) : • • −→(2)• • • −→(2)•↓(3) ↓(3) ↓(3) ↓(3)c(x) : • • • •
(4) (4) (4) (4)

Fig. 20. Timing and scheduling relations through finite relaxation.

Definition 1 accounts for the behavior of bounded FIFOs in a way
that preserves scheduling relations. It implies a series of (reflexive-anti-
symmetric) relationsvn (for n > 0) which yields the (series of) reflexive-
symmetric flow relations≈n to identify processes of same flows up to a
flow-preserving first-in-first-out buffer of sizen. We writebv1 c iff bvx

1 c
for all x ∈ vars(b), and, for alln > 0, b vn+1 c iff there existsd such
that bv1 d vn c. The largest equivalence relation modeled in the poly-
chronous model of computation consists of behaviors equal up to a timing
deformation performed by a finite FIFO protocol:b andc arefinitely flow-
equivalent, written b ≈∗ c, iff there existsn > 0 andd s.t. d vn b and
dvn c.

6.3. A compositional methodology

We say that a processP is finitely flow-preserving iff given finitely flow-
equivalent inputs, it can only produce behaviors that are finitely flow equiv-
alent.

Definition 2 (finite flow-preservation).
P is finitely flow-preservingwith I ⊂ in(P) iff for all behaviors b,c of

[[P]], if (b|I)≈(c|I) then b/I ≈∗ c/I.

Example of finitely flow-preserving processes are endochronous pro-
cesses(8). An endochronous process which receives flow equivalent in-
puts produces clock-equivalent outputs. It hence forms a restricted sub-
class of finitely-flow preserving processes. Furthermore, notice that flow-
preservation is stable to the introduction of a wrapper ofP consisting of
a finite FIFO buffering protocol. A refinement-based design methodology
based on the property of finite flow-preservation consists of characterizing
sufficient invariants for a given model transformation to preserve flows.

22 J.-P. Talpin et al.

Definition 3 (finite flow-invariance).
The transformation of P into Q such that I⊂ in(P) = in(Q) is finitely

flow-invariantiff ∀b∈ [[P]], ∀c∈ [[Q]], (b|I)≈∗(c|I)⇒ b≈∗ c

The property of finite flow-invariance is a very general methodologi-
cal criterion. For instance, it can be applied to the characterization of cor-
rectness criteria for model transformations such as protocol insertion or
desynchronization. LetP andQ be two finitely flow-preserving processes
andR a protocol to linkP andQ, such as a finite FIFO buffer, or a double
hand-shake protocol, or a relay station(6), or a loosely time-triggered ar-
chitecture(4). In definition 4, we writeb[x/y] for the behavior resulting of
substitution of the signal namey by the signal namey in the domain of the
behaviorb and[xi/yi]0<i≤n for the compposition ofn substitutions.

Definition 4 (flow-preserving protocol).
The process R is a flow-preserving protocol iff there exists n> 0 such

that inputsin(R) = {x1..n} are finitely flow-equivalent to outputsout(R) =
{y1..n}, i.e.,∀b∈ [[R]],b|x1..n ≈∗ (b|y1..n[xi/yi]0<i≤n)

The wrapperR〈P〉 of a processP with a protocolR is defined by redi-
recting the signals ofP to R. In definition 5, this redirection is modeled
by substituting signal names: we writeP[x/y] for the process resulting of
substitutingy by x in P.

Definition 5 (wrapper).
Let P be a process such thatin(P) = {x1..m} andout(P) = {xm+1..n}.

Let R be a flow-preserving protocol such thatin(R) = {y1..n} andout(R) =
{z1..n}. The wrapper of P with R is the template process noted R〈P〉 and
defined by:

R〈P〉 def=
(

((R[xi/zi]m<i≤n) [xi/yi]0<i≤m)
|| (P[yi/xi]m<i≤n) [zi/xi]0<i≤m

)
/y1..nz1..n

A sufficient condition for the insertion of a protocol between two syn-
chronous processesP andQ to finitely preserve flow is to guaranty that
P|I ||Q|I is finitely flow preserving forI = vars(P)∩vars(Q), meaning that
all communications betweenP andQ via a shared signalx∈ I should be
flow preserving and thatP andQ may otherwise evolve independently.

Property 2 (protocol insertion).

A behavioral modeling framework 23

If R is a flow-preserving protocol andP is finitely flow-preserving then
R〈P〉 is finitely flow-preserving. IfR is a flow-preserving protocol andP,
Q, P|I ||Q|I are finitely flow-preserving thenR〈P〉 ||R〈Q〉 is finitely preserv-
ing (I = vars(P)∩vars(Q)).

7. FURTHER APPLICATIONS

We have introduced a type system allowing to model the control and data
flow graphs of a given imperative program in intermediate form. Applica-
tions of the proposed type system encompass optimization and verification
issues encountered in system design.

7.1. Rethreading

Because our type system entirely model the control and data-flow of appli-
cation components and architecture functionalities, one can operate global
optimization on the whole model of the application. Signal, in particular,
implements the notation of our type system using data-flow equations and
allows for the generation of sequential code by employing a global control-
flow graph transformation called hierarchization(2). Hierarchization con-
sists of hooking elementary control flow graphs (in the form of if-then-else
structures). For instance,
let h3 be a clock computed using
h1 and h2 and h be the head of a
tree in which h1 and h2 are com-
puted. Then h3 can computed af-
ter h1 and h2 and placed under h.

Example 5.The implications of hierarchization for code generation can be
outlined by considering the specification of one-place buffer. The process
buffer has inputx, outputy and implements two functionalities.

buffer < x,y >
def= alternate < x,y > ||current < x,y >

One is the processalternate which desynchronizes the signalsx andy by
synchronizing them to the true and false values of an alternating boolean
signals.

alternate < x,y >
def=

(
s0 = true || x̂ = s|| ŷ = ¬s||s′ := ¬s

)

24 J.-P. Talpin et al.

The other functionality is the processcurrent. It defines a cell in which
values are stored at the input clock ˆx and loaded at the output clock ˆy.

current < x,y,b >
def=

(
r0 = b|| r ′ := x|| x̂⇒ y := x|| ŷ\ x̂⇒ y := r

)
We observe thats defines the master clock ofbuffer. There are two other
synchronization classes,x andy, that corresponds to the true and false val-
ues of the boolean flip-flop variables, respectively. This defines three nodes
in the control-flow graph of the generated code (Figure 21). At the master
clock ŝ, the value ofs is calculated fromzs, its previous value. At the sub-
clock s= x̂, the input signalx is read. At the sub-clock¬s= ŷ the output
signaly is written. Finally, the new value ofzsis determined.

buffer_iterate () {
s = !zs;
cy = !s;
if (s) { if (!r_buffer_i(&x)) return FALSE; }
if (cy) { y = x; w_buffer_o(y); }
zs = s;
return TRUE; }

Fig. 21. C code generated for the one-place buffer specification.

Operating this transformation on the model of a multi-threaded ap-
plication results in merging all threads into a single control-flow graph
whose scheduler foot-prints sequentially processes each elementary exe-
cution block upon a particular condition. In(14), we report a 300% average
speedup resulting of applying this optimization to real-time Java programs
compared to their execution using a commercial compiler.

7.2. Module checking

In (16), we define a behavioral module checking algorithm based on similar
principles as those exposed in the previous section. This system allows to
give guarantees As an example, consider a SystemC classm0 whose virtual
fields are the clocksx,y and a proceduref . Assume an explicit behavioral
type declaration#TYPE(f ,Q) which associatesf with a description of its
behavior: the propositionQ denotes its expected functionality. Let us as-
sociate the interfacem0 with the class parameterm1 of a template class
m2. The interfacem0 now gives a behavioral type to the methodf in the
class parameterm1 expected by the modulem2. The assumptionQ on the

A behavioral modeling framework 25

behavior ofm1. f is required to provide a guarantee on the behavior of the
modulem2 produced by the template class. Modulem3 is a candidate pa-
rameter form2. It structurally implements the interfacem0 and is annotated
with the guarantee#TYPE(f ,P), whereP is the type ofpgm. Now, let m4
be the class defined by the instantiation of the templatem2 and the param-
eterm3. To check the compatibility of the actual parameterm3 with the
formal parameterm0, we check the containment of the behaviors denoted
by the propositionP (the type of the actual parameter) in the proposition
Q (the type of the formal parameter). This amounts to check thatP implies
Q, either by model checking (ifQ contains state transitions) or by static
checking (ifQ is a ”stateless” property).

classm0{virtual sc clockx, y; virtualvoid f () {} #TYPE(f ,Q) };
template〈classm1〉#TYPE(m1,m0)

SC MODULE(m2) {SC CTOR(m2) {SC THREAD(m1. f)sensitive� x } };
classm3{sc clockx, y; void f () { pgm} #TYPE(f ,P) };
m2〈m3〉m4;

Fig. 22. Type assumptions and guarantees in the SystemC module system.

We consider a simple and minimalistic module system model for the
purpose of exemplifying the scalability of our technique to structuring el-
ements of general-purpose languages such as Java, C++ or SystemC. A
componentmod in an architecture is a class definitionclassm{dec}, a
template declarationtemplate〈classx : m〉modor a sequence of modules
mod;mod. A class consists of a sequence of declarations. The keyword
usem allows to use the members of classm within the current module
(hence name elaboration is assumed to be explicit for simplification pur-
poses). Declarationsdecassociate locationsx with native classesmor tem-
plate class instancesm〈m1..k〉 and methods with a namef and a definition
pgm. For instance,integerx defines an integer variablex (in Java or C)
while sc signal〈boolean〉 x defines a boolean signalx in SystemC. As we
focus on typing program module behaviors we assume no sub-typing rela-
tion between data-types.

mod::=classm{dec} | template〈classx : m〉mod| mod;mod
dec ::=m〈n1..k〉x | usem | m f(x1..k) {pgm} | dec;dec

Fig. 23. Abstract syntax for declarations and modules.

26 J.-P. Talpin et al.

We define our module system starting from the behavioral type system
of Section 5. The typeT of a modulemconsists of an environmentE (that
associates functionsf with behaviors and variablesx with data-types) and
of a proof obligationC . The typeT1 → T2 denotes a template class that
produces a module of typeT2 given a parameter of typeT1.

(type)T ::= E /C |Λx : T1.T2

A proof obligation is a conjunction of propositions of the formP⇒ Q. A
proof obligationP⇒Q is incurred by the instantiation of a template class,
whose formal parameter has typeP and by an actual class parameter, of
typeQ.

(obligation)C ::= true |P⇒Q|C ∧C

The synthesis of proof obligations pertaining on the correctness of module
composition is defined by the relationE `mod: E /C and by induction on
the syntax of modules and declarations. Rule(a) associates the locationx
with the type namem in the class-field type[x : m]. Rule(b) allows to use
or open a modulem.

(a) E `mx: [x : m] (b) E [m : T] ` usem : T

Rule (c) associates a method definitionf with the class-field type[f :
λx1..kxL.〈P,xexit〉]. Its side-condition(∗) is thatL = labs(pgm) is the set
of labels defined inpgmand thatL = start(pgm) is the entry point ofpgm.
It defines the propositionP and the continuation or output clockxexit of the
method f parameterized by its sequencex1..k of input variables, its result
variablex, and the labelL that defines its input clock. To process the func-
tion, we associate its reutrn value, denoted byreturn to a signalx used to
carry its value.

(c)
L,E [return : x] ` L : blk;pgm: P (∗)

E `m f(x1...k) {pgm} : [f : λx1..kxL.〈P/L ,xexit〉]

Rule(d) sequentially processes the declarationsdecin a module. The con-
strainttrue is omitted in rules (a) and (c).

(d)
E ` dec1 : E1/C1 E]E1 ` dec2 : E2/C2

E ` dec1;dec2 : E1]E2/C1∧C2

Class-field declarations contribute to building the typeT of a module. We
write E `m : T iff E contains[m : T]. An extension notedE1]E2 is de-
fined byE2 and all class names and class-field names ofE1 not overridden

A behavioral modeling framework 27

by a declaration inE2. Rule(α) defines the typeT of a class by that of its
field declarations.

(α)
E ` dec: T

E ` classm{dec} : [m : T]

Rule(β) defines the type of a template instancem1〈m2〉m. LetΛ(x : T1).T
be the type of the functorm1. LetT2 be the type of the parameterm2. If the
subtyping relationT1 ≤ T2 implies the proof obligationC then the type
of m is T [m2/x] (x is substituted bym2).

(β)
E `m1 : Λ(x : T1).T E `m2 : T2 T1 ≤T2 ⇒ C

E `m1〈m2〉m : ([m : T]/C)[m2/x]

Rule (γ) defines the type of a template declarationtemplate〈classm1 :
n1〉mod. Provided theassumptionthat the formal parameterm1 of the
template has the typeT1 (that of the virtual class namen1) the template
guaranteesthat the modulem2 it defines has typeT2. Hence the type
Λ(m1 : T1).T2 for modulem2.

(γ)
E ` n1 : T1 E [m1 : T1] `mod: [m2 : T2]

E ` template〈classm1 : n1〉mod: [m2 : Λ(m1 : T1).T2]

Rule(δ) processes module declarations in sequence.

(δ)
E `mod1 : E1/C1 E]E1 `mod2 : E2/C2

E `mod1;mod2 : E1]E2/C1∧C2

Finally, the resolution of the behavioral sub-typing relationT1 ≤ T2 is
defined by structural induction. It reduces to the proof of a conjunction of
propositionsP1 ⇒ P2.

7.3. Design checking

Properties pertaining on common design errors can easily be expressed
and checked using our type system. Whereas related approaches consist of
proposing an ad-hoc type system for analyzing a specific pattern of design
errors: race conditions, deadlocks, threads termination; and in a given pro-
gramming language: Java, C, SystemC, our type system provides a generic
framework to perform verification via model checking of behavioral prop-
erties of embedded systems described using imperative programming lan-
guages.

28 J.-P. Talpin et al.

Termination.A common design error found in embedded system de-
sign is the unexpected termination of a thread due to, e.g., an uncaught
exception. Here, the termination of a threadf can simply be expressed
by the accessibility of the propertyf exit = 1. Unexpected termination can
hence be avoided by checking thatf satisfiesf exit = 0.

Deadlocks.Another common design error is a wait statement that does
not match a notification and yields the thread to block. LetL1...n be the
clocks of the blocksL1...n in which a lockx is notified. Waiting forx at a
given labelL eventually terminates ifP satisfiesL∧¬(∧n

i=1Li) = 0.
Races.Similarly, concurrent write accesses to a variablex shared by

parallel threads can be checked exclusive by considering the input clocks
e1,..n of all write statementsx = f (y,z) by verifying thatP satisfies(ei ∧
(∨ j 6=iej)) = 0 for all 0< i ≤ n.

Larger case-studies reporting applications of our technique in system
design and verification are the complete model of a finite input response
(FIR) filter starting from the SystemC 2.0.1 distribution(5). In this case
study, we demonstrate the benefits of modularly associating each System
module to a behavioral type interface to perform optimizations and veri-
fications which are modular and yet sensitive to the architecture in which
modules or components are placed as reflected by the architecture’s be-
havioral type and by application of an assumption-guarantee reasoning
principle. A more recent and larger experiment applies the principles pre-
sented in this article to co-modeling by considering predefined SystemC
components and connecting them around a bus architecture by giving a
synchronous data-flow model of the interconnection wrappers.

8. RELATED WORK

By contrast to traditional type systems, which focus on rendering data-
structure abstractions, behavioral type systems(10, 13) are concerned with
the abstraction of control structure in concurrent programs.

A related direction of research is software model checking using pop-
ular tools like Bandera(17), Mops(18), Verisoft (19), Modex(9, 20), Slam(21),
CBMC (22), Magic (23), Blast (24), Pathfinder(25). Most software model
checking tools proceed by extracting temporal logic models of source pro-
grams (either Java or C but raraely both) and perform sophisticated and
efficient abstractions to drastically accelerate property verification.

Our approach contrasts with the software model checking trend in
that it is primarily aimed atmodelingsoftware and then perform either
of global model transformations (desynchronization, rethreading, etc) and
code generation(14), conformance checking by finite-flow equivalence us-
ing model checking techniques(15) or modular state-less abstraction for

A behavioral modeling framework 29

efficient property verification(5). As such, our approach most closely re-
lates to that of Modex(20) in which temporal property models are ex-
tracted for later verification with Spin. We experienced that representing
such models using executable specifications expressed in a multi-clocked
synchronous model offers the additional benefit of operating orrectness-
preserving model transformations such as protocol synthesis (desynchro-
nization (15)) or static scheduling (rethreading(14)). Finally, and unlike
most related approaches in SMC, which are geared towards a particular
programming language, we focus on a language-independent intermediate
representation of Gnu’s GCC.

We share the aim of a scalable and correct-by-construction exploration
of abstraction-refinement of system behaviors with the work of Henzinger
et al. on interface automata(1). Our approach primarily differs from in-
terface automata in the data-structure used in the Polychrony workbench:
clock equations, boolean propositions and state variable transitions ex-
press the multi-clocked synchronous behavior of a system. Compared to
an automata-based approach, our declarative approach allows to hierarchi-
cally explore abstraction capabilities and to cover design exploration with
the methodological notion of refinement along the whole design cycle of
the system, ranging from the early requirements specification to the latest
sequential and distributed code-generation(8).

9. CONCLUSIONS

Our contribution contrasts from related studies by the capability to capture
a complete behavioral model of the type-checked system as well as model
abstractions expressed at a scalable degree of precision. In our type sys-
tem, scalability ranges from the capability to express the exact meaning of
the program, in order to make structural transformations and optimizations
on it (just as in a traditional type system), down to properties expressed
by boolean equations between clocks, allowing for a rapid static-checking
of design correctness properties. Our system allows for a wide spectrum
of design abstraction and refinement patterns to be applied on a model,
e.g. abstraction of states by clocks, abstraction of existentially quantified
clocks, hierarchic abstraction, in the aim of choosing a better degree of
abstraction for faster verification.

The main novelty in our approach is the use of a multi-clocked syn-
chronous formalism to support the construction of a scalable behavioral
type inference system forde factostandard design and programming lan-
guages, and the materialization of a companion refinement-based design
methodology imposed through the strong typing policy of a module sys-
tem, that reduces compositional design correctness verification to the vali-

30 J.-P. Talpin et al.

dation of synthesized proof obligations. The proposed type system allows
to capture the behavior of an entire system-level design and to re-factor
it, allowing to modularly express a wide spectrum of static and dynamic
behavioral properties, and to automatically or manually scale the desired
degree of abstraction of these properties for efficient verification. The type
system is presented using a generic and language-independent intermedi-
ate representation. It operates transformations implemented in the platform
Polychrony, to perform refinement-based design exploration. It yields to
SAT and model checking verification tools for an efficient verification of
expected design properties and an early discovery of design errors.

REFERENCES

1. DE ALFARO, L., HENZINGER, T. A. “Interface theories for component-based design”.In-
ternational Workshop on Embedded Software. Lecture Notes in Computer Science v. 2211.
Springer-Verlag, 2001.

2. AMAGBEGNON, T. P., BESNARD, L., LE GUERNIC, P. “Implementation of the data-flow
synchronous language SIGNAL ”. In Conference on Programming Language Design and Im-
plementation. ACM Press, 1995.

3. BENVENISTE, A., LE GUERNIC, P., JACQUEMOT, C. “Synchronous programming with
events and relations: the SIGNAL language and its semantics”. InScience of Computer Pro-
gramming, v. 16. Elsevier, 1991.

4. BENVENISTE, A., CASPI, P., LE GUERNIC, P., MARCHAND, H., TALPIN , J.-P., TRI-
PAKIS, S. “A protocol for loosely time-triggered architectures”. InEmbedded Software Con-
ference. Lecture Notes in Computer Science, Springer Verlag, October 2002.

5. BERNER, D., TALPIN , J.-P., LE GUERNIC, P., SHUKLA , S. K., “Modular design through
component abstraction”. InInternational conference on compilers, architectures and synthesis
for embedded systems. ACM Press, September 2004.

6. CARLONI , L. P., MCM ILLAN , K. L., SANGIOVANNI -V INCENTELLI , A. L. “Latency-
Insensitive Protocols”. InProceedings of the 11th. International Conference on Computer-
Aided Verification. Lecture notes in computer science v. 1633. Springer Verlag, July 1999.

7. GAMATI É, A., GAUTIER, T. ”Synchronous modeling of avionics applications using the SIG-
NAL language”. InReal-time embedded technology and applications symposium. IEEE Press,
2002.

8. LE GUERNIC, P., TALPIN , J.-P., LE LANN , J.-C. Polychrony for system design. InJournal
of Circuits, Systems and Computers. Special Issue on Application-Specific Hardware Design.
World Scientific, 2002.

9. HOLZMANN G.J. Software Model Checking. InJournal of Circuits, Systems and Computers.
Special Issue on Application-Specific Hardware Design. World Scientific, 2002.

10. NIELSON, F., NIELSON, H. “ Type and Effect Systems: Behaviours for Concurrency”. IC
Press, 1999.

A behavioral modeling framework 31

11. NOVILLO , D. “Tree SSA, a new optimization infrastructure for GCC”. GCC developers
summit, 2003.

12. PNUELI , A., SHANKAR , N., SINGERMAN, E. Fair synchronous transition systems and
their liveness proofs.In Symposium on Formal Techniques in Real-time and Fault-tolerant
Systems. Lecture Notes in Computer Science v. 1468. Springer, 1998.

13. S. K. RAJAMANI AND J. REHOF. “A behavioral module system for theπ-calculus”.Static
Analysis Symposium. Lecture Notes in Computer Science. Springer, July 2001.

14. TALPIN , J.-P., GAMATI É, A., LE DEZ, B., BERNER, D., LE GUERNIC, P. Hard real-time
implementation of embedded software in JAVA. InFIDJI’2003. Lectures Notes in Computer
Science, Springer, November 2003.

15. TALPIN , J.-P., LE GUERNIC, P., SHUKLA , S., GUPTA, R., DOUCET, F. “Formal refine-
ment checking in a system-level design methodology”.Fundamenta Informaticae. IOS Press,
August 2004

16. TALPIN , J.-P., BERNER, D., SHUKLA , S. K., LE GUERNIC, P., GUPTA, R. “A behav-
ioral type inference system for compositional system design”.Application of Concurrency to
System Design. IEEE Press, 2004.

17. HATCLIFF, J., DWYER, M. “Using the Bandera Tool Set to Model-check Properties of
Concurrent Java Software”.Invited tutorial, conference on concurrency theory. Lectures
Notes in Computer Science V. 2154. Springer, 2001.

18. CHEN, H., DEAN, D., WAGNER, D. “Model Checking One Million Lines of C Code”.
Network and Distributed System Security. ISOC, February 2004.

19. GODEFROID, P. “Software Model Checking: The VeriSoft Approach”.Technical Memo-
randum ITD-03-44189G. Bell Labs, March 2003.

20. HOLZMANN , G., SMITH , M. “An automated verification method for distributed systems
software based on model extraction”.IEEE Transactions on Software Engineering, v. 28. IEEE
Press, April 2002.

21. BALL , T., COOK, B., DAS, S., RAJAMANI , S. “Refining Approximations in Software
Predicate Abstraction”.In Tools and Algorithms for the Construction and Analysis of Systems.
Lecture Notes in Computer Science, v. 2988. Springer, 2004.

22. KROENING, D., CLARKE , E., LERDA, F. “A Tool for Checking ANSI-C Programs”.In
Tools and Algorithms for the Construction and Analysis of Systems. Lecture Notes in Com-
puter Science, v. 2988. Springer, 2004.

23. CHAKI , S., CLARKE , E., GROCE, A., JHA , S., VEITH, H. “Modular Verification of Soft-
ware Components in C”.In Transactions on Software Engineering, v. 30. IEEE Press, JUne
2004.

24. BEYER, D., CHLIPALA , A., HENZINGER, T. “The Blast query language for software ver-
ification”. International Static Analysis Symposium. Lecture Notes in Computer Science, v.
3148. Springer, 2004.

25. V ISSER, W., HAVELUND , K., BRAT, G., PARK , S., LERDA, F. “Model Checking Pro-
grams”.Automated Software Engineering Journal, v. 10, April 2003.

