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Abstract. In this paper, following the way opened by a previous paper deposited
on arXiv, see[7], we give an upper bound to the number of states for a hyperbolic
cellular automaton in the pentagrid. Indeed, we prove that there is a hyperbolic
cellular automaton which is rotation invariant and whose halting problem is un-
decidable and which has 9 states.

1. Introduction

In [7], we gave a general tool to embed a 1D-cellular automaton into a whole
family of tilings of the hyperbolic plane and into two tilings of the hyperbolic 3D-
space.

In this paper, we try to improve the method in order to find a strongly universal
cellular automaton in the pentagrid. We remind the reader that by strong univer-
sality, we mean a cellular automaton which mimics the computation of universal
devices starting from a finite configuration. We also remind the reader that the
pentagrid is the tiling {5, 4}, i.e. the tessellation of the hyperbolic plane based on
the regular pentagon with right angles, see [2, 4]. Within the limit on the number
of pages given to the author, the paper cannot be self-contained. This is why we
assume that the reader is familiar with both cellular automata and their implemen-
tation in tessellations of the hyperbolic plane, and we refer him/her to the above
references and to this additional one, [5], in case he/she would not be familiar with
these notions.

In Section 2, we give the outline of the construction. In Section 3 we implement
the preliminary structure of the implementation. In Section 4 we give a construction
with 13 states. In Section 5, we reduce this number by one state, which will give
the way to Section 6 where the number of states is reduced to 9 of them. Section 7
concludes the paper with indications on further work.

Key words and phrases: cellular automata, strong universality, hyperbolic spaces, tilings.
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2. Scenario

In traditional literature on cellular automata, a quiescent state is defined as a
state q such that if a cell and all its neighbours are under state q, the cell remains
under state q at the next time of the clock. By analogy with the empty squares of
the tape of a Turing machine which are said to contain the blank symbol, we shall
fix a quiescent state and we shall call it the blank.

For cellular automata which have a blank state, an initial finite configuration is
a configuration in which all cells are blank except, possibly, finitely many of them.
It is plain that if the initial configuration is finite, all further configurations are also
finite, even when the computation requires an infinite time: in this case, there may
be no uniform bound to the size of each configuration.

Let us now turn to the idea of the construction.
The idea of [7], which embeds any 1D-cellular automaton with infinite initial

configuration is very simple: it consists in embedding the 1D-structure of the con-
sidered cellular automaton into the desired tiling of the hyperbolic plane. In this
construction, we simply had to devise a simple way to make the cells of the embed-
ded structure different from the other cells of the tiling. In this way, we can easily
transport the rules of the 1D-cellular automaton into those of the hyperbolic cellular
automaton. The key point is that in this construction, the differentiation is made a
priori: it is given in the initial configuration.

If we wish to implement a 1D-cellular automaton which starts its computation
from a finite configuration, then we have to go on the embedding at the same time as
the computation is going on. And so, we have to find out a simple way to construct
the 1D-structure together with the computation. But this is not enough. Remember
that the halting of the computation of a cellular automaton is defined by the oc-
currence of two consecutive identical configurations. And so, when the computation
of the 1D-cellular automaton is completed, we have to stop the construction of the
1D-structure.

In [3], the propagation of the tree structure of the pentagrid is implemented in
a triangular cellular automaton, and this automaton can easily be adapted to the
pentagrid, also as a rotation invariant one. Rotation invariance means that the
new state is unchanged if we perform a circular permutation on the neighbours of the
cell, this cell being excepted. This was done in [5] and repeated, as an example in [6],
not in the shortest way as in that context the goal was that a cell should recognize
whether it is black or white with respect to the Fibonacci structure simply by looking
at its neighbourhood. Here, we do not really bother of this condition so that instead
of six states as it is the case in [5], three states are enough: the blank, a white one
and a black one. As we have the choice for the place of the initial configuration,
we can place it around the central cell which spares us the burden of initializing
the propagation of the structure: it is enough to assume it is installed in the initial
configuration and to continue it, this spares one state.

However, we have to stop the computation, which means that a signal has to be
sent to stop the others. In order to perform this task, it is needed to slow down the
propagation. Indeed, the speed of a signal is at most 1. And so, if the halting signal
travels at speed 1, it can catch up previously sent signals only if these latter signals
travelled at a lower pace. Now, slowing down necessarily costs states as we shall see.
But, fortunately, the 1D-cellular automaton which we shall consider is also slow, so
that we shall not have to slow down too much.
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After that, we have to look at the way to find a 1D-cellular automaton which is
strongly universal with a small number of states. We shall use the implementation
of the 7×4 universal Turing Machine of Marvey Minsky which is precisely described
in [1]. This gives us a 1D-, strongly universal cellular automaton with 7 states. In
the rest of the paper, we denote this cellular automaton by L.

Now, to see how many states we can obtain, we have to go into finer details of
the implementation. The first step is the propagation of the 1D-structure which is
a common feature of the three cellular automata which we construct in the paper.

3. Implementation of the 1D-structure

In [7], in the case of the pentagrid, we implemented the line of a 1D-cellular
automaton along a line of the pentagrid. We remind the reader that such a line
is any line which contains a side of a pentagon of the tiling: such a line contains
the sides of infinitely many pentagons which can be gathered into two sequences of
pentagons indexed by ZZ, two consecutive pentagons having a side on the line, these
just indicated sides being also consecutive.

Here, as we start from a finite configuration, we have at most finitely many cells
along such a line and our task is to devise a way to go on this line as a continuation
of the segment which already exists.

Figure 1: The first two configurations of the propagation of the 1D-structure. Left-
hand side: initial configuration, say time 0. In dark red, cells in state B,
in light yellow, the cell in state W0. Right-hand side: time 1. In bright
red, the cell in state B0. In green, the cell in state W1. The blue cells
represent the blank denoted by N: the different hues of blue remind the
tree structure of the tiling, but they represent a single state. Note that
here, the central cell is not the central pentagon of the figure, it is the dark
red cell in contact with the light yellow, green one in the left-, right-hand
side picture respectively.

Now, the problem can be a bit simplified by the fact that L possesses an inter-
esting feature. The cellular automaton L implements a Turing machine which is an
interpreter of tag systems. This mean that we may assume that the Turing machine
works on a semi-infinite tape: i.e. the tape has an end but it is infinite in one
direction only. This is particularly interesting for our implementation: this allows
us to implement a ray only, so that we can put the end of this ray around the central
cell. For the propagation algorithm, we can define the first two configurations as
illustrated by Figure 3.

We need six states for the propagation of the ray: N, B0, B, W0, W1 and W.
Informally, cells in B will follow a branch of black nodes of one of the Fibonacci
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trees rooted around the central cell. This branch is the leftmost branch of the chosen
Fibonacci tree. Now, the cells W follow the rightmost branch of the next Fibonacci
tree while clock-wise turning around the central cell. It is easy to remark that the
pentagons of these two branches share a ray which supports one side of each one of
these pentagons.

The propagation itself advances at a speed 1/2. This is suggested by the presence
of the states B0 and B as well as by that of the states W0 and W1.

The mechanism is the following. A new B is produced by the transformation
of B0 into B. Now, a new B0 is obtained by the continuation of both the black
branch and the white one. It is created by the simultaneous occurrence of a B and
a W0 around a blank cell abutting the cell at contiguous sides and in a precise
order: while counter-clockwise turning around the cell, we first meet B and then,
immediately, W0. The three cells, the blank, B and W0 share a common vertex.
We know that there is a fourth cell. In the initial configuration it is a cell in B. In
the other configurations, when this local configuration occurs, the fourth cell is a
cell in W: it is a cell in W1 which evolved into W. The roles between W0 and W1

Figure 2: Left-hand side: time 2 of the propagation. Right-hand side: time 3 of the
propagation. In bright yellow, state W which indicates a fixed cell. The
blue cells have the same meaning as in Figure 3.

are the following. A cell in W0 becomes N at the next time if it is surrounded by
cells in N. Otherwise, it becomes W1. Now, a cell in W1 becomes W if and only if
it sees a neighbour in B0. Otherwise, it becomes N. Now, a cell in N becomes W0

if and only if it has one neighbour in W1 exactly. Otherwise, it remains N.
Now, we can see that the configuration which allows a cell in N to become B0

requires the cells in W or W0 to be one step in advance with respect to those in B

and B0. This is also allowed by the progression of the cells in W0. The condition
on W0 allows us to stop the progression of the W0’s which do not follow the ray.
Whence the importance on the condition of the transformation of the W0’s and also
of the W1’s which disappear unless they can see a cell in B0, in which case they
become W.

We have no room here for the table of the rules. Such tables can be found in [8].
We refer the reader to this paper for them. In the present paper, the expression the

rules for A refers to the tables in [8] which display the rules of the automaton A.
Note that in all the tables of [8], there are two kinds of rules. In the first group,
the current state of the cell is left unchanged: this is why these rules are called
conservative. In the second group, the current state of the cell is changed: these
rules are called propagation rules.

Basically, there are two propagation rules: the rule N B W0 N N N B0 and the
rule N W1 N N N N W0. In both of them, the blank is changed into a cell which will



172 M. MARGENSTERN

contribute to the extension of the 1D-structure. Now, the other rules contribute to
create the context required by these two propagation rules as well as the transfor-
mation of a first signal, B0 and W0 into the final one, B and W, respectively.

The fact that we have three signals for the white node instead of two as the

speed of progression of the 1D-structure is
1

2
is explained by the structure of the

pentagrid: when a cell in W1 propagates the signal W0, this is performed upon
several cells, at least two of them, while it is needed for only one of them. This is
the reason of the signal W1 which is an intermediate step between W0 andW. Now,

in order to keep the speed
1

2
, the alternation is performed between W1 and W0.

It is now time to go to the other parts of the implementation. In these parts,
we shall refer to the cells in B and in W of the just described construction as the
ray in which the cells in B constitute the track and the cells in W constitute the
support of the track.

Figure 3: Illustration of the propagation from the beginning until a few steps. In
bright yellow, state W which indicates a fixed cell. The blue cells have
the same meaning as in Figure 3.

4. The 13-state cellular automaton

First of all, we remind the reader that in this paper, we shall consider deter-
ministic cellular automata only, as L is itself a deterministic 1D-cellular automaton.
Let us denote by A the automaton which implements the computation performed
by L. We require A to be rotation invariant.

In the previous propagation, we consider that B represents the blank of L which
has to be distinct from the blank N of A. Indeed, if we give the same state for the
two blanks, we shall have problems with the propagation, as can easily be seen from
the scenario of Section 2.

An important point is that in the working of L, it can be noticed from [1]
that the configuration of L, i.e. the smallest interval which contains the non blank
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cells, remains the same during at least three consecutive steps and that it may go
outside by one cell, only at the fourth time. This means that the progression of
the configuration of L is much slower than the propagation of the ray described
in Section 3. As a consequence, when the signal of L goes outside the current
configuration, the track is ready to deliver free blank cells.

Accordingly, the computation of A is able to perform that of L during the
propagation stage. In fact, it is enough to consider that in the process described
in section 3, B can be any of the states of L and that it must be the blank for
the cell in B0 which is transformed into B. This latter B, at this moment, is the
blank of L. Indeed, the cells of the track are the single one which, except the ones
which are at the ends of the track, have two neighbours which are also cells of the
track. In fact, except for two exceptional cells, a rule of the track is of the form
y x W z N N u where xyz → u is a rule of L. For the exceptional cells, the origin
and its neighbour of the track, the cell has three neighbours under N, and the origin
has a single neighbour on the track. All these features can easily be seen from the
pictures of Figure 3, there cannot be ambiguity about these local configurations.

This means that, presently, as B is one of the states of L, A has 12 states as L
itself has 7 states, see [1].

Now, let us closer look at the working of L. In [1], L mimics rather closely the
computation of Minsky’s Turing machine. In particular, there is a state T , notation
of [1], which represents the position of the head of the machine. In the simulation
devised in [1], the halting is performed by the disappearance of T . Our task is to
change this transformation into a signal which will trigger the stage at the end of
which the computation of A will also halt in the traditional sense of the halting of
a cellular automaton starting from a finite configuration, see Section 2.

To perform this task, we replace the instruction 0Ty → 0 of the table of L in [1]
by the instruction OTy → H, where H is a new state of A. Also, we append the
new instructions HyB → B, B0T → B, where B is in both cases , the blank of L.
Note that 0 T → is a rule of L, see [1].

Now, we can make a bit more precise the scenario depicted in Section 2. As
just indicated, H appears on the track. In some sense it is far from the ends as we
can put several blanks to the left of the leftmost non blank cell of the Turing tape
in the initial configuration. We remind the reader that we may choose the initial
configuration and we may choose it so that the initial segment of L outside which
there are only blank cells is in middle of the initial configuration, with at least two
blank cells outside this segment. We decide that H does not affect the cells of the
track which will remain unchanged. However, we decide that a cell in W which sees
at least one H among its neighbours becomes H itself.

In this way, the cells of the support of the track are progressively changed to H.
The corresponding rules are given in [8] and they are illustrated by Figure 4. We
have just to see that we can effectively stop the generation of cells in W0 and in W1,
which will to its turn stop the production of B0. We also have to check that no
problem arises on the fixed end of the ray which represents the leftmost part of the
Turing tape.

Figure 4 shows how the propagation of the ray is stopped by the arrival of the
states H. For simplicity, call signal H, the propagation of H replacing the state W

in the cells of the support of the track.
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Figure 4: The propagation of the H-signal. Note that the back ground of blue cells
is the same as in the previous figures.

First, assume that the signal H arrives as indicated in the figure: almost all cells
of this part of the support are now in state H, and just a single cell in W remains
whose next neighbour is a cell in W1. Necessarily, the cell in W is changed to H

and the cell in W1 becomes W: the cell in W1 cannot see what is on another side of
its neighbour in W. And so, at the next step, we have a cell in W again for which
one neighbour is in H and two others are in W0. At the next time, the cells in W0

become W1 and the cell in W becomes H. Now, the cell in H is neighbouring a
cell in W1. If the cell in W1 turns to W again, then the signal will never stop
the propagation of the ray. And so, the cell in W1 turns to H when one of its
neighbours is in H: this is possible as no rule with the current state W1 involved
a neighbour in H. And this solves the problem: at the next time, the cells in W0

either have their five neighbours in N, or they have a neighbour in H. We decide
that the neighbouring of H makes a cell in W0 to turn to N too, and this stops the
process. It can be checked that the rules of [8] allow to perform this task. This was
done by the computer program which also computed the data for the PostScript file
producing Figures 3, 4, 4 and 4. The computer program also checked the rotation
invariance of the rules.

From the figure, it is not difficult to see that the situation illustrated by Figure 4
is general: as the signal goes faster than the progression of the ray, there will always
be a time when the rightmost cell in H will be close to the rightmost cell in W at
a time when this cell is neighboured by cells in W1. Indeed, if there are two cells
in W between the cell in H and the cell in W1, at the next time, the cell inW1

which is close to the track becomes W while the others become N, and the blank
cells close to W1 become W0. Now, between the rightmost cell in H and the cell
in W0, there are two cells in W. But at the next time, the cell in W close to H

becomes H and the cell in W0 which is close to the border becomes W1. And so, at
this time, we have the same configuration as the one illustrated by Figure 4. This
proves that, in all cases, the signal H stops the progression of the ray as this was
planned.

We remain with checking that the progression of the signal H in the other
direction is stopped by the origin: this is illustrated by Figure 4. See the rules
in [8].

At this point, we have proved the following result:
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Figure 5: How the H-signal stops the propagation of the ray.

Figure 6: How the H-signal is stopped at the other end of the ray, near its origin.

Theorem 4.1. There is a rotation invariant hyperbolic cellular automaton in the

pentagrid which starts from finite configurations and whose halting problem is unde-

cidable which has 13 states, the blank included.

Indeed, A satisfies the statement of Theorem 4.1. However, the reader may
wonder why we stated that the halting problem of A is undecidable and why we did
not state that A is strongly universal? This is due to a strange property of Minsky’s
Turing machine with 7 states and 4 letters, a property which is inherited by L as
it closely simulates this Turing machine. The problem lies in the way the Turing
machine detects the halting of the simulated tag system. In fact, in this machine,
when the halting production is found, the Turing machine erases its tape so that
when it stops, the content of the tape can no more be red. This ’defect’ of Minsky’s
machine was noticed and corrected by Rogozhin in [11]. Of course, ’morally’ the
machine is universal but rigorously, we can say no more than the statement of the
theorem.

5. The 12-state cellular automaton

Now, we can show that a slight tuning of A allows us to obtain a cellular
automaton which simulates the computation of L using 12 states only.

The idea is to replace the state H by one of the states of A which is not used by
L. In fact we have no choice. State W cannot be chosen as the support of the track
consists already of cells in W. Using W would require to circumvent the support
which would lead to more states. Similarly, neither W0 nor W1 can be used as they
contribute to continue the propagation. For the same reason, B0 is rules out and,
of course, B cannot be used: this does not give a clear signal that the computation
halted. And so, the only possibility is N.
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Let B be the cellular automaton in the pentagrid obtained from A by replacing
H by N in the rules for A.

We can easily see that under this replacement of H by N in the rules of [8],
the rule obtained from N H N N N W1 N is in conflict with the rule we get from
N W1 N N N N W0, as we require our cellular automaton to be rotation invariant.
Of course, the solution is to cancel the rule obtained from N H N N N W1 N. And
it works: there are no more conflicts, we just have a few repetitions with the rules
for A where H does not occur.

And so, we proved the following result:

Theorem 5.1. There is a rotation invariant hyperbolic cellular automaton in the

pentagrid which starts from finite configurations and whose halting problem is unde-

cidable which has 12 states exactly, the blank included.

Note that the remark about strong universality for Theorem 4.1 also holds for
this one.

Replacing H by N boils down to erase the support of the track so that, at the
end of the computations, we remain with the track only. This erasing occurs at
both ends of the ray. We have no room to provide the figures proving this point.
These figures can be found in [8]. They also show that the erasing process stops the
propagation of the ray.

Now, could we reduce again the number of states, using the same 1D cellular
automaton? The next Section gives a positive answer to this question.

6. The 9-state cellular automaton

We have already seen that to reduce the number of states from 13 down to 12,
we replaced the state H by the state N. We can try to go further in this direction.
In [7], we reduced the number of states for a weakly universal cellular automaton
from 3 states down to 2 ones by replacing the extra state in the simulation with
3 states by a state of the embedded 2-states cellular automaton. So that here, a
natural idea is to replace as many as we can states from N, W, W0, W1 and B0,
by states of L only. If we look at the rules displayed in [1], we can notice that
the symbol T has a rather empty sub-table. In particular, there is no rule assigned
to TTT , so that we can decide that TTT → T is used by our new automaton, C.
Inspired by the table of the rules given in [1], we shall see that W, W0 and B0 can
be replaced by T , 0 and A respectively. It is enough to check that performing these
replacements and taking the above figures, we obtain new rules which are rotation
invariant and compatible.

Indeed, consider the first stage of the working of B which consists in propagating
the structure at the same time when the computation is going on. It will be enough
to ensure that a pure propagation process can be performed under the new set of
states and that there is no contradiction between the new involved rules and the
rules derived from the computation of L. We also have to check that the new rules
do not disturb the computation itself.

Now, this latter condition entails that we cannot replace W1 by a state of L.
Indeed, imagine that W1 is a state of L, say α. There are occurrences of α on the
track. Each cell of the track has at least two neighbours in state N. Consider one
of these neighbours. It has α as a neighbour and all the others are in N. From
Section 3, we know that in this case, the state N is replaced by W0 and this W0,
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as it is not surrounded by cells in N only, will become W1. Now, if W1 has a
neighbour in A, which may happen in the track, this W1 becomes T which will
disturb the computation. Even in the case it will not disturb the computation,
the production of W0 nearby the track will be repeated periodically even when the
computation has stopped. So that we cannot replace W1 by a state of L. Can
we replace W0 by a state of L? The answer is yes: in the propagation context, a
cell in W0 has at least four neighbours in N. A cell of the track which is not the
blank has two neighbours in N exactly, so that it is possible to distinguish the role
of a distinguished α, depending on its neighbourhood. Moreover, a neighbour in N

of a cell in α would remain unchanged due to the rules N N N N N W0 N and
N N N N N B N.

6.1. The propagation of the ray

Let us have a new inspection of Figure 3. The tables of [8] indicate the rules
applied for going from one picture of the figure to the next one. As can be seen from
the table, after time 7, no new rule is needed for the propagation of the ray. We
can notice that these rules are obtained from those defined for the automaton A,
see [8], by replacing W, W0 and B0 by T , 0 and A respectively.

However, we have to keep in mind that, during the propagation, the computation
is going on. And so, we have to look at the cells of the track and of their neighbours
in order to check that they are compatible with the rules for C.

A rule which applies to a cell of the track is of the form

BNNB T BB (∗).

As we know, B is a generic name for the states of L. If we replace B by the states
of L, we get rules of the form

α0NNα
−1Tα1α

1

0
(∗∗)

where α
−1α0α1 → α1

0
is a rule of L. When α0 ∈ {B, y}, then the rule cannot be

confused with one of C which we have already defined. At the times up to 5, when
B is the current state, it is always , the blank of L. Now the rules for A, where
the current state is B and which are used up to time 6, either contain at least
three consecutive occurrences of N, or they contain an occurrence of A and so, they
cannot be confused with a rule (∗∗) whose current state would be . We have to
look at all the other possibilities.

Consider the case when B is T : the rules for A, where the current state is T are
those of the cell 1(1) at times 3, 4 and 5, and those of cell 0 at times 5 and 6. Only
one rule contains two consecutive occurrences ofN: the rule T N N T B B T . Note
that the relative positions of these two occurrences of N and that of T are fixed.
Now, when T occurs in a cell of the track, it is the single occurrence of this symbol
on the track as this is the case with L. In particular, in (∗∗), if α0 = T , then α1

or α
−1 must be and the other symbol is any one of L except the blank and T : see

the table of the rules of L in [1]. Consequently, a rule of the track when the current
state is T cannot be confused with the rules with T as the current state in the rules
for A.

Now, consider the case when B is 0 or A. We compare (∗∗) with the rules for A
which have the same symbol as the current state. When it is A, the rules for A of N
while there are only two of them in the rule (∗∗). For symbol 0, we have a similar
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argument: the rules (∗∗) with 0 as the current state have at least three consecutive
neighbours in N.

We remain with the case when B is the blank of L. From the previous cases,
we know that there is no possible confusion when the rule contains at least three
consecutive occurrences of N. Now, two rules have two consecutive occurrences
of N exactly: the rule B N N B T A B and the rule B N N B T B B. These
rules can be seen as rules of the form (∗∗) when B= . The corresponding rules
are N N T A and N N T , respectively. Now, interpreted as rules
induced by a rule of L, the corresponding rules of L would be A → and

→ . Now, these rules are indeed present in the table of the rules of L,
see [1]. And so, at this stage, there is no confusion by replacing W, W0 and B0 by
T , 0 and A respectively.

6.2. The erasing of the support of the track

We have to look at the final stage of the process. When the halting is met, N
is introduced onto the track and, as we know from Section 5, this starts the erasing
process of the support of the track by propagation of N which successively replaces
all occurrences of T and, at the end of the propagation of the ray, which stops the
production of cells in 0.

This requires the following rules:

0 T : N N T N T N

0 N : N N T N T N

1(1) T : N N N B T N

1(4) T : N N N T B N

T : N N W1 W1 B N

T : N N 0 0 B N

N : N N N B T N

N : N N N T B N

Now, it is easy to see that none of them cannot be confused with the rule
T N N T B T T nor a rule of the form (∗∗) as these latter rules have only two
occurrences of N. It can also be seen that the above rules cannot be confused with
any of the other rules for A where the current state is T : again the number of
occurrences of N is different. Indeed, this number is two or three in the above rules
while it is at most one only in the rules for A except the rules T N N T B B T and
T N N T B T T . But there can be no confusion with these latter rules either: they
have T after the two occurrences of N while in the above rules with two occurrences
of N exactly, which are also consecutive, there is 0 or W1 after the second N.

We also have to check that the track is not disturbed by the replacement of T
by N. Indeed, this replacement has, as a consequence, that the form (∗∗) is replaced
by the following one:

α0NNα
−1Nα1α

1

0
(∗ ∗ ∗)

As the three occurrences of N in (∗ ∗ ∗) are not consecutive, there is no confusion
with the rules for A where the current state is B.

This completes the proof that C exactly simulates the computation of L with a
true stopping of the cellular automaton in the case when the computation of L also
stops. Accordingly we have proved the following result:
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Theorem 6.1. There is a rotation invariant hyperbolic cellular automaton in the

pentagrid which starts from finite configurations and whose halting problem is unde-

cidable which has 9 states exactly, the blank included.

7. Conclusion

While stating Theorem 4.1, we have explained why we did not say that the
cellular automaton A is strongly universal and the same explanation holds for the
automata B and C of Theorems 5.1 and 6.1 respectively.

Can we still have a strongly universal cellular automaton with 9 states or possibly
less?

One way to solve this problem would be to apply the technique of [1] to another
small Turing machine. In [11] where the defect of this machine was first noticed, the
author provides another Turing machine with 7 states and 4 letters which mimics any
tag system of a given family, the same as for Minsky’s machine, and the machine
of [11] is actually universal. Another Turing machine with 7 states and 4 letters
which is truly universal was later provided by R. Robinson, see [10]. It would be
interesting to see whether a smaller machine, as the one devised by T. Neary and
D. Woods with 6 states and 4 letters, see [9], could yield a better solution.

Accordingly, there is some work ahead, probably a tedious one if not more
difficult.
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