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We derive formal expressions of time-dependent energy and heat currents through a nanoscopic
device using the Keldysh nonequilibrium Green function technique. Numerical results are reported
for a metal/dot/metal junction where the dot level energy is abruptly changed by a step-shaped
voltage pulse. Analytical linear responses are obtained for the time-dependent thermoelectric co-
efficients. We show that the Seebeck coefficient can be enhanced in the transient regime up to an
amount (here rising 40%) controlled by both the dot energy and the height of the voltage step.

PACS numbers:

Since their discoveries in 1821 by Seebeck [1] and in
1834 by Peltier [2], thermoelectric effects have been ex-
ploited for many applications, such as heat voltage con-
verters, thermocouples or refrigerators. The Seebeck co-
efficient, or thermopower S, measures the voltage in-
duced by a temperature gradient through an open circuit,
whereas the Peltier coefficient Π measures the heat flow
induced by an applied current for no temperature gradi-
ent. In the linear response regime, the Onsager relation
gives Π = −ST , where T is the average temperature of
the sample.
The recent achievement of nanoscale systems has in-

vigorated research activities in this field and renewed
the quest of the great thermopower (see Ref. 3 for a
recent review). On the one hand, stationary Seebeck
coefficients have been measured in different nanoscale
systems: quantum dot [4], atomic-size contacts [5], spin
valves [6], nanowires [7], and carbon nanotube [8]. The
Landauer-Büttiker formalism used for the electrical con-
ductance was extended to model thermal transport in
microstructures with many terminals [9, 10], including
inelastic effects [11]. Validity of the conventional ther-
modynamics linear equations was deeply questioned in
mesoscopic systems: the Onsager relations between heat
and charge transport coefficients [9, 12], the Wiedemann-
Franz law which links electrical and thermal conduc-
tances [13], and the Fourier law [14]. On the other hand,
time-dependent electric transport also benefits from ac-
tive research works. Single-electron time-control has
been demonstrated experimentally [15, 16], with a fair
agreement with earlier theoretical developments [17, 18].
More recently, deeper issues as memory effects [19] or
interplay between multiple time-modulations [20] have
been addressed theoretically. Besides, calculation of
time-dependent heat current in a linear phonon chain
has recently been achieved [21]. However, thermopower
dynamics lacks both experimental as well as theoretical
investigations.
This letter gives a first insight into time-dependent

nonequilibrium thermoelectric transport. As a major re-
sult, illustrated in Fig. 1, we show that the thermopower
can be strongly enhanced during the transient regime in a
metal/dot/metal device, presented in Fig. 2. Time evo-
lution of the thermopower exhibits promising features.
Indeed, it can be significantly modified and controlled by
changing the dot energy from ε̃0 to ε̃0+ γ̃0 at time t0 = 0:
starting from the stationary value at t < t0, it increases
during a finite time, and then it converges toward its new
stationary value at t → ∞.

FIG. 1: Increase of the Seebeck coefficient in the transient
regime of a metal/dot/metal junction shown in Fig. 2: ε̃0 =
0.5 with γ̃0 = 0.05 (solid line), γ̃0 = 0.1 (dashed line), and
γ̃0 = 0.15 (dotted line). We take symmetric barriers: ΓR =
ΓL, t0 = 0, εF = 0, kBT = 0.1. The unit for energies is Γ.

Time-dependent heat current through left (L) or right
(R) reservoir in equilibrium reads

〈IhL,R(t)〉 = 〈IEL,R(t)〉 −
µL,R(t)

e
〈IeL,R(t)〉 , (1)

where 〈IEL,R(t)〉 is the energy current, 〈IeL,R(t)〉 the elec-
tric current, and µL,R the chemical potential. Time-
dependent Seebeck coefficient can be obtained from the
ratio between voltage gradient ∆V and temperature gra-
dient ∆T between the two reservoirs, when both left and
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right time-dependent electric currents cancel

S(t) = −
∆V

∆T

∣

∣

∣

∣

〈Ie

L
(t)〉=〈Ie

R
(t)〉=0

, (2)

whereas time-dependent Peltier coefficient is defined as

Π(t) =
〈IhL(t)〉 − 〈IhR(t)〉

〈IeL(t)〉 − 〈IeR(t)〉

∣

∣

∣

∣

∆T=0

. (3)

The general system we consider consists of N energy
levels in an interacting central region connected to non-
interacting left and right leads. The total hamiltonian
reads H = HL +HR +Hc +HT with

HL,R =
∑

k∈L,R

εk(t)c
†
kck , (4)

Hc =
∑

n

εn(t)d
†
ndn +Hint , (5)

HT =
∑

p=L,R

∑

k∈p,n

Vkn(t)c
†
kdn + h.c. , (6)

where c†k (d†n) and ck (dn) are the creation and annihi-
lation operators for the leads (dot). Hint is the inter-
acting part of Hc (Coulomb interactions, phonons cou-
pling, etc...). The energy band εk of the reservoirs can
be time-dependent through a bias change (source-drain
voltage). Energy levels of the central region εn can be
time-dependent through a modulation of gate voltage.
For the sake of generality, hopping amplitudes Vkn are
also allowed to be time-dependent. An extension to mul-
titerminal system with additional degrees of freedom, e.g.
spin, is straightforward. In this calculation, we only con-
sider the electron contribution to the energy current.
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FIG. 2: (Left) schematic of metal/dot/metal junction with
current directions for each lead; (right) time-dependence of
the dot energy level. We define chemical potentials and tem-
peratures of the left and right leads as: µL,R = εF ± e∆V/2
and TL,R = T ± ∆T/2. The Fermi energy is εF and T =
(TR + TL)/2 is the average temperature.

The energy current operator is related to the time
derivative of the hamiltonian describing the leads [22]
by IEL,R = −ḢL,R. Calculating commutators [HL,R, H ],
we end up with (~ = 1)

IEL,R(t) = i
∑

k∈L,R,n

εk(t)Vkn(t)c
†
kdn + h.c.

−
∑

k∈L,R

ε̇k(t)c
†
kck . (7)

Thus, the average energy current reads

〈IEL,R(t)〉 = 2Re

{

∑

k∈L,R,n

εk(t)Vkn(t)G
<
nk(t, t)

}

−Im

{

∑

k∈L,R

ε̇k(t)G
<
kk(t, t)

}

, (8)

where G<
kk′ (t, t′) = i〈c†k′(t′)ck(t)〉 is the lead Green func-

tion, and where we have introduced the mixed Green
function G<

nk(t, t
′) = i〈c†k(t

′)dn(t)〉 which obeys the
Dyson equation

G<
nk(t, t

′) =
∑

n′

∫ ∞

−∞

dt1V
∗
kn′ (t1)

[

Gr
nn′(t, t1)g

<
k (t1, t

′)

+ G<
nn′(t, t1)g

a
k(t1, t

′)

]

. (9)

G<
nn′(t, t′) = i〈d†n′(t′)dn(t)〉 is the dot Green function.

g<k (t, t
′) = if(εk)e

−i
∫

t

t′
dt1εk(t1) and gak(t, t

′) = iΘ(t′ −

t)e−i
∫

t

t′
dt1εk(t1) are the Green functions of the isolated

leads. Expression of the energy current becomes

〈IEL,R(t)〉 = 2Re

{

Tr
{

∫ ∞

−∞

dt1
[

G
r
d(t, t1)Ξ

<
L,R(t1, t)

+G
<
d (t, t1)Ξ

a
L,R(t1, t)

]

}

}

−Im

{

Tr
{

ĖL,R(t)G
<
L,R(t, t)

}

}

, (10)

where we have defined the self-energy as-
sociated to energy transfer as Ξ

a,<
L,R(t, t

′) =
∑

k∈L,R V
∗
k(t)g

a,<
k (t, t′)εk(t

′)Vk(t
′). In these ex-

pressions, ĖL,R and Vk are vectors whereas Gr,<
d , G<

L,R,

Ξ
a,<
L,R are matrices. Last term in Eq. (10) is a pure

reservoir contribution to the energy current.
We now consider a non-interacting metal/dot/metal

junction with a single dot level ε0 connected to reservoirs
with constant energy bands. This model is suitable for
experiments in which Coulomb interaction is weak in the
dot with strong coupling to reservoirs [15, 23]. In that
case, the energy current takes the form

〈IEL,R(t)〉 = 2Re

{
∫ ∞

−∞

dt1

∫ ∞

−∞

dε

2π
iεeiε(t−t1)

×ΓL,R(ε, t1, t)
[

Gr
d(t, t1)fL,R(ε) +G<

d (t, t1)Θ(t− t1)
]

}

,

(11)

where Θ is the Heaviside function, fL,R the Fermi-
Dirac distribution function, ρL,R the density of states,
and ΓL,R(εk, t, t

′) = 2πρL,R(εk)V
∗
k (t)Vk(t

′) measures the
strength of the coupling between the dot and each lead.
We investigate the time-dependent thermoelectric re-

sponse to a unique change ε0(t) = ε̃0 + γ0(t) with
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γ0(t) = γ̃0Θ(t − t0). This models a dot energy switch-
ing from ε̃0 to ε̃0 + γ̃0 by applying a gate voltage at t0
(see Fig. 2). The time-dependent heat current defined
by Eq. (1) for p = L,R is now expressed in terms of the
spectral function A(ε, t) as

〈Ihp (t)〉 = −
1

h
Γp

[

2

∫ ∞

−∞

(ε− µp)fp(ε)Im{A(ε, t)}dε

+
∑

p′=L,R

Γp′

∫ ∞

−∞

(ε− µp′)fp′(ε)|A(ε, t)|2dε

]

, (12)

with [17]

A(ε, t) =
ε− ε̃0 + iΓ/2− γ̃0e

i(t−t0)(ε−ε̃0−γ̃0+iΓ/2)

(ε− ε̃0 + iΓ/2)(ε− ε̃0 − γ̃0 + iΓ/2)
,(13)

and Γ = ΓL +ΓR, for which we assume that Γp does not
depend on energy, and simply reduces to Γp = 2πρp|Vp|

2.

FIG. 3: (Top graph) electric current and (bottom graph) heat
current through left lead (solid lines) and right lead (dashed
lines) as a function of time t, for ΓR = ΓL, t0 = 0, ε̃0 = 0.5,
γ̃0 = 2.5, kBTL = 1, kBTR = 0, µL,R = ±0.5. Insets show
(top inset) the dot occupation, and (bottom inset) the dot
heat. Dashed lines indicate the stationary limits at t → ∞.

The integration over energy in Eq. (12) has been per-
formed numerically. In Fig. 3 is plotted the time evolu-
tion of electric and heat currents when the dot energy
is modified abruptly at t0 = 0. Starting from constant
values at t < 0, left and right currents converge toward
constant values at t → ∞. Between these two limits,
currents show strong time-dependent variations. Cur-
rents through the zero-temperature, TR = 0, right lead (,
see dashed lines in Fig. 3) exhibit time oscillations whose

period is related to ε̃0 and γ̃0, as Eq. (13) explicitly in-
dicates. These oscillations of the electric current have
been measured through a Ge dot [16]. Concerning the
heat current, experimental results are still needed. In
the left lead (see solid lines in Fig. 3), these oscillations
disappear due to thermal effects given by TL 6= 0.
Using particle number conservation, the average dot

occupation number is calculated from electric currents as
〈Nd(t)〉 = e−1

∫

〈Iedis(t)〉dt, where Iedis(t) = IeL(t) + IeR(t)
is the displacement current [16]. In the top inset of
Fig. 3, 〈Nd(t)〉 globally follows an exponential decrease
〈Nd(∞)〉(1 − e−t/τr) + 〈Nd(0)〉e

−t/τr (see dotted line)
characterized by the relaxation time τr = ~/Γ: weaker
is the coupling between the dot and the leads, longer is
the relaxation time. Time evolution of 〈Nd(t)〉 shows os-
cillations around this decrease, that have been already
observed in experiments [16].
Eq. (1) comes from thermodynamic relations in leads

at equilibrium: dHL,R = dQL,R + µL,RdNL,R, where
NL,R is the lead occupation number and QL,R is the
lead heat. Similarly, for the dot out-of-equilibrium,
we write dHc = dQd − µLdNL − µRdNR: the en-
ergy change in the dot reflects a balance between heat
variation and charges leaving the dot times their ener-
gies. Thus, we define and numerically calculate an av-
erage heat in the dot as 〈Qd(t)〉 =

∫

〈Ihd (t)〉dt, where

Ihd (t) = IhL(t) + IhR(t) − ḢT (t). This definition perfectly
agrees with energy conservation including contribution
from tunneling. In the bottom inset of Fig. 3, the time
evolution of ∆〈Qd(t)〉 = 〈Qd(t)〉 − 〈Qd(0)〉 shows a be-
havior similar to the dot occupation number (top inset
of Fig. 3). However, dramatic differences occur in the
stationary regimes, for which 〈Nd(t)〉 is always constant:
the dot heat varies linearly in time, without any violation
of conservation laws.
In the linear response limit, the time-dependent See-

beck coefficient, defined by Eq. (2), can be obtained from
the approximate Fermi-Dirac distribution function [9]:
fL,R(ε) ≈ f0(ε) + f ′

0(ε)(µL,R − (ε− εF )TL,R/T )), where
f0 is the Fermi-Dirac distribution function for the leads
when µL = µR. Taking left and right electric currents
equal zero, we obtain the linear response for S(t) in the
case of strong coupling to reservoir and small energy vari-
ation:

S(t) = −

∫∞

−∞ dεf ′
0(ε)(ε− εF )T (ε, t)

eT
∫∞

−∞ dεf ′
0(ε)T (ε, t)

, (14)

where T (ε, t) = −4ΓLΓRIm{A(ε, t)}/Γ is the time-
dependent transmission coefficient. This result is a gen-
eralization of the Seebeck coefficient expression obtained
in the stationary case [3, 9] including time-dependence
of the transmission coefficient. For the steady-state, we
have 〈IeL〉 = −〈IeR〉 (constant 〈Nd(t)〉), as can be seen in
the top graph of Fig. 3. But in the time-dependent case,
〈IeL(t)〉 = 0 does not imply 〈IeR(t)〉 = 0 because of the dis-



4

placement current. Since the Seebeck coefficient is mea-
sured in an open circuit, we must find the adequate ∆V
and ∆T which simultaneously cancel both currents. It is
important to emphasize that Eq. (14) is only valid under
the following assumptions: i) linear response (small ∆V
and ∆T in comparison to ε̃0 and T ); ii) high transmission
through the barriers (large ΓL and ΓR in comparison to
other energies); and iii) small gate voltage time-variation
γ̃0, in comparison to ε̃0. Indeed, these assumptions allow
to approximate |A(ε, t)|2 ≈ −2Im[A(ε, t)]/Γ, and, hence,
to cancel both 〈IeL(t)〉 and 〈IeR(t)〉 at any time.
Similar expressions can be obtained for the time-

dependent Peltier coefficient defined by Eq. (3)

Π(t) =

∫∞

−∞
dε(ε− εF )(fL(ε)− fR(ε))T (ε, t)

e
∫∞

−∞
dε(fL(ε)− fR(ε))T (ε, t)

∣

∣

∣

∣

∣

∆T=0

,

(15)

following the same assumptions. In the linear response
regime, Eqs. (14) and (15) verify the Onsager relation
Π(t) = −TS(t) at any time.

 0

 10

 20

 30

 40

 50

 0  0.1  0.2  0.3  0.4  0.5

%
 (

 S
m

a
x

tr
a
n
 -

 S
a
v

e
st

a
t  )

 /
 S

a
v

e
st

a
t  

γ~0 / ε~0

FIG. 4: Percentage of increase of the Seebeck coefficient max-
imum in the transient regime Stran

max as a function of γ̃0/ε̃0
for kBT = 0.05 (solid line), kBT = 0.15 (dashed line) and
kBT = 0.5 (dotted line). We take ΓR = ΓL and εF = 0.

Fig. 1 is obtained using Eq. (14) of the linear re-
sponse. It is shown an increase of the thermopower af-
ter a step-shaped gate-voltage pulse was applied. The
reason is that in the transient regime, the system is
much more sensitive to temperature or electrostatic vari-
ations. Furthermore, we measure the thermoelectric ben-
efit of the transient regime calculating the percentage
(Stran

max − Sstat
ave )/S

stat
ave where Stran

max is the maximum value
of S and Sstat

ave = (S(t < t0)+S(t → ∞))/2. In Fig. 4, we
have plotted the percentage of thermopower increase as
a function of γ̃0/ε̃0. This ratio plays an important role
since it does control the thermopower increase. In such
a junction, the transient thermopower can be tuned by
both ε̃0 and γ̃0, which depend on the dot structural prop-
erties and of the applied gate voltage (see Fig. 2). Higher
is the ratio, higher is the thermopower increase. Here, an
increase up to 40% is obtained at small temperature.
We have proposed a first approach to heat dy-

namics in nanoscale junctions. General formula for

the time-dependent heat and energy currents flowing
through an interacting resonant-tunneling system have
been obtained. We show that an enhanced thermopower
can be generated during the transient regime in a
metal/dot/metal junction, and that its maximum value
can be tuned by both the dot energy and the gate voltage.
With such numerical investigations, it will be possible to
go beyond the linear response for the Seebeck and Peltier
coefficients, and further determine non-linear thermody-
namic laws. Moreover, we shall consider interacting sys-
tems in order to analyze phonon bath contribution [21],
impact of electron-phonon interaction [11], and to study
influence of charging effects in other experiments [24].
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her help in bibliographic researches.
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