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Since their discoveries in 1821 by Seebeck [1] and in 1834 by Peltier [2], thermoelectric effects have been exploited for many applications, such as heat voltage converters, thermocouples or refrigerators. The Seebeck coefficient, or thermopower S, measures the voltage induced by a temperature gradient through an open circuit, whereas the Peltier coefficient Π measures the heat flow induced by an applied current for no temperature gradient. In the linear response regime, the Onsager relation gives Π = -ST , where T is the average temperature of the sample.

The recent achievement of nanoscale systems has invigorated research activities in this field and renewed the quest of the great thermopower (see Ref. 3 for a recent review). On the one hand, stationary Seebeck coefficients have been measured in different nanoscale systems: quantum dot [4], atomic-size contacts [5], spin valves [6], nanowires [7], and carbon nanotube [8]. The Landauer-Büttiker formalism used for the electrical conductance was extended to model thermal transport in microstructures with many terminals [9,10], including inelastic effects [11]. Validity of the conventional thermodynamics linear equations was deeply questioned in mesoscopic systems: the Onsager relations between heat and charge transport coefficients [9,12], the Wiedemann-Franz law which links electrical and thermal conductances [13], and the Fourier law [14]. On the other hand, time-dependent electric transport also benefits from active research works. Single-electron time-control has been demonstrated experimentally [15,16], with a fair agreement with earlier theoretical developments [17,18]. More recently, deeper issues as memory effects [19] or interplay between multiple time-modulations [20] have been addressed theoretically. Besides, calculation of time-dependent heat current in a linear phonon chain has recently been achieved [21]. However, thermopower dynamics lacks both experimental as well as theoretical investigations.

This letter gives a first insight into time-dependent nonequilibrium thermoelectric transport. As a major result, illustrated in Fig. 1, we show that the thermopower can be strongly enhanced during the transient regime in a metal/dot/metal device, presented in Fig. 2. Time evolution of the thermopower exhibits promising features. Indeed, it can be significantly modified and controlled by changing the dot energy from ε0 to ε0 + γ0 at time t 0 = 0: starting from the stationary value at t < t 0 , it increases during a finite time, and then it converges toward its new stationary value at t → ∞. Time-dependent heat current through left (L) or right (R) reservoir in equilibrium reads

I h L,R (t) = I E L,R (t) - µ L,R (t) e I e L,R (t) , (1) 
where I E L,R (t) is the energy current, I e L,R (t) the electric current, and µ L,R the chemical potential. Timedependent Seebeck coefficient can be obtained from the ratio between voltage gradient ∆V and temperature gradient ∆T between the two reservoirs, when both left and right time-dependent electric currents cancel

S(t) = - ∆V ∆T I e L (t) = I e R (t) =0 , (2) 
whereas time-dependent Peltier coefficient is defined as

Π(t) = I h L (t) -I h R (t) I e L (t) -I e R (t) ∆T =0
.

(3)

The general system we consider consists of N energy levels in an interacting central region connected to noninteracting left and right leads. The total hamiltonian reads

H = H L + H R + H c + H T with H L,R = k∈L,R ε k (t)c † k c k , (4) 
H c = n ε n (t)d † n d n + H int , (5) 
H T = p=L,R k∈p,n V kn (t)c † k d n + h.c. , (6) 
where

c † k (d † n ) and c k (d n )
are the creation and annihilation operators for the leads (dot). H int is the interacting part of H c (Coulomb interactions, phonons coupling, etc...). The energy band ε k of the reservoirs can be time-dependent through a bias change (source-drain voltage). Energy levels of the central region ε n can be time-dependent through a modulation of gate voltage. For the sake of generality, hopping amplitudes V kn are also allowed to be time-dependent. An extension to multiterminal system with additional degrees of freedom, e.g. spin, is straightforward. In this calculation, we only consider the electron contribution to the energy current. The energy current operator is related to the time derivative of the hamiltonian describing the leads [22] by

t t (t) 0 γ 0 ε ε 0 + 0 ε 0 ε 0 (t) L µ Γ R I I R E R T R T L µ R
I E L,R = -ḢL,R . Calculating commutators [H L,R
, H], we end up with ( = 1)

I E L,R (t) = i k∈L,R,n ε k (t)V kn (t)c † k d n + h.c. - k∈L,R εk (t)c † k c k . (7) 
Thus, the average energy current reads

I E L,R (t) = 2Re k∈L,R,n ε k (t)V kn (t)G < nk (t, t) -Im k∈L,R εk (t)G < kk (t, t) , (8) 
where

G < kk ′ (t, t ′ ) = i c † k ′ (t ′ )c k (t)
is the lead Green function, and where we have introduced the mixed Green function t1) are the Green functions of the isolated leads. Expression of the energy current becomes

G < nk (t, t ′ ) = i c † k (t ′ )d n (t) which obeys the Dyson equation G < nk (t, t ′ ) = n ′ ∞ -∞ dt 1 V * kn ′ (t 1 ) G r nn ′ (t, t 1 )g < k (t 1 , t ′ ) + G < nn ′ (t, t 1 )g a k (t 1 , t ′ ) . (9) 
G < nn ′ (t, t ′ ) = i d † n ′ (t ′ )d n (t) is the dot Green function. g < k (t, t ′ ) = if (ε k )e -i t t ′ dt1ε k (t1) and g a k (t, t ′ ) = iΘ(t ′ - t)e -i t t ′ dt1ε k (
I E L,R (t) = 2Re Tr ∞ -∞ dt 1 G r d (t, t 1 )Ξ < L,R (t 1 , t) +G < d (t, t 1 )Ξ a L,R (t 1 , t) -Im Tr ĖL,R (t)G < L,R (t, t) , (10) 
where we have defined the self-energy associated to energy transfer as

Ξ a,< L,R (t, t ′ ) = k∈L,R V * k (t)g a,< k (t, t ′ )ε k (t ′ )V k (t ′ ).
In these expressions, ĖL,R and V k are vectors whereas G r,< d , G < L,R , Ξ a,< L,R are matrices. Last term in Eq. ( 10) is a pure reservoir contribution to the energy current.

We now consider a non-interacting metal/dot/metal junction with a single dot level ε 0 connected to reservoirs with constant energy bands. This model is suitable for experiments in which Coulomb interaction is weak in the dot with strong coupling to reservoirs [15,23]. In that case, the energy current takes the form

I E L,R (t) = 2Re ∞ -∞ dt 1 ∞ -∞ dε 2π iεe iε(t-t1) ×Γ L,R (ε, t 1 , t) G r d (t, t 1 )f L,R (ε) + G < d (t, t 1 )Θ(t -t 1 ) , ( 11 
)
where Θ is the Heaviside function, f L,R the Fermi-Dirac distribution function, ρ L,R the density of states, and

Γ L,R (ε k , t, t ′ ) = 2πρ L,R (ε k )V * k (t)V k (t ′
) measures the strength of the coupling between the dot and each lead.

We investigate the time-dependent thermoelectric response to a unique change ε 0 (t) = ε0 + γ 0 (t) with γ 0 (t) = γ0 Θ(tt 0 ). This models a dot energy switching from ε0 to ε0 + γ0 by applying a gate voltage at t 0 (see Fig. 2). The time-dependent heat current defined by Eq. ( 1) for p = L, R is now expressed in terms of the spectral function A(ε, t) as

I h p (t) = - 1 h Γ p 2 ∞ -∞ (ε -µ p )f p (ε)Im{A(ε, t)}dε + p ′ =L,R Γ p ′ ∞ -∞ (ε -µ p ′ )f p ′ (ε)|A(ε, t)| 2 dε , (12) 
with [17] A(ε, t

) = ε -ε0 + iΓ/2 -γ0 e i(t-t0)(ε-ε0-γ0+iΓ/2) (ε -ε0 + iΓ/2)(ε -ε0 -γ0 + iΓ/2) , (13) 
and Γ = Γ L + Γ R , for which we assume that Γ p does not depend on energy, and simply reduces to Γ p = 2πρ p |V p | 2 . The integration over energy in Eq. ( 12) has been performed numerically. In Fig. 3 is plotted the time evolution of electric and heat currents when the dot energy is modified abruptly at t 0 = 0. Starting from constant values at t < 0, left and right currents converge toward constant values at t → ∞. Between these two limits, currents show strong time-dependent variations. Currents through the zero-temperature, T R = 0, right lead (, see dashed lines in Fig. 3) exhibit time oscillations whose period is related to ε0 and γ0 , as Eq. ( 13) explicitly indicates. These oscillations of the electric current have been measured through a Ge dot [16]. Concerning the heat current, experimental results are still needed. In the left lead (see solid lines in Fig. 3), these oscillations disappear due to thermal effects given by T L = 0.

Using particle number conservation, the average dot occupation number is calculated from electric currents as N d (t) = e -1 I e dis (t) dt, where I e dis (t) = I e L (t) + I e R (t) is the displacement current [16]. In the top inset of Fig. 3, N d (t) globally follows an exponential decrease N d (∞) (1e -t/τr ) + N d (0) e -t/τr (see dotted line) characterized by the relaxation time τ r = /Γ: weaker is the coupling between the dot and the leads, longer is the relaxation time. Time evolution of N d (t) shows oscillations around this decrease, that have been already observed in experiments [16].

Eq. ( 1) comes from thermodynamic relations in leads at equilibrium: dH L,R = dQ L,R + µ L,R dN L,R , where N L,R is the lead occupation number and Q L,R is the lead heat. Similarly, for the dot out-of-equilibrium, we write dH c = dQ dµ L dN Lµ R dN R : the energy change in the dot reflects a balance between heat variation and charges leaving the dot times their energies. Thus, we define and numerically calculate an average heat in the dot as

Q d (t) = I h d (t) dt, where I h d (t) = I h L (t) + I h R (t) -ḢT (t)
. This definition perfectly agrees with energy conservation including contribution from tunneling. In the bottom inset of Fig. 3, the time

evolution of ∆ Q d (t) = Q d (t) -Q d (0)
shows a behavior similar to the dot occupation number (top inset of Fig. 3). However, dramatic differences occur in the stationary regimes, for which N d (t) is always constant: dot heat varies linearly in time, without any violation of conservation laws.

In the linear response limit, the time-dependent Seebeck coefficient, defined by Eq. ( 2), can be obtained from the approximate Fermi-Dirac distribution function [9]:

f L,R (ε) ≈ f 0 (ε) + f ′ 0 (ε)(µ L,R -(ε -ε F )T L,R /T ))
, where f 0 is the Fermi-Dirac distribution function for the leads when µ L = µ R . Taking left and right electric currents equal zero, we obtain the linear response for S(t) in the case of strong coupling to reservoir and small energy variation:

S(t) = - ∞ -∞ dεf ′ 0 (ε)(ε -ε F )T (ε, t) eT ∞ -∞ dεf ′ 0 (ε)T (ε, t) , (14) 
where T (ε, t) = -4Γ L Γ R Im{A(ε, t)}/Γ is the timedependent transmission coefficient. This result is a generalization of the Seebeck coefficient expression obtained in the stationary case [3,9] including time-dependence of the transmission coefficient. For the steady-state, we have I e L = -I e R (constant N d (t) ), as can be seen in the top graph of Fig. 3. But in the time-dependent case, I e L (t) = 0 does not imply I e R (t) = 0 because of the dis-placement current. Since the Seebeck coefficient is measured in an open circuit, we must find the adequate ∆V and ∆T which simultaneously cancel both currents. It is important to emphasize that Eq. ( 14) is only valid under the following assumptions: i) linear response (small ∆V and ∆T in comparison to ε0 and T ); ii) high transmission through the barriers (large Γ L and Γ R in comparison to other energies); and iii) small gate voltage time-variation γ0 , in comparison to ε0 . Indeed, these assumptions allow to approximate |A(ε, t)| 2 ≈ -2Im[A(ε, t)]/Γ, and, hence, to cancel both I e L (t) and I e R (t) at any time. Similar expressions can be obtained for the timedependent Peltier coefficient defined by Eq. ( 3)

Π(t) = ∞ -∞ dε(ε -ε F )(f L (ε) -f R (ε))T (ε, t) e ∞ -∞ dε(f L (ε) -f R (ε))T (ε, t) ∆T =0 , (15) 
following the same assumptions. In the linear response regime, Eqs. ( 14) and ( 15) verify the Onsager relation Π(t) = -T S(t) at any time. Fig. 1 is obtained using Eq. ( 14) of the linear response. It is shown an increase of the thermopower after a step-shaped gate-voltage pulse was applied. The reason is that in the transient regime, the system is much more sensitive to temperature or electrostatic variations. Furthermore, we measure the thermoelectric benefit of the transient regime calculating the percentage (S tran max -S stat ave )/S stat ave where S tran max is the maximum value of S and S stat ave = (S(t < t 0 ) + S(t → ∞))/2. In Fig. 4, we have plotted the percentage of thermopower increase as a function of γ0 /ε 0 . This ratio plays an important role since it does control the thermopower increase. In such a junction, the transient thermopower can be tuned by both ε0 and γ0 , which depend on the dot structural properties and of the applied gate voltage (see Fig. 2). Higher is the ratio, higher is the thermopower increase. Here, an increase up to 40% is obtained at small temperature.

We have proposed a first approach to heat dynamics in nanoscale junctions. General formula for the time-dependent heat and energy currents flowing through an interacting resonant-tunneling system have been obtained. We show that an enhanced thermopower can be generated during the transient regime in a metal/dot/metal junction, and that its maximum value can be tuned by both the dot energy and the gate voltage. With such numerical investigations, it will be possible to go beyond the linear response for the Seebeck and Peltier coefficients, and further determine non-linear thermodynamic laws. Moreover, we shall consider interacting systems in order to analyze phonon bath contribution [21], impact of electron-phonon interaction [11], and to study influence of charging effects in other experiments [24].

A.C. thanks I. Safi for discussion and E. Bernardo for her help in bibliographic researches.
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 1 FIG.1: Increase of the Seebeck coefficient in the transient regime of a metal/dot/metal junction shown in Fig.2: ε0 = 0.5 with γ0 = 0.05 (solid line), γ0 = 0.1 (dashed line), and γ0 = 0.15 (dotted line). We take symmetric barriers: ΓR = ΓL, t0 = 0, εF = 0, kBT = 0.1. The unit for energies is Γ.

FIG. 2 :

 2 FIG.2:(Left) schematic of metal/dot/metal junction with current directions for each lead; (right) time-dependence of the dot energy level. We define chemical potentials and temperatures of the left and right leads as: µL,R = εF ± e∆V /2 and TL,R = T ± ∆T /2. The Fermi energy is εF and T = (TR + TL)/2 is the average temperature.

FIG. 3 :

 3 FIG. 3: (Top graph) electric current and (bottom graph) heat current through left lead (solid lines) and right lead (dashed lines) as a function of time t, for ΓR = ΓL, t0 = 0, ε0 = 0.5, γ0 = 2.5, kBTL = 1, kBTR = 0, µL,R = ±0.5. Insets show (top inset) the dot occupation, and (bottom inset) the dot heat. Dashed lines indicate the stationary limits at t → ∞.
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 4 FIG.4: Percentage of increase of the Seebeck coefficient maximum in the transient regime S tran max as a function of γ0/ε0 for kBT = 0.05 (solid line), kBT = 0.15 (dashed line) and kBT = 0.5 (dotted line). We take ΓR = ΓL and εF = 0.