
HAL Id: hal-00541913
https://hal.science/hal-00541913

Submitted on 1 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The SIGNAL Approach to the Design of System
Architectures

Abdoulaye Gamatié, Thierry Gautier

To cite this version:
Abdoulaye Gamatié, Thierry Gautier. The SIGNAL Approach to the Design of System Architectures.
10th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems
(ECBS’03), Apr 2003, Huntsville, Alabama, United States. pp.80-88, �10.1109/ECBS.2003.1194786�.
�hal-00541913�

https://hal.science/hal-00541913
https://hal.archives-ouvertes.fr

The SIGNAL Approach to the Design of System Architectures�
Abdoulaye GAMATIÉ, Thierry GAUTIER

IRISA / INRIA
F-35042 RENNES, France

{agamatie, gautier}@irisa.fr

Abstract

Modeling plays a central role in system engineering. It
significantly reduces costs and efforts in the design by pro-
viding developers with means for cheaper and more rele-
vant experimentations. So, design choices can be assessed
earlier. The use of a formalism, such as the synchronous
languageSIGNAL which relies on solid mathematical foun-
dations for the modeling, allows validation. This is the aim
of the methodology defined for the design of embedded sys-
tems where emphasis is put on formal techniques for veri-
fication, analysis, and code generation. This paper mainly
focuses on the modeling of architecture components using
SIGNAL . For illustration, we consider the modeling of a
bounded FIFO queue, which is intended to be used for com-
munication protocols. We bring out the capabilities ofSIG-
NAL to allow specifications in an elegant way, and we check
few elementary properties on the resulting model for cor-
rectness.

1. Introduction

Nowadays, systems in general are more and more large
and complex. Obviously, the engineering becomes very
delicate since the complexity of data structures and com-
putation algorithms is challenging. On the other hand, the
design cycle usually involves multiple formalisms and va-
rious tools. A major drawback in such a context is that the
design and checking tasks are inherently long and complex.
In the case of distributed embedded systems, there are ad-
ditional difficulties: on the one hand, such systems have to
be separated efficiently into components, and suitable com-
munication mechanisms between these components must be
provided; on the other hand, the validation of the whole is
required.�This work has been supported by the european project IST
SAFEAIR (Advanced Design Tools for Aircraft Systems and Airborne Soft-
ware) [10] (http://www.safeair.org/).

Among solutions that have been proposed to overcome
the above obstacles, there are Architecture Description Lan-
guages (ADLs) [7], the Unified Modeling Language (UML)
[16], or the synchronous technology [11]. They all provide
formalisms and tool-sets that help for the description of sys-
tems. Solutions which adopt formal methods are widely ac-
cepted as a confident way for guaranteeing the quality of
designs. As a matter of fact, verification and validation are
facilitated. So, it appears desirable for a design formalism
to have a well-defined formal semantics. Unfortunately, this
is not the case for all the solutions (for instance, UML only
has a semi-formal semantics).
The synchronous technology emerges as one of the most
promising ways for guaranteeing a safe design of embedded
systems. It offers practical design assistance tools with a
formal basis. These include possibilities of high level speci-
fications, modular verification of properties on these speci-
fications, automatic code generation through formal trans-
formations, and validation of the generated code against
specifications. As a result, earlier architectural choicesand
behavioral simulation are enabled, and design ambiguities
and errors can be significantly reduced. POLYCHRONY,
the programming environment of the synchronous language
SIGNAL [5], implemented by INRIA1 (http://www.
irisa.fr/espresso) incorporates all these functiona-
lities.

A major objective of our work is the definition and im-
plementation of an enhanced methodology for the design of
embedded systems within POLYCHRONY. This methodo-
logy must significantly reduce the risk of design errors and
shorten overall design times. Earlier results have been es-
tablished during the SACRES project [9]. The main add-on
of the methodology is to allow automatic generation of effi-
cient and validated distributed code from the specifications,
entirely replacing the manual coding phase still employed
in current industrial design flows.
In this paper, we give an overview of the methodology, but
we rather concentrate on the approach of modeling compo-

1There is also an industrial version, SILDEX, implemented and com-
mercialized by TNI-Valiosys (http://www.tni-valiosys.com).

nents used in architecture descriptions. The remainder of
the paper is organized as follows: section 2 presents the
SIGNAL language. Then, in section 3, we introduce the
methodology. We highlight its main steps from specifica-
tion to implementation. In section 4, we illustrate the design
of architecture components through the modeling of aFirst
In First Out queue. We verify some properties (e.g. safety)
on the resulting model for correctness. Finally, a conclusion
is given in section 5.

2. TheSIGNAL language

The underlying theory of the synchronous approach [2]
is that of discrete event systems and automata theory. Time
is logical: it is handled according to partial order and si-
multaneity of events. Durations of execution are viewed as
constraints to be verified at the implementation level. Typi-
cal examples of synchronous languages [11] are: ESTEREL,
LUSTRE, SIGNAL . They differ mainly from each other in
their programming style. The first one adopts an imperative
style whereas the two others are dataflow oriented (LUS-
TRE is functional and SIGNAL is relational). However, there
have been joint efforts to provide a common format DC+
[1], which allows the interoperability of tools.

The SIGNAL language [5] handles unbounded series of
typed values(xt)t2N, calledsignals, denoted asx in the
language, and implicitly indexed by discrete time (denoted
by t in the semantic notation). At a given instant, a signal
may be present, then it holds a value; or absent, then it is
denoted by the special symbol? in the semantic notation.
There is a particular type of signals calledevent. A signal
of this type is alwaystruewhen it is present (otherwise, it is?). The set of instants where a signalx is present is called
its clock. It is noted aŝ x (which is of typeevent) in the
language. Signals that have the same clock are said to be
synchronous. A SIGNAL program, also calledprocess, is a
system of equations over signals.
The kernel language.SIGNAL relies on a handful of primi-
tive constructs which are combined using a composition
operator. These are:� Functions.y:= f(x1,...,xn), whereyt 6=?, x1t 6=?, :::, xnt 6=?, and8t:yt = f(x1t; :::; xnt).� Delay.y:= x $ 1 init y0, wherext 6=?, yt 6=?; 8t > 0: yt = xt�1; y0 = y0.� 2-args down-sampling. y:= x when b, whereyt = xt if bt = true, elseyt =?.� Deterministic merging. z:= x default y,

wherezt = xt if xt 6=?, elsezt = yt.� Hiding. P where x denotes that the signalx is lo-
cal to the processP.

� Synchronous parallel compositionof P andQ, en-
coded by(| P | Q |). It corresponds to the union
of systems of equations represented byP andQ.

These core constructs are of sufficient expressive power
to derive other constructs for comfort and structuring. The
following operators are also used in the next sections:� 1-arg down-sampling.y:= when b, whereyt = true if bt = true, elseyt =?.� Clock union.2 y:= x1 ^+ ... ^+ xn, wherey is of

event type, and denotes the set of instants where at
least one signalxi occurs.� Synchronizer. x1 ^= ... ^= xn, wherex1t 6=?, ::: , xnt 6=? (i.e. x1; :::; xn are
synchronous).� Sliding window. y:= x window n init y0,
where8t � 0, andi 2 0 :: n� 1:((t+ i � n)) (Yt[i] = Xt�n+i+1)) ^((1 � t+ i < n)) (Yt[i] = y0[t� n+ i+ 2]))� Memory. y:= x cell b init y0, defined as:
(| y:= x default (y$1 init y0)
| y ^= x ^+ (when b) |)

The next example illustrates the meaning of thesliding
window and thememoryoperators. Let us consider a
process defined as follows:

(| y := x window 3 init [-1,0]
| z := x cell b init 0
|).

Signals x and z are of integer type,b is a boolean,
andy is a 3-array of integers. A possible run is:

x : ? 1 2 ? ? 3 ...
b : t ? f t f t ...
y : ? [�1; 0; 1] [0; 1; 2] ? ? [1; 2; 3] ...
z : 0 1 2 2 ? 3 ...

3. A methodology for the design of embedded
systems

This methodology relies on the theory of desynchroniza-
tion [3], which defines the formal basis for an effective im-
plementation of synchronous programs on asynchronous ar-
chitectures, without changing their original semantics.
Basically, the design of distributed embedded systems con-
sists in the distribution of a SIGNAL program representing
a functional graph of flows, operators and dependencies.

2Similarly, intersectionanddifferenceof clocks are defined.

for each processor, including calls of

SIGNAL model of
an application

composed of two processors

SIGNAL library of
architecture components

The same model of the application

implementation

− Verification

− Performance eval.

− Simulation...

SIGNAL model of the
target architecture,

which reflects a particular

After partitioning and compiling, suitable
synchronous communication wires are
automatically added between processors

communication services

���
���
���
���

Generated embedded code (C, Java...)

Figure 1. An overview of the SIGNAL methodology for the design of embedded systems.

The target architecture is composed of a set of possibly
heterogeneous execution components (processors, micro-
controllers...).
A general comment is that the level of detail at which the
architecture needs to be known depends quite a lot on the
refinement of the mapping to the chosen architecture. This
means that in the simplest cases, the amount of data re-
quired is fairly small, and simple to assess:� the set of processors or tasks, and the mapping from

operations or sub-processes in the application specifi-
cation to those processors or tasks. This information
enables the partitioning of the graph into sub-graphs
grouped according to the mapping.� the topology of the network of processors, the set
of connections between processors, and a mapping
from inter-process communications to these commu-
nication links. This is useful in the case of signals ex-
changed between processes located on different pro-
cessors or tasks, if several of them have to be routed
through the same communication medium.� a definition of the set of system-level primitives used
e.g. for communications (readings and writings to the
media). Roughly, this amounts to the profiles of the
function library to which the code generated for the
application will have to be linked.

Further degrees of refinement of the description may be
required for a better architecture-adaptation: for example,
concerning communications, the type and nature of the
links (that could be implemented using shared variables,
synchronous or asynchronous communications...). If the

target architecture features an OS, the required model con-
sists basically in the profile of the corresponding functions.
For instance, according to the degree of use of the OS, we
need models of synchronization gates, communications
(possibly including routing between processors) or tasking
functions (in the case of un-interruptible tasks: start and
stop; in the case of interruptible tasks: suspend and resume,
assignment and management of priority levels), etc. A
specification of such functions has been addressed in [8],
where a component library (process, communication and
synchronization mechanisms...) has been defined for the
design of modular avionics architectures.

In Figure 1, we have illustrated the whole design chain.
First, the respective SIGNAL descriptions of an application
software and the hardware architecture (mainly processors)
are given. Then, the application is manually partitioned on-
to the target architecture. The compilation3 of the whole
determines which information has to be exchanged by pro-
cessors, and communication wires are automatically added
between processors. These communications have asyn-
chronous4 semantics. Of course, if the application has to
be deployed on an asynchronous architecture, the instanta-
neousness of the added communications will be lost. How-
ever, (bounded) communication mechanisms can be easily
modeled with SIGNAL . In that case, the models can be used
in the description of the architecture so as to obtain a model
of GALS (Globally Asynchronous Locally Synchronous)

3The main part of the compilation is calledclock calculusin POLY-
CHRONY.

4In other words, zero-delay communications: a sent message is instan-
taneously received.

process basic_FIFO =
{ type message_type; integer fifo_size, message_type default_mess; }
(? message_type mess_in; event access_clock;
! message_type mess_out; integer nbmess; boolean OK_write, OK_read;

)
(| nbmess := ((prev_nbmess+1) when (^mess_in) when OK_write) default

((prev_nbmess-1) when (^mess_out) when OK_read) default
prev_nbmess (1.a)

| prev_nbmess := nbmess$1 init 0 (1.b)
| OK_write := prev_nbmess<fifo_size (1.c)
| OK_read := prev_nbmess>0 (1.d)
| queue := (mess_in window fifo_size) cell (^access_clock) (1.e)
| mess_out := prev_mess_out when (not OK_read) when (^mess_out) default

queue[fifo_size - prev_nbmess] when (^mess_out) (1.f)
| prev_mess_out := mess_out $ 1 init default_mess (1.g)
| nbmess ^= access_clock (1.h)
|)

where
integer prev_nbmess; [fifo_size]message_type queue;
message_type prev_mess_out;

end;%basic_FIFO%

mess_in : ? 4 6 ? ? ? 5 7 8 ? ? ...
access_clock : t t t t t t t t t t t ...
mess_out : -1 ? ? 4 6 6 ? ? ? 7 8 ...
nbmess : 0 1 2 1 0 0 1 2 2 1 0 ...
OK_write : t t t f t t t t f f t ...
OK_read : f f t t t f f t t t t ...

Figure 2. A model of basic_FIFO with an associated trace.

type. The SIGNAL compiler is used to establish and verify
the conditions under which the asynchronous behavior of
the application model is equivalent to the synchronous one
(this is addressed by the so-calledendo/isochrony proper-
ties [3]). So, one solution is to define a library of compo-
nents which can be used to model various communication
mechanisms in architectures. For instance, the components
presented in [8] can be used to describe avionics applica-
tions. They have been modeled with SIGNAL in order to
take advantage of its formal basis for architecture analysis.
So, for a particular implementation, we only have to pick
up the required component model from a pre-defined library
and insert it into the current system description. Afterwards,
we can use the techniques and tools available in POLY-
CHRONY to assess the final implementation; or generate
separate embedded code for each processor, along with the
suitable communication protocol. The protocol preserves
the semantics of synchronous communication even though
an asynchronous communication medium is used. We al-
ready mentioned that verification and validation are essen-
tial to our approach. The SIGNAL compiler and tools like
SIGALI (a model checker, see in the next sections) help for
property checking (e.g. safety). Performance evaluation is
also possible using implemented techniques such as the pro-
filing of SIGNAL programs [12].

All these features favor a helpful and confident context
for the design activity. In the next, we concentrate on the
design of component models. We model a bounded FIFO
queue, usable for message exchanges between several enti-

ties. Besides this particular example which can be used as
a communication component, we illustrate more generally
a component-based approach. We also show how to verify
properties on a component, and how to abstract it for fu-
ture use. This brings out the main features of SIGNAL pro-
gramming, and their benefits for a component-based design
within a homogeneous formal framework.

4. Design of a safe FIFO queue

A FIFO queue, calledbasic_FIFO is first considered.
This component will be enhanced later so as to derive a real-
ly “safe” FIFO queue on which properties will be checked.

Model of a basic FIFO queue. Informally,basic_FIFO
works as follows:� On a write request, the incoming message is inserted

in the queue regardless of its size limit. When the
queue was previously full, the oldest message is lost.
The other messages are shifted forward, and the in-
coming is put in the queue.� On a read request, there is an outgoing message what-
ever the queue status is. When it was previously emp-
ty, two situations are distinguished: if there is not yet
any written message, an arbitrary message calledde-
fault messageis returned; else the outgoing message
is the message that has been read last.

process safe_FIFO =
{ type message_type; integer fifo_size; message_type default_mess; }
(? message_type mess_in; event get_mess;
! message_type mess_out; boolean OK_write, OK_read;

)
(| access_clock := mess_in ^+ get_mess (2.a)
| new_mess_in := mess_in when OK_write (2.b)
| mess_out ^= get_mess when OK_read (2.c)
| (mess_out, nbmess, OK_write, OK_read) :=

basic_FIFO{ message_type, fifo_size, default_mess }
(new_mess_in, access_clock) (2.d)

|)
where

use basic_FIFO;
integer nbmess; message_type new_mess_in; event access_clock;

end;%safe_FIFO%

mess_in : ? 4 6 ? ? ? 5 7 8 ? ? ...
get_mess : t ? ? t t t ? ? ? t t ...
mess_out : ? ? ? 4 6 ? ? ? ? 5 7 ...
OK_write : t t t f t t t t f f t ...
OK_read : f f t t t f f t t t t ...

Figure 3. A model of safe_FIFO with an associated trace.

Furthermore, for simplicity we suppose that write/read re-
quests never occur simultaneously.

4.1.SIGNAL specifications

Here, we concentrate on the SIGNAL description of the
FIFO queue. We give a model forbasic_FIFO, then we
show how to specify another FIFO queue from the previous
one.

The corresponding SIGNAL description (also termed
process model) is given in Figure 2. Variables
message_type, fifo_size anddefault_mess are
parameters, which respectively denote the type of messages,
the size limit of the queue, and the default message va-
lue. The input5 signalsmess_in andaccess_clock
are respectively the incoming message (its presence denotes
a write request), and the queue access clock (i.e. instants of
read/write requests). The output6 signals aremess_out,
nbmess, OK_write andOK_read. They respectively
represent the outgoing message, the current number of mes-
sages in the queue, and conditions for writing and reading.

Now, we can take a look at the meaning of the state-
ments in the process body. Let us begin with the equation
(1.b); it defines the local signal7 prev_nbmess, which
denotes the previous number of messages in the queue. This
signal is used in(1.c) and(1.d), to define respective-
ly when the queue can be “safely” written (the size limit
is not reached), and read (there is at least one message re-
ceived). This is the meaning of the signalsOK_write and
OK_read.

5Introduced by the symbol “ ? ”.
6Introduced by the symbol “ ! ”.
7Declared in the “where” section in the process model.

The statement(1.a) expresses how the current number
of messages is calculated. That is, its previous value is in-
cremented by one when there is a write request, and if the
queue was not full; it is decremented by one when there is
a read request, and if the queue was not empty; otherwise
it remains unchanged. The equation(1.h) states that the
value ofnbmess changes whenever there is a request on
the queue.
The equation(1.e) defines the message queue. The signal
queue is an array of dimensionfifo_size that contains
thefifo_size latest values ofmess_in (expressed by
thewindow operator). Thecell operator makes the sig-
nalqueue available whenaccess_clock is present (i.e.
whenever there is a request).
Finally, (1.f) means that on a read request (i.e. at the
clock^mess_out), the outgoing message is either the pre-
vious if the FIFO is empty (defined in(1.g)), or the oldest
message in the queue. In the resulting trace (inFigure 2),
the type of the messages is integer, the size limit is 2, and
the default message value is -1.
Henceforth, thebasic_FIFO model can be used to des-
cribe other FIFO queues. This is the topic of the next para-
graph.

Model of a safe FIFO queue. In the model depicted
in Figure 3, the interface8 is slightly different from that
of basic_FIFO. Parameters are the same. A new input
signalget_mess has been added. It denotes a read re-
quest. The signalnbmess which was previously an output
of basic_FIFO, is now a local signal.
The statement(2.a) defines the access clock as the union
of instants where read/write requests occur. Equations

8Parameters, inputs, and outputs.

(2.b) and(2.c) are in charge of ensuring a safe access
to the queue inbasic_FIFO. The process call in(2.d)
has the local signalnew_mess_in as input. This signal is
defined only whenbasic_FIFO was not full, it is stated
by (2.b). Similarly, (2.c) expresses that on a read re-
quest, a message is received only whenbasic_FIFO was
not empty. In the trace inFigure 3, the same parameters as
for basic_FIFO are considered.
Thesafe_FIFO component will serve later in the descrip-
tion of some communication protocol such as the LTTA pro-
tocol (Loosely Time-Triggered Architectutes) [4].

We observe that modularity and reusability are key fea-
tures of the SIGNAL programming. They favor component-
based designs. By constraining a given component, one can
derive others. The most difficult task is the identification
of suitable basic components. Moreover, the adaptability
of components is very flexible. As a matter of fact, the
SIGNAL process model enables “generic” components by
parameterizing the interface (e.g. in the above models, the
type of messages is a parameter). Finally, combined with
the other characteristics of the language (e.g. possibility
of non-deterministic specifications), richer descriptions are
enabled.

4.2. Property verification

As mentioned earlier in the paper, a benefit of using SIG-
NAL for designs is the availability of formal verification
tools. Two kinds of properties can be distinguished about
SIGNAL programs [13]: invariant properties (e.g. a pro-
gram exhibits no contradiction between clocks of involved
signals) on the one hand, anddynamicalproperties (e.g.
reachability, liveness) on the other hand.
The SIGNAL compiler itself addresses only the first one.
For a given SIGNAL program, it checks the consistency of
constraints between clocks of signals, and statically proves
properties.
Dynamical properties are addressed by the model checker
SIGALI [14], available within POLYCHRONY. SIGALI re-
lies on the theory of polynomial dynamical systems.
Roughly speaking, a SIGNAL program is abstracted into a
system of polynomial equations9 overZ=3Z. This allows to
encode all the possible status of a boolean signal:1 for true,�1 for false, and0 for ?. For a non-boolean signal, only
the fact that this signal ispresent(whatever its value is) or
absentis encoded. So, the presence is denoted by1, and the
absence by0. It must be noted that this “translation”ful-
ly takes into account information about boolean variables
(values and clocks), whereas for non-boolean signals, in-
formation on values are lost. Therefore, it is important that
a SIGNAL program that will be analyzed by SIGALI is speci-
fied as much as possible using boolean variables, since rea-

9In fact, a symbolic automaton.

soning capabilities capture only synchronization and logic
properties. In fact, people most often have to consider a
boolean abstraction of programs with numerical properties.
This is the main limitation10 of SIGALI .
In the sequel, properties of interest concern firstsafety:� (S1): Write to the full queue never happens.� (S2): Read to the empty queue never happens.

Other desirable properties are for example the followingin-
variants:� (I1): A message can always be written in the queue,

when it is not full.� (I2): A message can always be read from the queue,
when it is not empty.

To check these properties, we consider an abstraction of
the processsafe_FIFO. It can be obtained using thesta-
te variables(signals that are defined bydelayor memory
operators) that appear in the program. They feature the dy-
namics of the system defined by the process. Here, the state
variables arenbmess,queue andprev_mess_out (de-
fined inbasic_FIFO).
On the other hand, we notice that properties of interest
can be addressed by considering only the state variable
nbmess. Indeed, the queue access conditions rely on this
single signal. Therefore, in the abstraction, a state will be
simply characterized bynbmess. Furthermore, since SI-
GALI does not address numerical properties,nbmess must
be encoded with a boolean variable.

A n-FIFO queue can be represented by an automaton
with (n+ 1) states, where a state denotes the current num-
ber of messages in the queue. For the sake of simplicity,
we consider a2-FIFO queue since all possible relevant con-
figurations can be addressed. So, the results remain valid
for any boundedn-FIFO queue wheren > 2. Moreover,
it is assumed that messages in the queue are read in the
same order they have been written (i.e. the FIFO queue
satisfies thesampling theoremin the protocol for Loosely
Time-Triggered Architectures [4]).

The automaton inFigure 4 abstracts a2-FIFO queue
behavior. A statesk (represented by a circle) denotes the
fact that the queue currently containsk messages. In other
words, for anyk 2 f0; 1; 2g:(nbmess = k) sk = true) ^(nbmess 6= k) sk = false)
The states0 represents the initial state. Labelsin and
out are respectively write and read requests. Two spe-
cial states (represented by rectangles) have also been

10Some solutions [6] have been proposed to cope with the problem of
numerical properties verification.

ERR_empty

s0 s1 s2

outout

out

in in

in

ERR_full

Figure 4. 2-FIFO queue abstraction.

added. They characterize “illegal” accesses to the queue:
ERR_emptyis reached on an attempt to read an empty
queue, andERR_full is reached when overwriting a full
queue. They are also encoded by boolean variables.
Automata are very easy to specify in SIGNAL . To show
how states can be defined, let us consider the following
specification ofs0:

(|s0 := (true when prev_s1 when (^mess_out))
default (false when prev_s0 when
(mess_in ^+ mess_out)) default
prev_s0

|prev_s0 := s0$1 init true
|)

In the above statements,prev_s1 represents the pre-
vious value of the states1. All the other states are speci-
fied in a similar way. It follows the definitions of signals
OK_write andOK_read below:

(| OK_write := false when (prev_err_full or
prev_s2) default true

| OK_read := false when (prev_err_empty or
prev_s0) default true

|)

The first equation means that a write request is not au-
thorized when there are already two messages in the queue
(prev_s2 is true), or the queue has been overloaded
previously (prev_err_full is true); otherwise it can
be accepted. In a same way, the other statement specifies
when a read request is legal.
The signalss0, s1, s2, ERR_empty, ERR_full,
OK_write and OK_read are synchronized with
access_clock.
To use SIGALI , a file11 must be produced with the required
input format.

Let us consider the script inFigure 5: SIGALI is first
invoked (line(1)), then all the necessary files are loaded
(Creat_SDP.lib and Verif_Determ.lib contain
specific functions of SIGALI). The predicates on the lines
(5) and(6) show that the stateErr_full always remains

11This file has the extention.z3z, and is obtained by compiling the SIG-
NAL source file with the option- z3z.

Sigali; (1)
read(”safe_FIFO.z3z”); (2)
read(”Creat_SDP.lib”); (3)
read(”Verif_Determ.lib”); (4)
Always(B_False(Err_full)); ! True (5)
POSSIBLE(B_True(Err_full)); ! False (6)
Reachable(Err_empty); ! False (7)

Figure 5. Script for safety properties check-
ing.

false, and it is not possible that it becomestrue (i.e. proper-
ty S1). In another way, the last statement shows that the
stateErr_emptyis not reachable (i.e. propertyS2).

Now for invariant properties12 I1 and I2, we consider
observers, represented by boolean state variables. We have
to show that these variables always carry the valuetrue. Let
inv1 andinv2 denote respectively the observers for(I1)
and(I2).

1. (I1) is described as follows:� On a write request (denoted by the presence of
mess_in), when the queue is either ins0 or s1;
the signalinv1 carries the valuetrue if the mes-
sage is actually written into the queue (i.e.
new_mess_in is present), elseinv1 is false.� Otherwise,inv1 keeps its previous value.

The corresponding SIGNAL code is:

(| actual_write := true when(^new_mess_in)
default false

| inv1 := actual_write when(z_s0 or z_s1)
when(^mess_in) default z_inv1

| z_inv1 := inv1 $ 1 init true
|)

The booleanactual_write denotes the fact that a
message is actually put into the queue.

2. In a similar way,(I2) is encoded by the following SIG-
NAL code:

(| actual_read := true when(^mess_out)
default false

| inv2 := actual_read when(z_s1 or z_s2)
when pull_mess default z_inv2

| z_inv2 := inv2 $ 1 init true
|)

Here also, all the new variables have the same clock
as the signalaccess_clock. Then, the properties
can be checked as shown inFigure 6. The component
safe_FIFO can be embodied further in a communication

12Expressing these invariant properties requires to refer tothe dynamics.

Sigali;
read(”safe_FIFO.z3z”);
read(”Creat_SDP.lib”);
read(”Verif_Determ.lib”);
Always(B_True(inv1)); ! True
POSSIBLE(B_False(inv1)); ! False
Always(B_True(inv2)); ! True
POSSIBLE(B_False(inv2)); ! False

Figure 6. Script for invariant properties check-
ing.

protocol, where new properties are verified (e.g. absence of
deadlock during accesses by message writers and readers).
The protocol itself will be further used within an application
whose behavior can be analyzed, and so on. In that way,
properties are incrementally checked and specifications are
guaranteed to be correct.

Consistency checking and analysis of component mo-
dels are essential to their dependability. Here, both models
and properties are described using a unique formalism, the
SIGNAL model, and adequate tools for verification and ana-
lysis are provided by the programming environment. This
ensures a certain coherence in the design, contrary to ap-
proaches such as [15], where an implementation language
(Java) and a formal specification language (labeled transi-
tion systems) are combined to implement systems.

Discussion. Essentially, two issues can be observed about
the scalability of our approach to large systems.

The first concerns the correct distribution of the system
functionalities on a given architecture. This is achieved by
providing a synchronous model of the functionalities, on
which one can perform verifications and analysis to make
sure that requirements are met. In particular, one can check
whether or not endo/isochrony properties [3] hold, for a safe
deployment of the model on a distributed architecture.
The second issue proceeds in an incremental way. Instead
of modeling the whole system through its functionalities, its
sub-systems are specified. They can be analyzed separately,
and “composed” using communication media (e.g. the safe
FIFO described here), or protocols (e.g. the LTTA protocol
[4]), defined also in the SIGNAL model. This composition
must obviously guarantee some critical properties in the re-
sulting system. For instance, there must be no loss of mes-
sages during information exchanges between sub-systems.
This is addressed by the so-calledsampling theoremin the
LTTA protocol [4]. The SIGNAL model enables such ana-
lysis.

However, the main restriction of the approach lies in the
fact that the synchronous modeling does not allow the des-
cription of unbounded resources. Typically, an unbounded

FIFO queue cannot be completely modeled in the SIG-
NAL model. One may only define an associated abstraction,
which does not provide all the necessary implementation
details for an in-depth analysis purpose.
In embedded systems, resources are always limited, so the
approach remains valid.

5. Conclusions

We have argued in this paper that the SIGNAL language
favors an efficient approach to the design of embedded sys-
tems. Basically, a system is first specified in the SIG-
NAL model. Then, through formal transformations, another
SIGNAL model is derived, which reflects the target archi-
tecture. These transformations proceed by a desynchroniza-
tion of synchronous programs, based on the endo/isochrony
properties [3]. The level of detail in which the architec-
ture needs to be described may require specific mechanisms
to achieve, for instance, communications, synchronizations,
etc. Such mechanisms can be also specified and analyzed in
the SIGNAL model, as we illustrated here for the modeling
of a safe FIFO queue. We also have shown how proper-
ties are verified to guarantee the dependability of this FIFO
queue for a further use in communication protocols (e.g.
LTTA [4]). In the same way, the protocol itself can be ana-
lyzed, then may be used in a system which can be part of
a larger system, where on every level of complexity we can
perform our analysis.

We advocate a design methodology including high level
specifications using the modularity and reusability features
of the SIGNAL programming; formal verification and per-
formance evaluation; automatic code generation. In such
a context, the formal basis of SIGNAL is a key aspect for
validation, contrarily to other approaches based on a for-
malism like UML whose formal foundations are not well-
established. This is essential to a reliable design of safety
critical systems.

A design of a real world avionics application using this
approach is currently under study. The used components
[8] have been defined from the specifications of the avionics
standard ARINC 653. They include mechanisms for com-
munication (e.g.buffer, blackboard), synchronization (e.g.
semaphore), and execution (e.g.processesand associated
management services), etc. This work is to be extented to
applications from other safety critical domains like auto-
motive or nuclear industries. In that case, an adaptation of
the existing component models may be required to conform
to the considered standards (e.g. OSEK for automotive).
In this connection, a modeling of the real-time Java API
using SIGNAL is currently studied. This should allow to
access the available formal techniques and tools of POLY-
CHRONY for the analysis of real-time Java applications.

6. Acknowledgments

We thank Hervé Marchand for his worthful advices on
the use of SIGALI .

References

[1] A. Benveniste. Safety critical embedded systems: the sacres
approach. InFormal techniques in Real-Time and Fault
Tolerant Systems, FTRTFT’98 school, Lyngby, Denmark,
September 1998.

[2] A. Benveniste and G. Berry. The synchronous approach to
reactive and real-time systems. InProceeding of the IEEE,
vol. 79, No. 9, pages 1270–1282, April 1991.

[3] A. Benveniste, B. Caillaud, and P. Le Guernic. Composi-
tionality in dataflow synchronous languages: specification
and distributed code generation. InInformation and Com-
putation, vol. 163, pages 125–171, 2000.

[4] A. Benveniste, P. Caspi, P. Le Guernic, H. Marchand,
J. Talpin, and S. Tripakis. A protocol for loosely time-
triggered architectures. InProc. of 2002 Conference
on Embedded Software, EMSOFT’02, J. Sifakis and A.
Sangiovanni-Vincentelli, Eds, LNCS vol 2491, Springer Ver-
lag, 2002.

[5] A. Benveniste, P. Le Guernic, and C. Jacquemot. Program-
ming with events and relations: the SIGNAL language and its
semantics. InScience of Computer Programming, 16:103-
149, 1991.

[6] F. Besson, T. Jensen, and J. Talpin. Timed polyhedra anal-
ysis for synchronous languages. InProceedings of the 10th
International Conference on Concurrency Theory (CON-
CUR’99), LNCS volume 1664, Springer Verlag, August
1999.

[7] P. Clements. A survey of architecture description languages.
In 8th Int’l Workshop on Software Specifications and De-
sign, Paderborn, Germany, March, 1996.

[8] A. Gamatié and T. Gautier. Modeling of modular avionics
architectures using the synchronous language SIGNAL . In
Proceedings of the Work In Progress session, 14th Euromi-
cro Conference on Real Time Systems, ECRTS’02, pages 25–
28. Vienna, Austria, June 2002.

[9] T. Gautier and P. Le Guernic. Code generation in the sacres
project. InProceedings of the Safety-critical Systems Sym-
posium, SSS’99, Springer.Huntingdon, UK, February 1999.

[10] D. Goshen-Meskin, V. Gafni, and M. Winokur. SAFEAIR:
An integrated development environment and methodology.
In INCOSE 2001, Melbourne, July 2001.

[11] N. Halbwachs.Synchronous programming of reactive sys-
tems. Kluwer Academic Publications, 1993.

[12] A. Kountouris and P. Le Guernic. Profiling of SIGNAL pro-
grams and its application in the timing evaluation of de-
sign implementations. InProceedings of the IEE Colloq. on
HW-SW Cosynthesis for Reconfigurable Systems, IEE, pages
6/1–6/9. HP Labs, Bristol, UK, February 1996.

[13] M. Le Borgne, H. Marchand, E. Rutten, and M. Samaan.
Formal verification of SIGNAL programs: Application to a
power transformer station controller. InScience of Computer
Programming, 41(1), pages 85–104, August 2001.

[14] H. Marchand, P. Bournai, M. Le Borgne, and P. Le Guernic.
Synthesis of discrete-event controllers based on the signal
environment. InDiscrete Event Dynamic System: Theory
and Applications, 10(4), pages 325–346, October 2000.

[15] T. Nelson, D. Cowan, and P. Alencar. Supporting formal
verification of crosscutting concerns. InThird International
Conference, REFLECTION 2001, Kyoto, Japan Reflection,
pages 271–285, 2001.

[16] Object Management Group. Omg unified model-
ing language specification version 1.4. In(http:
//www.omg.org/technology/documents/
formal/uml.htm), September 2001.

