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The SIGNAL Approach to the Design of System Architectures
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IRISA/INRIA
F-35042 RENNES, France
{agamatie, gautier}@irisa.fr

Abstract Among solutions that have been proposed to overcome
the above obstacles, there are Architecture Description La
Modeling plays a central role in system engineering. It guages (ADLs) [7], the Unified Modeling Language (UML)
significantly reduces costs and efforts in the design by pro-[16], or the synchronous technology [11]. They all provide
viding developers with means for cheaper and more rele- formalisms and tool-sets that help for the description sf sy
vant experimentations. So, design choices can be assessd@ms. Solutions which adopt formal methods are widely ac-
earlier. The use of a formalism, such as the synchronouscepted as a confident way for guaranteeing the quality of
languageSIGNAL which relies on solid mathematical foun- designs. As a matter of fact, verification and validation are
dations for the modeling, allows validation. This is the aim facilitated. So, it appears desirable for a design formalis
of the methodology defined for the design of embedded systo have a well-defined formal semantics. Unfortunatelg thi
tems where emphasis is put on formal techniques for veri-is not the case for all the solutions (for instance, UML only
fication, analysis, and code generation. This paper mainly has a semi-formal semantics).
focuses on the modeling of architecture components usingThe synchronous technology emerges as one of the most
SIGNAL. For illustration, we consider the modeling of a promising ways for guaranteeing a safe design of embedded
bounded FIFO queue, which is intended to be used for com-systems. It offers practical design assistance tools with a
munication protocols. We bring out the capabilitiesSoé- formal basis. These include possibilities of high levelkspe
NAL to allow specifications in an elegant way, and we check fications, modular verification of properties on these speci
few elementary properties on the resulting model for cor- fications, automatic code generation through formal trans-
rectness. formations, and validation of the generated code against
specifications. As a result, earlier architectural choaes
behavioral simulation are enabled, and design ambiguities
and errors can be significantly reduced OLRCHRONY,
the programming environment of the synchronous language
SIGNAL [5], implemented by INRIA (htt p:// waww.
Nowadays, systems in general are more and more largd I'i sa. f r/ espr esso) incorporates all these functiona-
and complex. Obviously, the engineering becomes verylities.
delicate since the complexity of data structures and com- A major objective of our work is the definition and im-
putation algorithms is challenging. On the other hand, the plementation of an enhanced methodology for the design of
design cycle usually involves multiple formalisms and va- embedded systems withinoByCHRONY. This methodo-
rious tools. A major drawback in such a context is that the logy must significantly reduce the risk of design errors and
design and checking tasks are inherently long and complex shorten overall design times. Earlier results have been es-
In the case of distributed embedded systems, there are adtablished during the &REs project [9]. The main add-on
ditional difficulties: on the one hand, such systems have to0f the methodology is to allow automatic generation of effi-
be separated efficiently into components, and suitable com-ient and validated distributed code from the specificatjon
munication mechanisms between these components must bentirely replacing the manual coding phase still employed
provided; on the other hand, the validation of the whole is in current industrial design flows.
required. In this paper, we give an overview of the methodology, but
we rather concentrate on the approach of modeling compo-

1. Introduction

*This work has been supported by the european project IST
SAFEAIR (Advanced Design Tools for Aircraft Systems and Airborné&-So 1There is also an industrial version|LBEX, implemented and com-
ware) [10] bt t p: / / ww. saf eai r. org/). mercialized by TNI-Valiosysht t p: / / www. t ni - val i osys. com).




nents used in architecture descriptions. The remainder of e Synchronous parallel compositionof P andQ, en-
the paper is organized as follows: section 2 presents the codedby(| P | Q). Itcorrespondsto the union
SIGNAL language. Then, in section 3, we introduce the of systems of equations represented?gndQ.
methodology. We highlight its main steps from specifica-

tion to implementation. In section 4, we illustrate the desi
of architecture components through the modeling Birst

In First Outqueue. We verify some properties (e.g. safety
on the resulting model for correctness. Finally, a conolusi
is given in section 5.

These core constructs are of sufficient expressive power
to derive other constructs for comfort and structuring. The
) following operators are also used in the next sections:

e l-arg down-sampling.y: = when b, where
yr = true if by = true, elsey, = 1.

2. The SIGNAL language e Clock union2 y: = x1 ~+ ... *+ xn, wherey is of
event type, and denotes the set of instants where at

The underlying theory of the synchronous approach [2] least one signali occurs.

is that of discrete event systems and automata theory. Time e Synchronizer. x1 A= ... ~=xn, where
is logical: it is handled according to partial order and si- zl; #1le ... & ang #L (ie. zl,..,zn are
multaneity of events. Durations of execution are viewed as synchronous).

constraints to be verified at the implementation level. Typi
cal examples of synchronous languages [11] aseHREL,
LUSTRE, SIGNAL. They differ mainly from each other in
their programming style. The first one adopts an imperative
style whereas the two others are dataflow orientedstL

e Sliding window. y:= x window n init yoO,
wherevt > 0,andi € 0..n — 1:
(412 1) = (Yili] = Xe-nira)) A
(I<t+i<n)= Yli]=y0t—n+i+2])

TREIs functional and 8NAL is relational). However, there e Memory.y: = x cell b init yO0,definedas:
have been joint efforts to provide a common format DC+ (] y:= x default (y$1 init y0)
[1], which allows the interoperability of tools. | v *= x "+ (when b) |)

The SGNAL language [5] handles unbounded series of ] . o
typed values(z;)cn, calledsignals denoted ax in the The next example illustrates the meaning of #ieling
language, and implicitly indexed by discrete time (denoted Window and thememory operators. Let us consider a
by ¢ in the semantic notation). At a given instant, a signal Process defined as follows:
may be present, then it holds a value; or absent, then it is

denoted by the special symbalin the semantic notation. (I y :=x window3init [-1,0]
There is a particular type of signals calledent . A signal | z:=xcell binit 0
of this type is alwaysrue when it is present (otherwise, it is ).

1). The set of instants where a sigixals present is called
its clock It is noted ag'x (which is of typeevent )inthe ~ Signalsx and z are of integer typeb is a boolean,
language. Signals that have the same clock are said to b@ndy is a 3-array of integers. A possible run is:

synchronousA SIGNAL program, also callegrocessis a

system of equations over signals. )k(> : Jt‘ Jl_ ; i j; :t)’
The kernel language.SIGNAL relies on a handful of primi- y ) L [=5,01 [0,1,2] L L1 [1,2,3]
tive constructs which are combined using a composition 0 1 Ty 5 | 3
operator. These are:
e Functions.y: = f(x1, ..., xn),where
i #Llealy #Le & ong #£L, andvi: 3. A methodology for the design of embedded
Yo = f(zle, ..., zny). systems
e Delay.y:= x $ 1 init yO,where
T Ale y AL, YVt > 0y = 241, y0 = y0. This methodology relies on the theory of desynchroniza-

tion [3], which defines the formal basis for an effective im-

plementation of synchronous programs on asynchronous ar-

chitectures, without changing their original semantics.

e Deterministic merging.  z:= x default vy, Basically, the design of distributed embedded systems con-
wherez; = x; if z; #1, elsez; = y;. sists in the distribution of aIBNAL program representing

a functional graph of flows, operators and dependencies.

e 2-args down-sampling. y: = x when b, where
yr = xy¢ if by = true, elsey; =1.

e Hiding. P wher e x denotes that the signalis lo-
cal to the procesB. 2Similarly, intersectionanddifferenceof clocks are defined.




Generated embedded code (C, Java...)
for each processor, including calls of
SIGNAL library of communication services
architecture components

. [
SIGNAL model of
an application After partitioning and compiling, suitable &) 17 .

synchronous communication wires are
automatically added between processors

-

I:I The same model of the application
which reflects a particular
implementation

[ ]

SIGNAL model of the
target architecture,
composed of two processors — Performance eval.

- Verification

- Simulation...

Figure 1. An overview of the  SIGNAL methodology for the design of embedded systems.

The target architecture is composed of a set of possiblytarget architecture features an OS, the required model con-
heterogeneous execution components (processors, micresists basically in the profile of the corresponding funcgion
controllers...). For instance, according to the degree of use of the OS, we
A general comment is that the level of detail at which the need models of synchronization gates, communications
architecture needs to be known depends quite a lot on thgpossibly including routing between processors) or tagkin
refinement of the mapping to the chosen architecture. Thisfunctions (in the case of un-interruptible tasks: start and
means that in the simplest cases, the amount of data restop; in the case of interruptible tasks: suspend and resume
quired is fairly small, and simple to assess: assignment and management of priority levels), etc. A
specification of such functions has been addressed in [8],
where a component library (process, communication and
synchronization mechanisms...) has been defined for the
design of modular avionics architectures.

¢ the set of processors or tasks, and the mapping from
operations or sub-processes in the application specifi-
cation to those processors or tasks. This information
enables the partitioning of the graph into sub-graphs

grouped according to the mapping. , i ) i
In Figure 1, we have illustrated the whole design chain.

¢ the topology of the network of processors, the set First, the respectiveIBNAL descriptions of an application
of connections between processors, and a mappingsoftware and the hardware architecture (mainly procegsors
from inter-process communications to these commu- are given. Then, the application is manually partitioned on
nication links. This is useful in the case of signals ex- to the target architecture. The compilatioof the whole
changed between processes located on different pro-determines which information has to be exchanged by pro-
cessors or tasks, if several of them have to be routedcessors, and communication wires are automatically added
through the same communication medium. between processors. These communications hasgna
L - chronou$ semantics. Of course, if the application has to
¢ adefinition of the set of system-level primitives used o jonioved on an asynchronous architecture, the instanta-
e.g. for communications (readings and writings to the o, ,shess of the added communications will be lost. How-
media). Roughly, this amounts to the profiles of the oo (1younded) communication mechanisms can be easily
function library to which the code generated for the 1, je|eq with S5NAL. In that case, the models can be used
application will have to be linked. in the description of the architecture so as to obtain a model
Further degrees of refinement of the description may beof GALS (Globally Asynchronous Locally Synchronous)
required for a better architecture-adaptation: for examnpl 5 _ o _
concerning communications, the type and nature of thECHR-gT\i,mam part of the compilation is calledlock calculusin PoLY-
links (that could be implemented using shared variables, = 4n gther words, zero-delay communications: a sent messdgstan-
synchronous or asynchronous communications...). If thetaneously received.




process basic_FI FO =
{ type nmessage_type; integer fifo_size, nessage_type default_ness; }
( ? nessage_type ness_in; event access_cl ock;
| nessage_type nmess_out; integer nbness; boolean OK wite, OK read;

(| nbness := ((prev_nbness+1l) when (~nmess_in) when OK wite) default
((prev_nbness-1) when (~mess_out) when OK_read) default
prev_nbness (1.a)
| prev_nbmess := nbrmess$l init 0 (1.b)
| OK wite := prev_nbmess<fifo_size (1.¢)
| OK_read := prev_nbness>0 (1.d)
| queue := (mess_in wi ndow fifo_size) cell (“access_clock) (1.e)
| mess_out := prev_mess_out when (not OK read) when (“ness_out) default
queue[fifo_size - prev_nbness] when (~nmess_out) (1.1)
| prev_mess_out := nmess_out $ 1 init defaul t_ness (1.9)
| nbrmess ~= access_cl ock (1.h)
1)
wher e

integer prev_nbness; [fifo_size]nessage_type queue;
nmessage_type prev_ness_out;
end; %basi c_Fl FO%

nmess_in 1L 4 6 L L1 L 5 T 8 L L
access_cl ock t t t t t t t t t t t
mess_out 1L 1L 4 6 6 L 1L 1L 7 8
nbness 0 1 2 1 0 o 1 2 2 1 0
K wite t t t f t t t t f t
OK_read f f t t t f t

Figure 2. A model of basic_FIFO with an associated trace.

type. The $GNAL compiler is used to establish and verify ties. Besides this particular example which can be used as
the conditions under which the asynchronous behavior ofa communication component, we illustrate more generally
the application model is equivalent to the synchronous onea component-based approach. We also show how to verify
(this is addressed by the so-calleddo/isochrony proper-  properties on a component, and how to abstract it for fu-
ties[3]). So, one solution is to define a library of compo- ture use. This brings out the main features afAL pro-
nents which can be used to model various communicationgramming, and their benefits for a component-based design
mechanisms in architectures. For instance, the componentsiithin a homogeneous formal framework.

presented in [8] can be used to describe avionics applica-

tions. They have peen modeleql With‘GSIAI._ in order to _ 4. Design of a safe FIFO queue

take advantage of its formal basis for architecture analysi
So, for a particular implementation, we only have to pick . o )
up the required componentmodel from a pre-defined library _ A FIFO queue, calletbasi c_FI FOis first considered.
and insert itinto the current system description. Aftexgar This componentwill be enhgnced Iater.so as to derive areal-
we can use the techniques and tools available dnyP ly “safe” FIFO queue on which properties will be checked.
CHRONY to assess the final implementation; or generate . .

separate embedded code for each processor, along with thdodel of a basic FIFO queue. Informally,basi c_FI FO
suitable communication protocol. The protocol preserves WOrks as follows:

the semantics of synchronous communication even though
an asynchronous communication medium is used. We al-
ready mentioned that verification and validation are essen-
tial to our approach. Thel&NAL compiler and tools like
SIGALI (a model checker, see in the next sections) help for
property checking (e.g. safety). Performance evaluaton i
also possible using implemented techniques such as the pro- e On a read request, there is an outgoing message what-

e On a write request, the incoming message is inserted
in the queue regardless of its size limit. When the
gueue was previously full, the oldest message is lost.
The other messages are shifted forward, and the in-
coming is putin the queue.

filing of SIGNAL programs [12]. ever the queue status is. When it was previously emp-
All these features favor a helpful and confident context ty, two situations are distinguished: if there is not yet
for the design activity. In the next, we concentrate on the any written message, an arbitrary message caleed

design of component models. We model a bounded FIFO fault messagés returned; else the outgoing message
gueue, usable for message exchanges between several enti- is the message that has been read last.



process safe_FlI FO =
{ type nmessage_type; integer fifo_size; nessage_type default_ness; }
( ? nessage_type ness_in; event get_ness;
! nmessage_type ness_out; boolean OK wite, OK read;
)

(| access_clock := nmess_in "+ get_mess (2.a)
| new ness_in := mess_in when K wite (2.b)
| ness_out "= get_mess when OK read (2.¢)
I

(mess_out, nbness, K wite, K read) :=
basi c_FI FO{ nessage_type, fifo_size, default_ness }
(new_ness_in, access_cl ock) (2.d)

)

wher e
use basi c_FI FO
i nteger nbness; nessage_type new_nmess_in; event access_cl ock;

end; ¥%saf e_FlI FO%

ness_in 1 4 6 L L L 5 7 8 1L L
get _ness t 1l L t t t lr L L t t
mess_out e 6 L L 1 L1 5 7
K wite t t t f t t t t f f t
OK_read f f t t t f f t t t t

Figure 3. A model of safe_FIFO with an associated trace.

Furthermore, for simplicity we suppose that write/read re- The statemenf 1. a) expresses how the current number

guests never occur simultaneously. of messages is calculated. That is, its previous value is in-
cremented by one when there is a write request, and if the
4.1.SIGNAL specifications queue was not full; it is decremented by one when there is

a read request, and if the queue was not empty; otherwise
it remains unchanged. The equatiph. h) states that the
value ofnbness changes whenever there is a request on
the queue.

The equatiorf 1. e) definesthe message queue. The signal
gueue is an array of dimensiohi f 0_si ze that contains
thefi f o_si ze latest values ofress_i n (expressed by
thewi ndow operator). Theel | operator makes the sig-
nalqueue available wheraccess_cl ock is present (i.e.
Swhenever there is a request).

“Finally, (1. f) means that on a read request (i.e. at the

lue. The "’?p”r‘ signglsne§s_i n and ac'cess_cl ock clock*mess_out ), the outgoing message is either the pre-
are respectively the incoming message (its presence dzanoteviouS if the FIFO is empty (defined {L. g) ), or the oldest

a write request), and the queue access clock (i.e. insténts Omessage in the queue. In the resulting trace={gure 2),

rebad/wrltecgsque_stts) ' Tr:jeqclutﬁlm%nalihareness_otgt ,I the type of the messages is integer, the size limit is 2, and
nbmess, Uk wite an _read. €y reSpectively  ihe default message value is -1.

represent the outgoing message, the current number of MeSanceforth. thebasi ¢ Fl FO model can be used to des-

sages in the queue, and conditions for writing and reading. cribe other i:IFO queuEs. This is the topic of the next para-
Now, we can take a look at the meaning of the state- graph.

ments in the process body. Let us begin with the equation

((jl' bt) ; |:hdef|ne§ the Iocalt)3|gnf?;1prev_nb|”fe?s, which ThModeI of a safe FIFO queue. In the model depicted
enotesthe previous humber ot messages Inthe queue. Thig, Figure 3, the interfac@ is slightly different from that

f'gnﬁl 'S ;l]sed 1. c) agd(‘,l' fd)| ,"to q§f|netrr]esp¢ctl\1§- it of basi c_FI FO. Parameters are the same. A new input
y when the queue can be "safely” written (the size limi signalget _ness has been added. It denotes a read re-

; g . . ) %’uest. The signaibness which was previously an output
ae;v?i)é;'hls is the meaning of the signé@ls_ wri t e and of basi ¢_FI FO, is now a local signal.
- ' The statement?2. a) defines the access clock as the union
Sintroduced by the symbol “ ? . of instants where read/write requests occur. Equations

SIntroduced by the symbol ! .
"Declared in the Where” section in the process model. 8parameters, inputs, and outputs.

Here, we concentrate on theGRAL description of the
FIFO queue. We give a model foiasi c_FI FO, then we
show how to specify another FIFO queue from the previous
one.

The corresponding IBNAL description (also termed
process modgl is given in Figure 2. Variables
nessage_type,fifo_sizeanddefault_mess are
parameters, which respectively denote the type of message
the size limit of the queue, and the default message va




(2. b) and( 2. c) arein charge of ensuring a safe access soning capabilities capture only synchronization anddogi
to the queue imasi ¢_FI FO. The process call if2. d) properties. In fact, people most often have to consider a
has the local sighalew_ness_i n as input. This signhalis  boolean abstraction of programs with numerical properties
defined only wherbasi ¢_FI FOwas not full, it is stated  This is the main limitatio® of SIGALI.
by (2. b) . Similarly, (2. ¢) expresses that on a read re- In the sequel, properties of interest concern fedfety
guest, a message is received only wbhasi ¢_FI FOwas
not empty. In the trace iRigure 3, the same parameters as
for basi c_FI FOare considered. e (S): Read to the empty queue never happens.
Thesaf e_FI FOcomponentwill serve later in the descrip-
tion of some communication protocol such as the LTTA pro- Other desirable properties are for example the folloviing
tocol (Loosely Time-Triggered Architectutes) [4]. variants

We observe that modularity and reusability are key fea-
tures of the 85NAL programming. They favor component-
based designs. By constraining a given component, one can
derive others. The most difficult task is the identification ~ ® (/2): A message can always be read from the queue,
of suitable basic components. Moreover, the adaptability when it is not empty.
of components is very flexible. As a matter of fact, the . . .

‘, . To check these properties, we consider an abstraction of

SIGNAL process model enables “generic” components by th

o . . e processaf e_FI FO. It can be obtained using treta-
parameterizing the interface (e.g. in the above models, the . . :
. ) . .., te variables(signals that are defined lyelay or memory
type of messages is a parameter). Finally, combined with

the other characteristics of the language (e.g. possibilit operators) that appear in the program. They feature the dy-

R . X - namics of the system defined by the process. Here, the state
of non-deterministic specifications), richer descripti@ne .
enabled. variables ar@bmess, queue andpr ev_ness_out (de-

fined inbasi c_FI FO).
On the other hand, we notice that properties of interest
can be addressed by considering only the state variable
) o . ] nbmess. Indeed, the queue access conditions rely on this
As mentioned earlier in the paper, a benefitof using-S  gjngle signal. Therefore, in the abstraction, a state veill b
NAL for designs is the availability of formal verification  gimply characterized bgbress. Furthermore, since S
tools. Two kinds of properties can be distinguished about ;5| | does not address numerical propertigsgess must
SIGNAL programs [13]:invariant properties (e.9. a pro-  pe encoded with a boolean variable.
gram exhibits no contradiction between clocks of involved A ;,_FIFO queue can be represented by an automaton
signals) on the one hand, amignamicalproperties (e.9.  jith (n + 1) states, where a state denotes the current num-
reachability, liveness) on the other hand. _ ber of messages in the queue. For the sake of simplicity,
The SGNAL compiler itself addresses only the first one. e consider 2-FIFO queue since all possible relevant con-
For a given SeNAL program, it checks the consistency of figyrations can be addressed. So, the results remain valid
constraints between clocks of signals, and statically @0V  for any boundech-FIFO queue where > 2. Moreover,

e (S1): Write to the full queue never happens.

e (I;): A message can always be written in the queue,
when it is not full.

4.2. Property verification

propert?es. ) it is assumed that messages in the queue are read in the
Dynamical properties are addressed by the model checkegame order they have been written (i.e. the FIFO queue
SIGALI [14], available within RLYCHRONY. SIGALI re-  gatisfies thesampling theorenin the protocol for Loosely

lies on the theory of polynomial dynamical systems. Time-Triggered Architectures [4]).
Roughly speaking,'a|SNA|_.program is abstracted into a The automaton irFigure 4 abstracts @-FIFO queue
system of polynomial equatiofieverZ /37, Thisallowsto  pehavior. A statesk (represented by a circle) denotes the

encode all the possible status of aboolean signfiir true,  fact that the queue currently contakisnessages. In other
—1 for false and0 for L. For a non-boolean signal, only  words, for anyk € {0,1,2}:

the fact that this signal ipresent(whatever its value is) or

absenis encoded. So, the presence is denotet, land the (nbmess = k = sk = true) A

absence by). It must be noted that this “translatioftl- (nbmess # k = sk = false)

ly takes into account information about boolean variables

(values and clocks), whereas for non-boolean signals, in- The states0 represents the initial state. Labets and
formation on values are lostherefore, itis importantthat oyt are respectively write and read requests. Two spe-

a SGNAL program that will be analyzed by&aLl isspeci-  ¢jg| states (represented by rectangles) have also been
fied as much as possible using boolean variables, since rea

1050me solutions [6] have been proposed to cope with the probfe
9In fact, a symbolic automaton. numerical properties verification.




\ out out
Sigali; (1)

read(”saf e_FI FO. 232"); (2)

read("Creat _SDP.|ib"); (3)

L read(”Verif_Determlib”); (4)

in n Al ways(B_Fal se(Err_full)); — True (5)

in POSSI BLE(B_True(Err_full)); — False (6)

out Reachabl e( Err _enpty); — False (7)
ERR_empty ERR_full

Figure 5. Script for safety properties check-

ing.
Figure 4. 2-FIFO queue abstraction. g

added. They characterize “illegal” accesses to the queuesalsg and it is not possible that it becontese (i.e. proper-
ERR_emptys reached on an attempt to read an empty ty §,). In another way, the last statement shows that the
queue, ancERR_fullis reached when overwriting a full stateErr_emptyis not reachable (i.e. propers).

gueue. They are also encoded by bo'olean variables. Now for invariant properti¢é I; and I,, we consider
Automata are very easy to specify inGBIAL. To show  opserversrepresented by boolean state variables. We have
how states can be dEfined, let us consider the fO”OWingto show that these variables a|WayS carry the value Let
specification o&0: i nv1 andi nv2 denote respectively the observers (ér)
and(I).

(]s0 := (true when prev_sl when ("“ness_out))
default (false when prev_s0 when
(mess_in "+ ness_out)) default
prev_sO

prev_s0 := s0$1 init true

)

1. (1) is described as follows:

e On a write request (denoted by the presence of
nmess_i n), when the queue is either kb or s1;
the signal nv1 carries the valugueif the mes-

In the above statementpr ev_s1 represents the pre- sage is actually written into the queue (i.e.
vious value of the statel. All the other states are speci- new_ness_i nis present), elsenvl isfalse
fied in a similar way. It follows the definitions of signals

OK writeandOK read below:

e Otherwisej nv1 keeps its previous value.

The correspondingISNAL code is:

(] Kwite := false when (prev_err_full or
rev_s2) default true : . :
| K read := falpse ﬁlnea (prev_err_enpty or (] actual _wite := true when(”new_ness_in)
— T - = default false
prev_s0) default true | invl := actual _wite when(z_sO0 or z_sl)
1 when(”nmess_in) default z_invl
| z_invl :=invl $ 1 init true

The first equation means that a write request is not au- 1)
thorized when there are already two messages in the queue
(prev_s2 is true), or the queue has been overloaded
previously prev_err_ful |l is true); otherwise it can

be accepted. In a same way, the other statement specifies 2 | a similar way(I» ) is encoded by the followingi -

The boolearact ual _wri t e denotes the fact that a
message is actually put into the queue.

when a read request is legal. NAL code:
The signalss0, s1, s2, ERR enpty, ERR full,
XK wite and OK read are synchronized with (] actual _read := true when(~nmess_out)
access_c| ock. default fal se
To use $GALI, a file!r must be produced with the required | inv2 .= a\‘f\;“a' _read when(z_sl or z_s2)
. en pull _mess default z_inv2
input format. | z_inv2 :=inv2 $ 1 init true

Let us consider the script iRigure 5: SIGALI is first 1)

invoked (line( 1) ), then all the necessary files are loaded
(Creat_SDP.lib and Verif_Determ|ib contain Here also, all the new variables have the same clock
specific functions of &ALI). The predicates on the lines as the signalaccess_cl ock. Then, the properties

(5) and(6) show that the stat&rr_full always remains ~ can be checked as shown figure 6. The component
saf e_FI FOcan be embodied further in a communication

11This file has the extentiorz3z and is obtained by compiling the &
NAL source file with the optionz3z 12Expressing these invariant properties requires to reféretdynamics.



FIFO queue cannot be completely modeled in the-S

Sigali; - . .
read("saf e_FI FO z32") NAL model. One may'only define an assoma}ted abstract!on,
read("Creat_SDP.1ib"); which does not provide all the necessary implementation
read(”Verif_Determlib”); details for an in-depth analysis purpose.

Al vays(B_True(invl)); — True In embedded systems, resour re always limit th
POSSI BLE(B_Fal se(invl)); —  Fal se h y I.('j ources are aways ed, so the
Al ways(B_True(inv2)); —  True approach remains valid.

POSSI BLE(B_Fal se(inv2)); — Fal se

5. Conclusions
Figure 6. Script for invariant properties check-
ng- We have argued in this paper that theSAL language
favors an efficient approach to the design of embedded sys-
tems. Basically, a system is first specified in thes-S
protocol, where new properties are verified (e.g. absence ofNAL model. Then, through formal transformations, another
deadlock during accesses by message writers and readershiGNAL model is derived, which reflects the target archi-
The protocol itself will be further used within an applicati tecture. These transformations proceed by a desynchroniza
whose behavior can be analyzed, and so on. In that waytion of synchronous programs, based on the endo/isochrony
properties are incrementally checked and specificatioms ar properties [3]. The level of detail in which the architec-
guaranteed to be correct. ture needs to be described may require specific mechanisms
Consistency checking and analysis of component mo-to achieve, for instance, communications, synchroninatio
dels are essential to their dependability. Here, both nsodel etc. Such mechanisms can be also specified and analyzed in
and properties are described using a unique formalism, thehe SGNAL model, as we illustrated here for the modeling
SIGNAL model, and adequate tools for verification and ana- of a safe FIFO queue. We also have shown how proper-
lysis are provided by the programming environment. This ties are verified to guarantee the dependability of this FIFO
ensures a certain coherence in the design, contrary to apegueue for a further use in communication protocols (e.g.
proaches such as [15], where an implementation languagd-TTA [4]). In the same way, the protocol itself can be ana-
(Java) and a formal specification language (labeled transi-lyzed, then may be used in a system which can be part of
tion systems) are combined to implement systems. a larger system, where on every level of complexity we can
perform our analysis.
Discussion. Essentially, two issues can be observed about We advocate a design methodology including high level
the scalability of our approach to large systems. specifications using the modularity and reusability feadur
The first concerns the correct distribution of the system of the SGNAL programming; formal verification and per-
functionalities on a given architecture. This is achievgd b formance evaluation; automatic code generation. In such
providing a synchronous model of the functionalities, on a context, the formal basis ofil&AL is a key aspect for
which one can perform verifications and analysis to make validation, contrarily to other approaches based on a for-
sure that requirements are met. In particular, one can checknalism like UML whose formal foundations are not well-
whether or not endo/isochrony properties [3] hold, for @saf established. This is essential to a reliable design of pafet
deployment of the model on a distributed architecture. critical systems.
The second issue proceeds in an incremental way. Instead A design of a real world avionics application using this
of modeling the whole system through its functionaliti¢s, i approach is currently under study. The used components
sub-systems are specified. They can be analyzed separateljg] have been defined from the specifications of the avionics
and “composed” using communication media (e.g. the safestandard ARINC 653. They include mechanisms for com-
FIFO described here), or protocols (e.g. the LTTA protocol munication (e.gbuffer, blackboard, synchronization (e.g.
[4]), defined also in the ®NAL model. This composition  semaphorg and execution (e.gprocessesnd associated
must obviously guarantee some critical properties in the re management servicgsetc. This work is to be extented to
sulting system. For instance, there must be no loss of mesapplications from other safety critical domains like auto-
sages during information exchanges between sub-systemsmotive or nuclear industries. In that case, an adaptation of
This is addressed by the so-callegimpling theorenn the the existing component models may be required to conform
LTTA protocol [4]. The SGNAL model enables such ana- to the considered standards (e.g. OSEK for automotive).
lysis. In this connection, a modeling of the real-time Java API
However, the main restriction of the approach lies in the using SGNAL is currently studied. This should allow to
fact that the synchronous modeling does not allow the des-access the available formal techniques and toolsafvP
cription of unbounded resources. Typically, an unbounded cHRONY for the analysis of real-time Java applications.
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