
HAL Id: hal-00541881
https://hal.science/hal-00541881v1

Submitted on 1 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

1D Effectively Closed Subshifts and 2D Tilings
Bruno Durand, Andrei Romashchenko, Alexander Shen

To cite this version:
Bruno Durand, Andrei Romashchenko, Alexander Shen. 1D Effectively Closed Subshifts and 2D
Tilings. Journées Automates Cellulaires, Dec 2010, Turku, Finland. pp.2-7. �hal-00541881�

https://hal.science/hal-00541881v1
https://hal.archives-ouvertes.fr


Journées Automates Cellulaires 2010 (Turku), pp. 2-7

1D EFFECTIVELY CLOSED SUBSHIFTS AND 2D TILINGS

BRUNO DURAND 1, ANDREI ROMASHCHENKO 2, AND ALEXANDER SHEN 2

1 LIF, CNRS & Aix–Marseille Université
E-mail address : Bruno.Durand@lif.univ-mrs.fr
URL: http://www.lif.univ-mrs.fr/~bdurand

2 LIF, CNRS & Aix–Marseille Université, on leave from IITP RAS
E-mail address : {Andrei.Romashchenko,Alexander.Shen}@lif.univ-mrs.fr

Abstract. Michael Hochman showed that every 1D effectively closed subshift
can be simulated by a 3D subshift of finite type and asked whether the same can
be done in 2D. It turned out that the answer is positive and necessary tools were
already developed in tilings theory.

We discuss two alternative approaches: first, developed by N. Aubrun and
M. Sablik, goes back to Leonid Levin; the second one, developed by the authors,
goes back to Peter Gacs.

1. Simulation

Let A be a finite alphabet and let F be an enumerable set of A-strings. Con-
sider all biinfinite A-sequences (i.e., mappings of type Z → A) that do not contain
substrings from F . The set of these sequences is effectively closed (its complement
is a union of an enumerable set of intervals in Cantor topology) and invariant under
(left and right) shifts. Sets constructed in this way are called effectively closed 1D

subshifts.

Effectively closed 2D subshifts are defined in a similar way; instead of biinfinite
sequences we have configurations, i.e., mappings of type Z

2 → A, and instead of
forbidden strings we have forbidden patterns (rectangles filled with A-letters). Given
the set F of forbidden patterns, we consider the set of all configurations where
no elements of F appear. This set of configurations is closed under vertical and
horizontal shifts. If F is enumerable, we get effectively closed 2D subshifts ; if F is
finite, we get 2D subshifts of finite type.

2D subshifts of finite type are closely related to tilings. A tile is a square with
colored sides (colors are taken from some finite set C). A tile set is a set of tiles,
i.e., a subset of C4, since each tile is determined by four colors (upper, lower, left,
and right). For a tile set τ , we consider all τ -tilings, i.e., the tilings of the entire
plane by translated copies of τ -tiles with matching colors.

Key words and phrases: effectively closed subshifts, subshifts of finite type, tilings.
The paper was supported part by NAFIT ANR-08-EMER-008-01 grant, part by EMC ANR-

09-BLAN-0164-01.

2



1D EFFECTIVELY CLOSED SUBSHIFTS AND 2D TILINGS 3

Tilings can be considered as a special case of 2D subshifts of finite type. In-
deed, subshift is governed by local rules (forbidden pattern say what is not allowed
according to these rules). In tilings the rules are extremely local: they say that the
neighbor tiles should have matching colors, i.e., 1× 2 rectangles where the colors do
not match, are forbidden.

So every tile set determines a subshift of finite type (the alphabet is a tile set).
The reverse statement is also true if we allow the extension of an alphabet. (It
is natural since we have to simulate any local rule by a more restricted class of
matching rules.) Formally, for every alphabet A and subshift S of finite type we can
find:

• a set of colors C;
• a tile set τ ⊂ C4;
• a mapping d : τ → A

such that every τ -tiling after applying d to each tile becomes an element of S and
every element of S can be obtained in this way from some τ -tiling. Such a cor-
respondence between tilings and subshifts of finite type works in any dimension:
k-dimensional tilings correspond to k-dimensional subshifts of finite type (modulo
the alphabet extension).

Now we want to compare subshifts in different dimensions. Let S be a 1D
subshift. We can make a 2D subshift from it by copying each letter vertically. It
is easy to see that an effectively closed 1D subshift becomes an effectively closed
2D subshift (we use rules that guarantee the vertical propagation, i.e., require that
vertical neighbors should have the same letter, and the rules of the original 1D
subshift in horizontal direction). This 2D shift, denoted by S̄, is not of finite type, if
the original 1D shift was not of finite type. However, S̄ is sofic, i.e., is a projection
by a subshift of finite type in extended alphabet:

Theorem 1.1. For every effectively closed 1D subshift S in alphabet A there exists

an alphabet A′, a finite 2D subshift S ′ in alphabet A′, and a mapping d : A′ → A

such that the image of S ′ under d (applied in each place) is S̄.

This theorem (with 3D instead of 2D, which makes it easier) was proved by
Michael Hochman [10] who asked whether the same is true for 2D. His motivation
came from ergodic theory.

It turned out that the tools needed to prove theorem 1.1 for 2D tilings were
already developed in the framework of tilings theory when Hochman asked his ques-
tion. Moreover, there are two different sets of tools that can be used; one was used
by Nathalie Aubrun and Mathieu Sablik [1] (and goes back to Leonid Levin [4]), the
other one was used in [6] (and goes back to Peter Gács [8]). In the sequel we discuss
informally how these tools work, and what are the similarities and the differences.

2. Tools

Let us describe informally our problem. In 2D we have local rules that guarantee
that each vertical line contains some letter. We need to add some other rules to
guarantee that the emerging horizontal sequence of letters does not have substrings
from some enumerable set F . We are allowed to superimpose additional structure
to the configuration (by extending the alphabet: we let A′ be a product of A and
some other finite set). Rules for this extended configuration should guarantee that
its base belongs to S̄.



4 B. DURAND, A. ROMASHCHENKO, AND A. SHEN

So we need to run a computation that generates F and some process that com-
pares generated elements with substrings in the horizontal sequence. It is well known
(since the first papers of Wang [14, 15] where the notion of a tile set was introduced)
that tile sets can simulate computation easily: indeed, a time-space diagram of a
Turing machine (or a cellular automaton) obeys local rules that guarantee that
computation is performed correctly when started. The problem is to initiate the
computation: there is no special point in the plane where the computation can be
started, so we need to “break the translational symmetry” somehow.

This problem was solved by Berger [2] who proved that there exists an aperiodic
tile set, i.e., a tile set τ such that τ -tilings exist but all are aperiodic. (A tiling is
periodic if there is a non-zero translation that does not change it. One can show
that if a tile set has a periodic tiling then it has a 2-periodic tiling where some finite
block is repeated horizontally and vertically.) Berger used a complicated multi-level
construction that was later simplified in different ways by Robinson [13] and others.
The simplification made clear that Berger’s construction is essentially based on self-
similarity: any tiling can be divided into blocks that behave like individual tiles.
(In the original construction this similarity was obscured by some irregularities; the
cleaned versions could be found in [12] or [3].)

This self-similarity creates some kind of a skeleton that can be used to initiate
computations. However, the problem is that we necessarily initiate them in many
different places, and these “geometrically parallel” computation should be organized
to achieve some goal. Berger used them to prove the undecidability of the domino
problem (to determine whether a given tile set has at least one tiling); for that pur-
pose it is enough to initiate multiple copies of the same computation: all are limited
in time and space, but among them there are computations of arbitrary length. For
that we split the plane into different zones used for different computations. It is
possible to find such an arrangement; in each zone the standard local rules for a
computation are used but zones are not contiguous. So we need additional efforts to
transmit the information from one zone to another one. This all can be done (with
limited overlap, so the total density of information in a given cell remains finite).

Then Hanf [9] and Myers [11] proved that there are tile sets that admit only
non-recursive tilings (a much stronger statement than the existence of an aperiodic
tile set). This was done by embedding a separation problem for two inseparable
enumerable sets, and for this we need that all the parallel computations not only
share the same (finite) program, but also share the same (infinite) input. Therefore,
some additional machinery is needed to synchronize the inputs of all the computa-
tions (each computation gets a finite part of the infinite input sequence, but these
finite parts are consistent pieces of an infinite input).

When simulating 1D effectively closed subshift, we need more: the input is given
to us externally (the contents of the vertical lines that carry A-letters) and we need
to check this input against all possible forbidden substrings. This means that we
are very limited in space (and cannot distribute pieces of input sparsely over the
entire plane as before).

2.1. Robinson-type solution

The way to do this was developed in [4]. At each level of self-similarity we have
computation squares that are arranged in computational stripes. Such a stripe is infi-
nite in vertical direction and carries an infinite computation of a finite-space cellular



1D EFFECTIVELY CLOSED SUBSHIFTS AND 2D TILINGS 5

automaton. (One can wonder whether it makes sense to have an infinite computation
in a finite space. Indeed, it is not really infinite; it runs for some time (exponen-
tial in the width of the stripe) and then is restarted. The repeated computations
are not necessarily identical, since they interact with the other computations which
could be different.) Each stripe performs some checks for the part of the horizontal
sequence that is near it. When the level (and the size of the stripe) increases, the
checked zone and the time allowed for the computation increase. Working together,
the stripes can check the horizontal sequence against all forbidded substrings.

In [4] this technique was used for one specific 1D effectively closed subshift with
a binary alphabet (for some fixed α < 1 we forbid all sufficiently long strings whose
Kolmogorov complexity is less than α times length). However, this technique is
quite general and can be used for any 1D effectively close subshift modulo some
technical problem.

This technical problem is that the underlying self-similar structure may be “de-
generate” in the sense that the plane is divided in two parts that have no common
ancestors. In this case we need some additional tricks (extending the zone of re-
sponsibility of each stripe) that were not needed for the specific subshift of [4]. The
reason why they were not needed: if a string of low complexity (compared to length)
is split into two parts, one of then has low complexity, too.

So the technique of [4] is not enough. The final construction was discovered (in
fact, independently from [4]) by N. Aubrun and M. Sablik.

2.2. Fixed-point solution

There is a different way to organize the computations that uses fixed-point self-
similar tiling. The idea of a self-similar fixed-point tile set can be explained as
follows. We already know (since Wang papers) that tiling can be used to simulate
computations. This computation, in its turn, can be used to guarantee the desired
behavior of bigger blocks, called macro-tiles. So for a desired behavior of macro-
tiles we can construct tiling rules (i.e., tile set) that guarantees this behavior. If, by
chance, these tiling rules coincide with the rules for macro-tiles, we get self-similarity
as a consequence.

But there is a classical tool to get this coincidence intentionally, not by chance:
the Kleene fixed-point construction. It was used by Kleene in the recursion theory
and later by von Neumann to construct self-reproducing automata. Usually it is
illustrated as follows: for every program p (in fact, for every string p) there exists
a program p′ that prints the text of p. Kleene’s theorem guarantees that one can
find p such that p′ is equivalent to p, i.e., the program p prints its own text. The
same trick (though not just the statement of Kleene’s recursion theorem) can be
used for 2D computations. This was done first by Gács [8] in a complicated setting
(error-correction in 2D computations); we use the same idea in a much simpler
environment. For each tile set τ one can construct a set τ ′ of tiles that force macro-
tiles to behave like τ -tiles; Kleene’s trick can then be used to make τ isomorphic to
τ ′. This construction is explained in [5].

Then some additional structure can be superimposed with this self-similar skele-
ton (by adding some other computations); Kleene’s trick can still be used to achieve
self-similarity (in some extended sense).



6 B. DURAND, A. ROMASHCHENKO, AND A. SHEN

This construction is rather flexible and can be applied to different problems,
see [6]. The differences and similiarities between two constructions are summarized
in the following comparison table.

2.3. Comparison table

Problem Solution 1 Solution 2
Breaking the symmetry Use (modified) Berger–

Robinson self-similar
construction where self-
similarity is guaranteed
by geometric arguments

Use fixed-point self-
similar construction,
where self-similiarity is
a byproduct of some
computational structure

Placing the computa-
tions

Computations of differ-
ent levels are all per-
formed “on the ground”,
by individual cells, and
the plane is divided into
regions allocated to each
level

Computations of differ-
ent levels are performed
at different levels of hi-
erarchy: high level com-
putations deal not with
individual tiles but with
macro-tiles

Arranging arbitrarily
long computations

Computations are infi-
nite in the vertical di-
rection but finite in hor-
izontal direction, each
computation performs a
space-bounded check of
some part of the horizon-
tal sequence; the bound
increases with the level

Computations are finite
in both direction; each
computation performs a
time-bounded check of
some part of the horizon-
tal sequence; the bound
increases with the level

Bringing the bits of the
horizontal sequence to
the computation

Recursively from lower
levels; the bits are syn-
chronized explicitly “on
the ground”

Recursively from lower
levels; each level checks
whether the bits at the
next level are recorded
correctly

Dealing with degenerate
case of the self-similar
pattern

Using overlapping zones
of responsibility

Using overlapping zones
of responsibility

Error resistance Not clear (we first need
some error-resistant un-
derlying geometric con-
struction)

Adding redundancy at
each level

References

[1] N. Aubrun, M. Sablik, Simulation of recursively enumerable subshifts by two dimensional SFT
and a generalization. Preprint, available from M. Sablik’s home page.

[2] R. Berger, The undecidability of the domino problem. Memoirs of the AMS, v. 66 (1966).
[3] B. Durand, L. Levin, A. Shen, Local rules and global order, or aperiodic tilings, The Mathe-

matical Intelligencer, v. 27 (2005), no. 1, p. 64–68.
[4] B. Durand, L. Levin, A. Shen, Complex Tilings. J. Symbolic Logic, 73 (2), 593–613, 2008.



1D EFFECTIVELY CLOSED SUBSHIFTS AND 2D TILINGS 7

[5] B. Durand, A. Romashchenko, A. Shen, Fixed Point and Aperiodic Tilings. Proc. 12th Inter-

national Conference of Developments in Language Theory. Kyoto, Japan, 2008, p. 537–548.
[6] B. Durand, A. Romashchenko, A. Shen, Fixed-point tile sets and their applications. CoRR

abs/0910.2415, 2009. http://arxiv.org/abs/0910.2415
[7] B. Durand, A. Romashchenko, A. Shen, Effective closed subshifts in 1D can be implemented

in 2D. Fields of Logic and Computation, Lecture Notes in Computer Science, v. 6300 (2010),
p. 208–226.

[8] P. Gács, Reliable Computation with Cellular Automata. J. Comput. Syst. Sci. 32(1), 15–78,
1986.

[9] W. Hanf, Nonrecursive tilings of the plane, i, Journal of Symbolic Logic, v. 39 (1974), no. 2,
p. 283–285.

[10] M. Hochman, On the dynamic and recursive properties of multidimensional symbolic systems.
Inventiones mathematicae, 176, 131–167 (2009).

[11] D. Myers, Nonrecursive tilings of the plane, ii, Journal of Symbolic Logic, v. 39 (1974), no. 2,
p. 286–294.

[12] N. Ollinger, Two-by-two Substitution Systems and the Undecidability of the Domino Problem,
Computability in Europe, 2008 (CiE’2008), Lecture Notes in Computer Science, v. 5028, p. 476–
485.

[13] R. Robinson, Undecidability and nonperiodicity for tilings of the plane, Inventiones Mathe-

maticae, v. 12 (1971), p. 177–209.
[14] H. Wang, Proving theorems by pattern recognition, II, Bell System Technical Journal, v. 40

(1961), p. 1–41.
[15] H. Wang, Dominoes and the ∀∃∀ case of the decision problem. Proceedings of the Symposium

on Mathematical Theory of Automata, Brooklyn Polytechnic Institute, New York, 1962, p. 23–
55.

This work is licensed under the Creative Commons Attribution-NoDerivs Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nd/3.0/.


