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D EFFECTIVELY CLOSED SUBSHIFTS AND 2D TILINGS

Michael Hochman showed that every 1D effectively closed subshift can be simulated by a 3D subshift of finite type and asked whether the same can be done in 2D. It turned out that the answer is positive and necessary tools were already developed in tilings theory.

Simulation

Let A be a finite alphabet and let F be an enumerable set of A-strings. Consider all biinfinite A-sequences (i.e., mappings of type Z → A) that do not contain substrings from F . The set of these sequences is effectively closed (its complement is a union of an enumerable set of intervals in Cantor topology) and invariant under (left and right) shifts. Sets constructed in this way are called effectively closed 1D subshifts.

Effectively closed 2D subshifts are defined in a similar way; instead of biinfinite sequences we have configurations, i.e., mappings of type Z 2 → A, and instead of forbidden strings we have forbidden patterns (rectangles filled with A-letters). Given the set F of forbidden patterns, we consider the set of all configurations where no elements of F appear. This set of configurations is closed under vertical and horizontal shifts. If F is enumerable, we get effectively closed 2D subshifts; if F is finite, we get 2D subshifts of finite type.

2D subshifts of finite type are closely related to tilings. A tile is a square with colored sides (colors are taken from some finite set C). A tile set is a set of tiles, i.e., a subset of C 4 , since each tile is determined by four colors (upper, lower, left, and right). For a tile set τ , we consider all τ -tilings, i.e., the tilings of the entire plane by translated copies of τ -tiles with matching colors.
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Tilings can be considered as a special case of 2D subshifts of finite type. Indeed, subshift is governed by local rules (forbidden pattern say what is not allowed according to these rules). In tilings the rules are extremely local: they say that the neighbor tiles should have matching colors, i.e., 1 × 2 rectangles where the colors do not match, are forbidden.

So every tile set determines a subshift of finite type (the alphabet is a tile set). The reverse statement is also true if we allow the extension of an alphabet. (It is natural since we have to simulate any local rule by a more restricted class of matching rules.) Formally, for every alphabet A and subshift S of finite type we can find:

• a set of colors C;

• a tile set τ ⊂ C 4 ;

• a mapping d : τ → A such that every τ -tiling after applying d to each tile becomes an element of S and every element of S can be obtained in this way from some τ -tiling. Such a correspondence between tilings and subshifts of finite type works in any dimension: k-dimensional tilings correspond to k-dimensional subshifts of finite type (modulo the alphabet extension). Now we want to compare subshifts in different dimensions. Let S be a 1D subshift. We can make a 2D subshift from it by copying each letter vertically. It is easy to see that an effectively closed 1D subshift becomes an effectively closed 2D subshift (we use rules that guarantee the vertical propagation, i.e., require that vertical neighbors should have the same letter, and the rules of the original 1D subshift in horizontal direction). This 2D shift, denoted by S, is not of finite type, if the original 1D shift was not of finite type. However, S is sofic, i.e., is a projection by a subshift of finite type in extended alphabet: Theorem 1.1. For every effectively closed 1D subshift S in alphabet A there exists an alphabet A ′ , a finite 2D subshift S ′ in alphabet A ′ , and a mapping d : A ′ → A such that the image of S ′ under d (applied in each place) is S. This theorem (with 3D instead of 2D, which makes it easier) was proved by Michael Hochman [START_REF] Hochman | On the dynamic and recursive properties of multidimensional symbolic systems[END_REF] who asked whether the same is true for 2D. His motivation came from ergodic theory.

It turned out that the tools needed to prove theorem 1.1 for 2D tilings were already developed in the framework of tilings theory when Hochman asked his question. Moreover, there are two different sets of tools that can be used; one was used by Nathalie Aubrun and Mathieu Sablik [START_REF] Aubrun | Simulation of recursively enumerable subshifts by two dimensional SFT and a generalization[END_REF] (and goes back to Leonid Levin [START_REF] Durand | Complex Tilings[END_REF]), the other one was used in [START_REF] Durand | Fixed-point tile sets and their applications[END_REF] (and goes back to Peter Gács [START_REF] Gács | Reliable Computation with Cellular Automata[END_REF]). In the sequel we discuss informally how these tools work, and what are the similarities and the differences.

Tools

Let us describe informally our problem. In 2D we have local rules that guarantee that each vertical line contains some letter. We need to add some other rules to guarantee that the emerging horizontal sequence of letters does not have substrings from some enumerable set F . We are allowed to superimpose additional structure to the configuration (by extending the alphabet: we let A ′ be a product of A and some other finite set). Rules for this extended configuration should guarantee that its base belongs to S. So we need to run a computation that generates F and some process that compares generated elements with substrings in the horizontal sequence. It is well known (since the first papers of Wang [START_REF] Wang | Proving theorems by pattern recognition, II[END_REF][START_REF] Wang | Dominoes and the ∀∃∀ case of the decision problem[END_REF] where the notion of a tile set was introduced) that tile sets can simulate computation easily: indeed, a time-space diagram of a Turing machine (or a cellular automaton) obeys local rules that guarantee that computation is performed correctly when started. The problem is to initiate the computation: there is no special point in the plane where the computation can be started, so we need to "break the translational symmetry" somehow.

This problem was solved by Berger [START_REF] Berger | The undecidability of the domino problem[END_REF] who proved that there exists an aperiodic tile set, i.e., a tile set τ such that τ -tilings exist but all are aperiodic. (A tiling is periodic if there is a non-zero translation that does not change it. One can show that if a tile set has a periodic tiling then it has a 2-periodic tiling where some finite block is repeated horizontally and vertically.) Berger used a complicated multi-level construction that was later simplified in different ways by Robinson [13] and others. The simplification made clear that Berger's construction is essentially based on selfsimilarity: any tiling can be divided into blocks that behave like individual tiles. (In the original construction this similarity was obscured by some irregularities; the cleaned versions could be found in [START_REF] Ollinger | Two-by-two Substitution Systems and the Undecidability of the Domino Problem, Computability in Europe[END_REF] or [START_REF] Durand | Local rules and global order, or aperiodic tilings[END_REF].)

This self-similarity creates some kind of a skeleton that can be used to initiate computations. However, the problem is that we necessarily initiate them in many different places, and these "geometrically parallel" computation should be organized to achieve some goal. Berger used them to prove the undecidability of the domino problem (to determine whether a given tile set has at least one tiling); for that purpose it is enough to initiate multiple copies of the same computation: all are limited in time and space, but among them there are computations of arbitrary length. For that we split the plane into different zones used for different computations. It is possible to find such an arrangement; in each zone the standard local rules for a computation are used but zones are not contiguous. So we need additional efforts to transmit the information from one zone to another one. This all can be done (with limited overlap, so the total density of information in a given cell remains finite).

Then Hanf [START_REF] Hanf | Nonrecursive tilings of the plane, i[END_REF] and Myers [START_REF] Myers | Nonrecursive tilings of the plane, ii[END_REF] proved that there are tile sets that admit only non-recursive tilings (a much stronger statement than the existence of an aperiodic tile set). This was done by embedding a separation problem for two inseparable enumerable sets, and for this we need that all the parallel computations not only share the same (finite) program, but also share the same (infinite) input. Therefore, some additional machinery is needed to synchronize the inputs of all the computations (each computation gets a finite part of the infinite input sequence, but these finite parts are consistent pieces of an infinite input).

When simulating 1D effectively closed subshift, we need more: the input is given to us externally (the contents of the vertical lines that carry A-letters) and we need to check this input against all possible forbidden substrings. This means that we are very limited in space (and cannot distribute pieces of input sparsely over the entire plane as before).

Robinson-type solution

The way to do this was developed in [START_REF] Durand | Complex Tilings[END_REF]. At each level of self-similarity we have computation squares that are arranged in computational stripes. Such a stripe is infinite in vertical direction and carries an infinite computation of a finite-space cellular automaton. (One can wonder whether it makes sense to have an infinite computation in a finite space. Indeed, it is not really infinite; it runs for some time (exponential in the width of the stripe) and then is restarted. The repeated computations are not necessarily identical, since they interact with the other computations which could be different.) Each stripe performs some checks for the part of the horizontal sequence that is near it. When the level (and the size of the stripe) increases, the checked zone and the time allowed for the computation increase. Working together, the stripes can check the horizontal sequence against all forbidded substrings.

In [START_REF] Durand | Complex Tilings[END_REF] this technique was used for one specific 1D effectively closed subshift with a binary alphabet (for some fixed α < 1 we forbid all sufficiently long strings whose Kolmogorov complexity is less than α times length). However, this technique is quite general and can be used for any 1D effectively close subshift modulo some technical problem.

This technical problem is that the underlying self-similar structure may be "degenerate" in the sense that the plane is divided in two parts that have no common ancestors. In this case we need some additional tricks (extending the zone of responsibility of each stripe) that were not needed for the specific subshift of [START_REF] Durand | Complex Tilings[END_REF]. The reason why they were not needed: if a string of low complexity (compared to length) is split into two parts, one of then has low complexity, too.

So the technique of [START_REF] Durand | Complex Tilings[END_REF] is not enough. The final construction was discovered (in fact, independently from [START_REF] Durand | Complex Tilings[END_REF]) by N. Aubrun and M. Sablik.

Fixed-point solution

There is a different way to organize the computations that uses fixed-point selfsimilar tiling. The idea of a self-similar fixed-point tile set can be explained as follows. We already know (since Wang papers) that tiling can be used to simulate computations. This computation, in its turn, can be used to guarantee the desired behavior of bigger blocks, called macro-tiles. So for a desired behavior of macrotiles we can construct tiling rules (i.e., tile set) that guarantees this behavior. If, by chance, these tiling rules coincide with the rules for macro-tiles, we get self-similarity as a consequence.

But there is a classical tool to get this coincidence intentionally, not by chance: the Kleene fixed-point construction. It was used by Kleene in the recursion theory and later by von Neumann to construct self-reproducing automata. Usually it is illustrated as follows: for every program p (in fact, for every string p) there exists a program p ′ that prints the text of p. Kleene's theorem guarantees that one can find p such that p ′ is equivalent to p, i.e., the program p prints its own text. The same trick (though not just the statement of Kleene's recursion theorem) can be used for 2D computations. This was done first by Gács [START_REF] Gács | Reliable Computation with Cellular Automata[END_REF] in a complicated setting (error-correction in 2D computations); we use the same idea in a much simpler environment. For each tile set τ one can construct a set τ ′ of tiles that force macrotiles to behave like τ -tiles; Kleene's trick can then be used to make τ isomorphic to τ ′ . This construction is explained in [START_REF] Durand | Fixed Point and Aperiodic Tilings[END_REF].

Then some additional structure can be superimposed with this self-similar skeleton (by adding some other computations); Kleene's trick can still be used to achieve self-similarity (in some extended sense). This construction is rather flexible and can be applied to different problems, see [START_REF] Durand | Fixed-point tile sets and their applications[END_REF]. The differences and similiarities between two constructions are summarized in the following comparison table. 

Comparison table

Problem
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