
HAL Id: hal-00541841
https://hal.science/hal-00541841

Submitted on 1 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synchronous modeling of avionics applications using the
SIGNAL language

Abdoulaye Gamatié, Thierry Gautier

To cite this version:
Abdoulaye Gamatié, Thierry Gautier. Synchronous modeling of avionics applications using the SIG-
NAL language. 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS
2003), May 2003, Toronto, Canada. pp.144-151, �10.1109/RTTAS.2003.1203046�. �hal-00541841�

https://hal.science/hal-00541841
https://hal.archives-ouvertes.fr

Synchronous Modeling of Avionics Applications using theSIGNAL Language�
Abdoulaye GAMATIÉ, Thierry GAUTIER

IRISA / INRIA
F-35042 RENNES, France

{agamatie, gautier}@irisa.fr

Abstract

In this paper, we discuss a synchronous, component-
based approach to the modeling of avionics applications.
The specification of the components relies on the avion-
ics standard ARINC 653 and the synchronous language
SIGNAL is considered as modeling formalism. ThePOLY-
CHRONY tool-set allows for a seamless design process
based on theSIGNAL model, which provides possibilities
of high level specifications, verification and analysis of the
specifications at very early stages of the design, and final-
ly automatic code generation through formal transforma-
tions of these specifications. This suits the basic stringent
requirements that should be met by any design environment
for embedded applications in general, and avionics appli-
cations in particular.

1. Introduction

Embedded systems are an integral part of safety critical
systems encountered in various domains, such as avionics,
automotive, telecommunications. Among the challenges in
the design of systems for avionics applications, we first
mention the correctness of the design with respect to the
requirements; then, the development effort and time to mar-
ket; and finally, the correctness and reliability of the imple-
mentation. A major objective of the SAFEAIR project ap-
proach (http://www.safeair.org/) is to improve the
embedded systems development process, allowing to main-
tain the high level of dependability of aircraft systems
in the face of an exponential growth in functionality and
complexity. The work presented in this paper aims to con-
tribute to the SAFEAIR solution.

Today, it is widely accepted that modeling is essential to
the design activity for embedded systems. It enables experi-
ments without having necessarily the actual system. So,�This work has been supported by the european project IST
SAFEAIR (Advanced Design Tools for Aircraft Systems and Airborne Soft-
ware) [8].

more flexibility is allowed when taking decisions because
one can do more simulation in short time. Other advan-
tages already emphasized by [17] are genericity, abstrac-
tion, non determinism, and formal methods for analysis and
predictability.

Severalmodel-basedapproaches have been proposed
[18, 10, 13, 3] for the development and verification of em-
bedded systems. They use different kinds of formalisms
for the modeling, and provide tools for system development
and validation. Our approach aims at the same objective.
Its main particularity relies on the use of a single semanti-
cal model, SIGNAL [2], to describe embedded applications
from specification to implementation. Verification and ana-
lysis of specifications are enabled by means of well-defined
formal transformations that preserve the semantics of initial
specifications. This favors the validation. In other words,
the approach considers basic challenges in specification and
verification of embedded systems [15].

Over the past decade, the synchronous technology [9]
has emerged as one of the most promising ways for
guaranteeing a safe design of embedded systems. It of-
fers practical design assistance tools with a formal basis
that allow high level specifications, verification and analy-
sis for validation, and automatic code generation. POLY-
CHRONY, the tool-set of SIGNAL developed by INRIA1

(http://www.irisa.fr/espresso/Polychrony), in-
cludes all these functionalities.

In the rest of the paper, we mainly focus on the defini-
tion of SIGNAL models of components required for the des-
cription of avionics applications. A previous introduction to
this approach has been presented in [7]. Section 2 discusses
two design concepts for avionics systems: thefederatedand
Modular Integratedapproaches. The standard ARINC 653
specification [4] is based on the latter. Section 3 presents
the main features of SIGNAL , while section 4 concentrates
on the modeling of the ARINC specification with SIGNAL .
In section 5, we relate our approach to the literature. Final-
ly, conclusions are given in section 6.

1There is also an industrial version, SILDEX, implemented and com-
mercialized by TNI-Valiosys (http://www.tni-valiosys.com).

2. Avionics architectures

Avionics architecture designs adopt more and more the
integrated modularsolution rather than the traditionalfe-
deratedone [16]. As a matter of fact, in federated archi-
tectures there is a potential risk of massive use of resources
since each avionics function requires its own computer sys-
tem, most of the time replicated for fault tolerance. How-
ever, a great advantage to these architectures is fault con-
tainment. The Integrated Modular Avionics approach (I-
MA) [5] allows to face the problem of resource usage that
exists in the federated approach.

In IMA architectures, several avionics functions can be
hosted on a single, shared computer system. Therefore, a
critical aspect is to ensure that shared computer resources
are safely allocated so that no fault propagation occurs from
one hosted function to another. This is addressed by thepar-
titioning mechanism. It consists in a functional decomposi-
tion of avionics applications, with respect to available time
and memory resources. Apartition [4] is an allocation unit
resulting from this decomposition. Partitioning promotes
verification, validation, and certification.
Partitions. A core moduleencompasses several partitions
that possibly belong to applications of different criticalle-
vels. Mechanisms are provided in order to prevent a par-
tition from having “abnormal” access to the memory area
of another partition. The processor is allocated to each par-
tition for a fixed time window within a major time frame
maintained by the core module level OS. A partition cannot
be distributed over multiple processors either in the same
module or in different modules. Finally, partitions commu-
nicate asynchronously via logicalportsandchannels.
Processes.Partitions are composed ofprocessesthat repre-
sent the executive units2. Processes run concurrently and
execute functions associated with the partition they are con-
tained in. Each process is uniquely characterized by infor-
mations (like its period, priority, or deadline time), useful
to the partition level OS which is responsible for the correct
execution of processes within a partition. The scheduling
policy for processes is priority preemptive. Communica-
tions between processes are achieved by three basic mecha-
nisms. The boundedbufferallows to send and receive mes-
sages following a FIFO policy. Theeventpermits the appli-
cation to notify processes of the occurrence of a condition
for which they may be waiting. Theblackboardis used to
display and read messages; no message queues are allowed,
and any message written in a blackboard remains there until
the message is either cleared or overwritten by a new instan-
ce of the message. Synchronizations are achieved using a
semaphore.

The ARINC 653 specification [4] relies on IMA. It de-
fines the interface between the application software and the

2An ARINC partition/process is akin a UNIX process/task.

core software (OS, system specific functions), called APEX
(APplication EXecutive). It includes services for commu-
nication between partitions on the one hand and processes
on the other hand, synchronization services for processes,
partition and process management services, etc.

3. The synchronous languageSIGNAL

The underlying theory of the synchronous approach
[1] is that of discrete event systems and automata theory.
Time is logical: it is handled according to partial order
and simultaneity of events. Durations of execution are
viewed as constraints to be verified at the implementation
level. Typical examples of synchronous languages [9] are:
ESTEREL, LUSTRE or SIGNAL . They mainly differ from
each other in their programming style. ESTEREL adopts
an imperative style whereas the two others are data-flow
oriented (LUSTRE is functional and SIGNAL is relational).
Main characteristics of the language. SIGNAL [2]
handles unbounded series of typed values(xt)t2N, denoted
asx in the language, implicitly indexed by discrete time
(denoted byt in the semantic notation) and calledsignals.
At a given instant, a signal may be present, then it holds a
value; or absent, then it is denoted by the special symbol? in the semantic notation. There is a particular type of
signals calledevent. A signal of this type is alwaystrue
when it is present. The set of instants where a signalx is
present is called itsclock. It is noted aŝ x (which is of
typeevent) in the language. Signals that have the same
clock are said to besynchronous. A SIGNAL program, also
calledprocess, is a system of equations over signals. The
SIGNAL language [12] relies on a handful of primitive con-
structs which are combined using a composition operator.
These core constructs are of sufficient expressive power to
derive other constructs for comfort and structuring.
SIGNAL also provides a process frame in which any process
may be “encapsulated”. This allows to abstract a process
to an interface, so that the process can be used afterwards
as a black box through its interface which describes the
input-output signals and parameters. The process frame
enables the definition of sub-processes. Sub-processes
which are only specified by an interface without internal
behavior are considered as external (they may be separately
compiled processes or physical components). On the other
hand, SIGNAL allows to import external modules (e.g. C++
functions). Finally, put together, all these features of the
language favor modularity and reusability.
Verification and performance evaluation. Two kinds
of properties may be distinguished:invariant properties
(e.g. a program exhibits no contradiction between clocks
of involved signals), anddynamicalproperties (e.g. reach-
ability, liveness). The SIGNAL compiler itself addresses
only invariant properties. For a given SIGNAL program,

it checks the consistency of constraints between clocks of
signals, and statically proves properties (e.g. the so-called
endochronyproperty guaranteeing determinism). A major
part of the compiler task is referred to as theclock calculus.
Dynamical properties are addressed using other connected
tools like SIGALI [14], an associated formal system that
can be used for model checking.
Performance evaluation is another functionality of POLY-
CHRONY. Basically, it consists of formal transformations
(morphisms) of a SIGNAL program [11] describing an
application, which yield another SIGNAL program that
corresponds to a temporal interpretation of the initial
program. A co-simulation of the resulting program together
with the original one can provide, for example, worst case
execution times.

In the next section, we show how components required
for the modeling of avionics applications are specified with
the SIGNAL language. The ARINC 653 specification is con-
sidered as basis for the models.

4. Modeling of components for the description
of avionics applications

Before presenting the modeling of each component, let
us observe that the executable model of a partition consists
of three basic components. First, executive units which are
represented byARINC processes3. Second, the interactions
between processes described byAPEX services. Finally, the
partition level OSwhich is in charge of the correct access
to resources (e.g. processor) by processes within the par-
tition. So, we first focus on the description of APEX ser-
vices in sub-section 4.1; then, a model of ARINC processes
is proposed in sub-section 4.2; and finally, we discuss the
modeling of the partition level OS in sub-section 4.3.

4.1. APEX services

APEX_services include communication and synchro-
nization services used by processes (e.g.SEND_BUFFER,
WAIT_EVENT, READ_BLACKBOARD), process management
services (e.g.START, RESUME), partition management ser-
vices (e.g.SET_PARTITION_MODE), and time management
services (e.g.PERIODIC_WAIT). The modeling approach is
illustrated with the help of an APEX service. We show how
the corresponding SIGNAL model is obtained from informal
specifications like those encountered in [4].
Modeling of an APEX service. Let us consider the
READ_BLACKBOARDservice [4], used to read a message in
a blackboard. The input parameters are the blackboardiden-
tifier, and atime-outduration that limits the waiting time if

3We use the terms “ARINC processes” to distinguish from SIGNAL pro-
cesses which are not identical.

the blackboard is empty. The outputs are amessage(defined
by its address4 and size), and areturn codefor the diagnos-
tics of the service request. An informal specification is as
follows:

if inputs are invalid (that means the blackboard identifier is unknown or
the time-out value is “out of range”)then

return INVALID_PARAM;
else if some message is currently displayed on the specified blackboard
then

send this message andreturn NO_ERROR;
else if the time-out value is zerothen

return NOT_AVAILABLE;
else if preemption is disabled or the current process is the error handler
then

return INVALID_MODE;
else

set the process state to waiting;
if the time-out value is not infinitethen

initiate a time counter with duration time-out;
end if
ask for process scheduling (the process is blocked and will return to
“ready” state by a display service request on that blackboard from
another process or time-out expiration);
if expiration of time-outthen

return TIMED_OUT;
else

the output message is the latest available message of the black-
board; return NO_ERROR;

end if
end if

Analysis of the problem. To understand how to derive a
corresponding synchronous model from the service, let us
consider the concurrent execution of two processes P1 and
P2 within a partition. The process P1 is assumed to have
a higher priority than P2. They communicate via a black-
board which is currently empty. Two possible scenarios are
illustrated inFigure 1.
In both scenarios, P1 tries to read the blackboard before P2,
and gets suspended since no message is displayed yet. As a
result, a re-scheduling is performed, and P2 runs. The pro-
cess P1 must wait for either a notification that an initiated
time counter became zero5 (situation A), or the availabil-
ity of some message (displayed by P2) in the blackboard
(situation B). Now, if we check the time-line in both situ-
ations, we observe that the time-lag corresponding to the
read_blackboard service is[t2, t3]. It partially includes
the executions of P1 and P2. We remind that within a par-
tition, only one process executes at any instant. In a syn-
chronous view, it can be interpreted as:only the statements
associated with one process are executed within any syn-
chronous step. Clearly, we have to split the service into
subsets of actions since the whole service cannot be entire-
ly executed within a single synchronous step. Therefore, we
distinguish two subsets: on the one hand, actions executed

4Also referred to asarea.
5In the informal specification, it corresponds to the emission of

TIMED_OUTas return code value.

execution order

t1 t2 t3 t4
time

time counter

(1) (2) (3) (4)

t5

read_blackboard call

display_blackboard call

Situation A:
(1) process P1 executes; (2) then gets

another process P2 executes; (3) finally,

blocked while waiting for a message, and

message available.

P1 re−executes after the time−out for
waiting expires.

blocked while waiting for a message, and

Situation B:

re−executes after P2 makes the

(1) process P1 executes; (2) then gets

process P2 executes; (3) finally, P1

P2

P1

P1P1

P1

P2P2

P2

Figure 1. Concurrent execution of two processes P1 and P2 on one processor.

when P1 is running (e.g. checking the validity of input pa-
rameters or initiating a time counter), we call themlocal
actions; and actions performed during its suspension (e.g.
in situation A, these actions consist of the control of the
time counter: decrease it and notify when it becomes zero),
referred to asglobal actions.
In fact, global actions will be under the control of the parti-
tion level OS, which is responsible for the management of
all processes, shared resources and mechanisms within the
partition. Sub-section 4.3 discusses the modeling of the par-
tition level OS.
The SIGNAL model. Now, we show how the local ac-
tions of the READ_BLACKBOARD service are modeled
with SIGNAL . For that, we consider thesituation B of
Figure 1 where P1 resumes after P2 has displayed a
message on the blackboard. Local actions induced by
READ_BLACKBOARD call take place exactly att2 (e.g.
check the validity of input parameters or initiate a time
counter for waiting) andt3 (e.g. retrieve the latest availa-
ble message). LetL and L’ denote the respective sub-
sets of local actions that occur at these instants. They are
grouped into the same SIGNAL process which represents a
partial model of the service. On the other hand, since they
are not achieved at the same point in time, we have to de-
fine the conditions which select the right subset of local ac-
tions to be executed whenever the whole SIGNAL model is
activated. This is easily described using an internal state
variable that indicates which one amongL andL’ should

be computed. Typically, it is encoded by a boolean signal
blocked (that initially carries the valuefalse) as depicted
in Figure 2.

blocked

when (blocked $1)

when (not blocked $1)

L

L’

inputs outputs

Figure 2. Rough model of local actions associated with a
blocking service.

In this model,L is executed when the caller was not pre-
viously blocked on the service call (denoted by the con-
dition when (not blocked $ 1) in the figure). The
booleanblocked is set totrue as soon as the resource is
not available (empty blackboard). This information is re-
presented by the arrow fromL to blocked in the figure.
When the state variable previously carried the valuetrue
(i.e. the caller has been blocked previously), the subsetL’
is executed and the booleanblocked becomesfalse.

The SIGNAL process6 shown in Figure 3 models the

6Note that we call it READ_BLACKBOARD even though it only des-

board_ID

timeout

message

length

return_code

present

board

CHECK_BOARD_ID{}

outofrange

available

CHECK_TIMEOUT{}

timeout

message

length

is_err_handler

empty

preemp_enabled

PERFORM_READ{}
GET_RETURN_CODE{}

Figure 3. SIGNAL model of the READ_BLACKBOARD
service.

local actions executed on aREAD_BLACK-BOARD re-
quest. There are four main sub-processes. The sub-
processesCHECK_BOARD_ID and CHECK_TIMEOUT
verify the validity of input parametersboard_ID and
timeout. If these inputs are valid,PERFORM_READ
tries to read the specified blackboard. Afterwards,
it sends the latest message displayed on the black-
board (its area and size are specified bymessage and
length). It also transmits all the necessary informations
to GET_RETURN_CODE which defines the final diagnos-
tic message of the service request. For example, when
signalsempty andpreemp_enabled respectively car-
ry the valuestrue and false, GET_RETURN_CODE
sendsINVALID_MODE as return_code (that means
the service caller is suspended until a message becomes
available, and no other process can execute during the
suspension because preemption is not enabled in the cur-
rent operating mode). In the case of invalid inputs (e.g.
board_ID is an unknown identifier within the partition,
or timeout is “out of range”), informations are still
sent toGET_RETURN_CODE by CHECK_BOARD_ID and
CHECK_TIMEOUT in order to determine the return code.
The modeling of the other APEX services follows the same
scheme.

4.2. ARINC process

The definition of an ARINC process model basically
takes into account the computation and control parts of
an ARINC process. This is depicted inFigure 4. Two

cribes the local actions.

....

....

....

.....
Inputs

End_Processing

timedout

Active_process_ID

CONTROL

COMPUTE

Block

Block

Block

Block

Outputs

Figure 4. ARINC process model.

sub-components are clearly distinguished within the model:
CONTROLandCOMPUTE. Any ARINC process is seen as a
reactive component, that reacts whenever an execution or-
der (denoted by the inputActive_process_ID) is re-
ceived. The inputtimedout notifies processes of time-out
expiration, while the outputEnd_Processing is emitted
by the process after completion. In addition, there are other
inputs (resp. outputs) needed for (resp. produced by) the
process computations. TheCONTROLandCOMPUTEsub-
components cooperate to achieve the correct execution of
the process model.
The CONTROL sub-component. It specifies the con-
trol part of the ARINC process. Basically, it is a transition
system that indicates which statements should be executed
whenever the process model reacts. It can be encoded easily
by an automaton in SIGNAL .
Whenever the inputActive_process_ID (of numeric
type) identifies theARINC process, this process “executes”.
Depending on the current state of the transition system
representing the execution flow of the process, aBlock of
actions in theCOMPUTE sub-component is selected to be
executedinstantaneously(this is represented by the arrow
from CONTROL to COMPUTEin the figure).
The COMPUTE sub-component. It describes the ac-
tions computed by the process. It is composed ofBlocks
of actions. They represent elementary pieces of code to
be executed without interruption likeFilaments[6]. The
statements associated with a Block are assumed tocom-
plete within a bounded amount of time. In the model, a
Block is executed instantaneously. Therefore, one must take
care of what statements can be put together in a Block.
Two sorts of statements are distinguished. Those which
may cause an interruption of the running process (e.g. a
READ_BLACKBOARD request) are calledsystem calls(in
reference to the fact that they involve the partition level OS).
The other statements are those that never interrupt a running
process. Typically, data computation functions. They are
referred to asfunctions.
For a correct execution, only one system call at most must
be associated with a Block, and no other statement should
follow this system call within the Block. As a matter of fact,

a Block is executed instantaneously, so what would hap-
pen if the system call interrupts the running process? All
the other statements within the Block would be executed in
spite of the interruption, and this would not be correct. Fur-
thermore when the process gets resumed, the whole Block
may not necessarily require to be re-executed.

The process model proposed here is very simple. An
execution ofARINC processes can be seen as a sequence of
Blocks, and preemption is represented by an occurrence of
two consecutive Blocks that belong to different processes in
a sequence.

4.3. Partition level OS

The role of the partition level OS is to ensure the correct
concurrent execution of processes within the partition (each
process must have exclusive control on the processor). A
sample model of the partition level OS is as follows:

process PARTITION_LEVEL_OS =
{ PartitionID_type Partition_ID; }
(? PartitionID_type active_partition_ID;

event initialize;
event end_processing;

! ProcessID_type active_process_ID;
[3]boolean timedout;

)
(| (pid1,ret_c1):= CREATE_PROCESS(att1 when initialize)
| (pid2,ret_c2):= CREATE_PROCESS(att2 when initialize)
| (pid3,ret_c3):= CREATE_PROCESS(att3 when initialize)
| ret_c4:= START(pid1)
| ret_c5:= START(pid2)
| ret_c6:= START(pid3)
| running:= when (active_partition_ID = Partition_ID)
| diagnostic:= PROCESS_SCHEDULINGREQUEST(when running)
| (active_process_ID,st):= PROCESS_GETACTIVE(running)
| timedout:= UPDATE_COUNTERS()
| timedout ^= running
| ret_c7:=

SUSPEND(active_process_ID when end_processing)
|)
where
ProcessAttributes_type att1, att2, att3;
boolean running, diagnostic;
ProcessStatus_type st;
ReturnCode_type ret_c1, ret_c2... ret_c7;
ProcessID_type pid1, pid2, pid3;
end;

This model is partially described using APEX
services (process and time management), e.g.
CREATE_PROCESS, START, SUSPEND. The other ser-
vices used such asPROCESS_SCHEDULINGREQUEST,
PROCESS_GETACTIVESTATUS, specify implementation
dependent functions (e.g. scheduling policy). So, our
library is not limited to APEX services only.

Now, let us look at the meaning of the example in
a more detailed way. The presence of the input signal
initialize corresponds to the initialization phase of the
partition. Here, three ARINC processes identified bypid1,
pid2, andpid3 are first created, and started just after
(they correspond to the processPOSITION_INDICATOR,
FUEL_INDICATOR, and PARAMETER_REFRESHER in
Figure 5).

The inputactive_partition_ID represents the iden-
tifier of the running partition selected by the module level
OS7, and it denotes an execution order when it identifies
the current partition (this is expressed in the definition of
the booleanrunning). Process rescheduling is performed
whenever the partition is activated. This is done in the
PROCESS_SCHEDULINGREQUEST service call.
The last inputend_processing, is received from the
contained processes (seeFigure 5). It denotes the com-
pletion of a running process. On the occurrence of this sig-
nal, the running process is suspended (this is expressed by
theSUSPEND call). The outputactive_process_ID
returned by thePROCESS_GETACTIVE call, identifies the
active process. It is designated by the OS with respect to the
considered scheduling policy (priority preemptive). This
signal is sent to all processes within the partition. Finally,
time counters are updated using theUPDATE_COUNTERS
service. The outputtimedout is sent to processes to noti-
fy them about the expiration of their associated time coun-
ters.
A SIGNAL program like the one depicted inFigure 5 mo-
dels an embedded application. Properties can be checked
on this program using the POLYCHRONY tool-set. For ins-
tance, the clock calculus allows to solve synchronization
constraints, thus proving the consistency of the specifica-
tion, it also synthesizes a control structure of the appli-
cation, which helps for instance for optimized embedded
code generation. Other properties such as reachability or
liveness can be addressed with the model checker SIGALI .
Moreover, performance evaluation is enabled using pro-
gram morphisms. One derives a temporal interpretation of
the application (another SIGNAL program) which can be
simulated on various platforms, in order to get timing in-
formation (like worst case execution times).

5. Discussion

The approach we have presented here embraces a com-
ponent based philosophy. An immediate benefit is reusabi-
lity. The modeled services could be easily adapted for appli-
cations based on other real-time standards (e.g. RealTime-
Java). On the other hand, these models are not platform-
specific. So, there is no risk of influencing non-functional
properties of described applications.

As mentioned earlier, two major features of SIGNAL pro-
gramming are modularity and abstraction. They play an im-
portant role for the scalability in our approach. Indeed, the
description of a large application is achieved with respectto

7Similarly to the process model, an activation of each partition model
depends on the inputactive_partition_ID, which identifies the current ac-
tive partition. This signal is produced by the module level OS which is in
charge of the management of partitions within a module.

active_partition_ID

initialize

global_params

end_processing1

POSITION_INDICATOR{1}

end_processing2

FUEL_INDICATOR{2}

end_processing3

PARAMETER_REFRESHER{3}

board
buff1
buff2
s_port
evt
sema

CREATE_RESOURCES{}

initialize

active_process_ID
timedout

(active_process_ID,
 timedout) :=
PARTITION_LEVEL_OS{...}(
...,...,...,...,...)

Figure 5. Example of partition model with POLY-
CHRONY.

a well-defined design methodology which consists in speci-
fying either completely or partially (by considering abstrac-
tions) the sub-parts of the application. After this, the resul-
ting components can be composed in such a way to derive
new components. These components can be also composed
in order to obtain other components and so on. Of course, at
any stage during the descriptions, verification and analysis
remain possible.

A crucial issue about the design of safety critical
systems, like in avionics, is validation. Simulation is widely
used in order to validate those systems. In POLYCHRONY,
this is possible by generating a simulation code (e.g. C,
Java). However, more sophisticated techniques and tools
may be required to check other desired properties like safe-
ty. These can be addressed by the clock calculus (performed
by the compiler) or model checking techniques (using SI-
GALI).

Finally, using SIGNAL as a single semantical model al-
lows the description of an application at different stages of
the design (from the specification of properties to the im-
plementation). The transition between two representations
at different stages is validated by transformations definedin
the model. These transformations guarantee a certain trace-
ability which can help the designer to analyze descriptions
at any stage. This aspect will be useful for a reverse map-
ping issue. Some of these transformations are offered in the
form of functionalities available within POLYCHRONY.

Related work. Among existing approaches which can be
related to our work, we first mention TAXYS [3]. It is dedi-
cated to the design and validation of real-time embedded ap-

plications. The specification of an application uses the lan-
guages ESTERELand C to describe respectively the control
and functional parts. The whole is instrumented with execu-
tion time (associated with the functional part) and deadline
constraints. Then, it is compiled with an ESTERELcompi-
ler to produce a model of the application analyzable with the
model checker KRONOS for timing analysis. The similarity
of TAXYS and our approach is that they both aim at taking
advantage of the synchronous technology. On the other
hand, in TAXYS, the use of timed automata allows schedula-
bility analysis. However, while our approach is component-
based, in TAXYS there are no pre-defined models for the
description of applications.

Other approaches define specific languages for the de-
sign. This is the case for GIOTTO which is dedicated to
embedded control systems [10]. It provides an abstract mo-
del of a system. Its compiler automates the implementation
on a particular platform, and a runtime library which can
be targeted toward various platforms. So, as in our case,
GIOTTO specifications are not platform-dependent. The
language has a time-triggered semantics. This facilitates
time predictability for system analysis, but it is restricting
sincetasksare essentially periodic. The models we propose
include both periodic and aperiodic processes.

The most popular Architecture Description Language for
the design of real-time, distributed avionics applications is
MetaH [18]. A user specifies how software and hardware
pieces are combined to give the global system. The lan-
guage tool-set generates formal models and executive, and
performs analysis for schedulability, safety/reliabity,and
correct partitioning. Both periodic and aperiodic proces-
ses are supported and the scheduling policy is preemptive
fixed priority. In our case, the scheduling paradigm is the
same. However, as mentioned earlier, the scheduling policy
is implemented by a special service (which does not belong
to original APEX services). A modification of this service
does not affect neither the other services nor the process mo-
dels. So, one can easily take into account another schedu-
ling policy by modifying only the service. In MetaH, inter-
task communications occur at special points during com-
putations: a sending task writes data into a port only after
completion, and a receiving task reads data from a port on-
ly at the release time. While this exchange scheme avoids
certain situations such as message loss due to overload, it
could be restricting. The service models provided in our li-
brary allow a running process to read or write data at any
instant, whenever the required communication mechanism
is available.

The last approach we mention is PTOLEMY [13]. It is
dedicated to the support of modeling, simulation, and de-
sign of concurrent systems. It particularly addresses embed-
ded systems, and integrates a number of models of compu-
tation (e.g. synchronous/reactive systems, continuous time,

etc.) which deal with concurrency and time. Like our ap-
proach, PTOLEMY adopts a component-based approach. In
a certain way, our approach could be seen as a particular
case of the PTOLEMY approach since SIGNAL adopts only
a synchronous/reactive computation model. In PTOLEMY,
the semantics of component interactions is dictated by the
models of computation. So, the focus is on the choice of
suitable models to get the needed behavior in the system.
In our approach, emphasis is put on both behavioral and
structural aspects in the system description. The system ar-
chitecture components (e.g. OS, processes) are clearly i-
dentified. The whole is represented by a SIGNAL program
on which performances can be evaluated (e.g. worst case
execution times) by co-simulation or even formal analysis,
using a technique of program morphism [11].

6. Conclusions

We have proposed a component-based approach to the
modeling of avionics applications. The defined library
mainly contains models of so-called APEX services defined
by the avionics standard ARINC 653. Also, a model of
executive units (ARINC processes) is proposed. A com-
bination of the whole allows to model partitions. The syn-
chronous language SIGNAL has been used for the specifi-
cation. This allows to access the POLYCHRONY tool-set.
It gives the possibility of high level specification, verifica-
tion and analysis, automatic code generation, and strongly
favors validation.

There are two ongoing applications of the approach pre-
sented in this paper. The first one concerns the modeling of
a real-world avionics application in collaboration with Air-
bus (a partner in the SAFEAIR project). In the other appli-
cation, we propose a translation of real-time Java programs
into SIGNAL models. The aim of this work is also to take
advantage of the POLYCHRONY tool-set for performance e-
valuation. It aims to show the suitability of our approach to
describe applications based on other real-time standards.

Finally, another ongoing work concerns the definition
of a way to associate timed models with our descriptions.
This is common practice and often useful when coping with
schedulability problems. For instance, the TAXYS approach
uses timed automata for these problems whereas, hybrid au-
tomata are used in MetaH. In both cases, there are efficient
tools to support analysis.

References

[1] A. Benveniste and G. Berry. The synchronous approach to
reactive and real-time systems. Inproc. of the IEEE, vol. 79,
No. 9, p. 1270-1282, April 1991.

[2] A. Benveniste, P. Le Guernic, and C. Jacquemot. Program-
ming with events and relations: the SIGNAL language and its

semantics. InScience of Computer Programming, 16:103-
149, 1991.

[3] E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D. Weil,
and S. Yovine. Taxys: a tool for the development and verifi-
cation of real-time embedded systems. Inproc. of Computer
Aided Verification, LNCS 2102, Paris, July 2001.

[4] A. E. E. Committee. Avionics application software standard
interface. InARINC Specification 653, Annapolis, Mary-
land, January 1997.

[5] A. E. E. Committee. Design guidance for integrated modular
avionics. InARINC Report 651-1, Annapolis, Maryland,
November 1997.

[6] D. Engler, D. Andrews, and D. Lowenthal. Efficient sup-
port for fine-grain parallelism. Intech. report, University of
Arizona, 1993.

[7] A. Gamatié and T. Gautier. Modeling of modular avionics
architectures using the synchronous language SIGNAL . In
proc. of the WIP session, 14th Euromicro Conference on Re-
al Time Systems, p. 25-28. Vienna, June 2002.

[8] D. Goshen-Meskin, V. Gafni, and M. Winokur. SAFEAIR:
An integrated development environment and methodology.
In proc. of INCOSE’01, Melbourne, July 2001.

[9] N. Halbwachs. Synchronous programming of reactive sys-
tems.Kluwer Academic Publications, 1993.

[10] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Embed-
ded control systems development with Giotto. Inproc. of
LCTES. ACM SIGPLAN Notices, 2001.

[11] A. Kountouris and P. Le Guernic. Profiling of SIGNAL pro-
grams and its application in the timing evaluation of design
implementations. Inproc. of the IEE Colloq. on HW-SW
Cosynthesis for Reconfigurable Systems, IEE, p. 6/1-6/9. H-
P Labs, Bristol, February 1996.

[12] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire.
Programming real-time applications with signal. Inproc. of
the IEEE, 79(9), pages 1321–1336, September 1991.

[13] E. A. Lee and al. Overview of the Ptolemy project. Intech.
report UBC/ERL M01/11, University of California at Berke-
ley, March 2001.

[14] H. Marchand, P. Bournai, M. Le Borgne, and P. Le Guernic.
Synthesis of discrete-event controllers based on the signal
environment. InDiscrete Event Dynamic System: Theory
and Applications, 10(4), p. 325-346, October 2000.

[15] A. Pnueli. Embedded Systems: Challenges in Specification
and Verification. Inproc. of 2002 Conference on Embedded
Software, J. Sifakis and A. Sangiovanni-Vincentelli, Eds,L-
NCS 2491, Springer Verlag, p. 252-265, 2002.

[16] J. Rushby. Partitioning in avionics architectures: Require-
ments, mechanisms, and assurance. Intech. report, Com-
puter Science Laboratory SRI International, Menlo Park CA
94025 USA, March 1999.

[17] J. Sifakis. Modeling Real-Time Systems - Challenges and
Work Directions. InEMSOFT’01, Tahoe City. Lecture Notes
in Computer Science 2211, October 2001.

[18] S. Vestal. MetaH support for real-time multi-processor
avionics. InIEEE Workshop on Parallel and Distributed
Real-Time Systems, April 1997.

