N

N

An Example of Synchronous Design of Embedded
Real-Time Systems based on IMA

Abdoulaye Gamatié, Thierry Gautier, Paul Le Guernic

» To cite this version:

Abdoulaye Gamatié, Thierry Gautier, Paul Le Guernic. An Example of Synchronous Design of Em-
bedded Real-Time Systems based on IMA. 10th International Conference on Real-time and Embedded
Computing Systems and Applications (RTCSA 2004), Aug 2004, Gothenburg, Sweden. pp.RTCSA
2004. hal-00541790

HAL Id: hal-00541790
https://hal.science/hal-00541790
Submitted on 1 Dec 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00541790
https://hal.archives-ouvertes.fr

An Example of Synchronous Design of
Embedded Real-Time Systems based on IMA*

Abdoulaye Gamatié, Thierry Gautier and Paul Le Guernic

IRISA / University of Rennes 1 / INRIA, F-35042 RENNES, France.
{abdoulaye.gamatie, thierry.gautier, paul.leguernic} @Qirisa.fr

Abstract. We present a study on the design of embedded real-time sys-
tems in general, and avionic systems in particular. The synchronous lan-
guage SIGNAL is used to describe a real world avionic application based
on the recent Integrated Modular Avionics concept (IMA). The exposed
case study shows how the synchronous technology helps for a reliable
and modular design of real-time systems. One major advantage of this
technology is the availability of formal tools and techniques for verifica-
tion and validation, which are important for safety-critical systems such
as avionics systems.

1 Introduction

Two noteworthy observations about embedded systems in today’s technologies
are their ubiquitousness and pervasiveness. The concerned application domains
include, among others, avionics, automotive and railway systems, industrial au-
tomation and process control, robots, and medical technology. In all these do-
mains, embedded systems play a critical role, since a failure can put human
lives at stake or have at least serious economical consequences. Thus, we under-
stand how much it is crucial to be able to guarantee a priori the correctness
of these systems (i.e. to ensure that such a system behaves with respect to its
requirements). Embedded systems consist in combinations of digital and analog
components, designed to provide dedicated functions. They are often charac-
terized by real-time constraints. Thus, their correctness depends both on the
logical results and on the instants at which these results are produced. Among
challenges in the design of embedded real-time systems, are cost-effectiveness,
time to market, development effort, as well as correctness and reliability of the
implementation. Broad discussions of these challenges can be found in the lit-
erature [21]. Well-established design frameworks offer very promising ways to
deal with these issues. Such frameworks must provide at least a means to de-
scribe a system without ambiguity, to check desired properties of systems, and
to automatically generate code with respect to requirements.

* This work has been partially supported by the FEuropean project IST
SAFEAIR (Advanced Design Tools for Aircraft Systems and Airborne Software -
http://wuw.safeair.org).

The application of formal methods is now widely accepted for the develop-
ment of safety critical systems such as embedded real-time systems [18]. This
success is due not only to the high degree of confidence they provide in designs,
but also to the availability of several practical tools accompanying the proposed
methods. Meanwhile, model-based approaches have gained prominence in system
design in recent years. As a matter of fact, modeling is becoming increasingly
essential to the design activity for embedded systems. It allows experiments with-
out necessarily having a physical implementation of the system, thus enabling a
high flexibility in design choices and earlier decisions. Besides that, strong points
emphasized in [21] are genericity, abstraction, and formal techniques for analysis
and predictability. Finally, component-based approaches provide a way to signif-
icantly reduce overall development costs through modularity and re-usability.

The synchronous technology [4] has emerged as a very efficient and practi-
cal solution to the need for a safe design of embedded systems. The underlying
theory of this technology is that of discrete event systems and automata the-
ory. Time is logical: it is handled according to partial order and simultaneity
of events. Durations of execution are viewed as constraints to be verified at the
implementation level. Typical synchronous languages are ESTEREL, LUSTRE and
SIGNAL. They mainly differ from each other in their programming style. ESTER-
EL adopts an imperative style, whereas the two others are data-flow oriented
(LUsTRE is functional and SIGNAL is relational). Examples of associated design
environments are SCADE! and RT-BuiLDER? (SILDEX), which are currently used
in aircraft industries (e.g. Airbus and Snecma).

In this paper, we first introduce the Integrated Modular Avionics concept
(IMA) and the APEX — ARINC 653 standard (Section 2). Then, we give an
overview of the synchronous language SIGNAL in section 3. A case study is
presented in Section 4. It includes a SIGNAL description of a real world avionic
application based on IMA. It also illustrates how timing issues are addressed
using the SIGNAL language. In Section 5, we discuss our approach and mention
some relevant related work. Finally, conclusions are given in Section 6.

2 The integrated modular avionics concept

Avionic systems are a good example of safety critical systems. Failures in such
systems lead to heavy consequences ranging from loss of money to loss of life.
Within these systems, components are usually associated with criticality levels
that allow to identify the most critical components and prevent them from be-
ing jeopardized during their execution by less critical ones. Therefore, federated
architectures [19] have appeared as a natural solution to the efficient design of
avionic systems: components with different criticality levels are separately sup-
ported by dedicated hardware. A great advantage of that architecture is fault
containment. However, there exists a potential risk of massive usage of resources
since each component in the system may require its dedicated hardware. As a

! http://www.esterel-technologies.com.
2 http://www.tni-software.com.

result, one can mention the rise of maintenance costs. The introduction of In-
tegrated Modular Avionics (IMA) [1] aims to propose solutions to the obstacles
encountered in federated architectures.

Application
level

APEX
interface

Application Application
partition 1 partition N

System
specific
functions

w

Fig.1. APEX - ARINC 653 interface.

System
level

IMA allows several components with possibly different criticality to share
the same hardware resources. It ensures a safe allocation of shared resources so
that no fault propagation occurs from one component to another component.
This is achieved through partitioning of resources with respect to available time
and memory capacities. A partition is a logical allocation unit resulting from a
functional decomposition of the system. Partitioning promotes verification, vali-
dation, and certification. IMA platforms consist of a number of modules grouped
in cabinets throughout the aircraft. A module can contain several partitions that
possibly belong to applications of different criticality levels. Mechanisms are
provided in order to prevent a partition from having “abnormal” access to the
memory area of another partition. The processor is allocated to each partition
for a fixed time window within a major time frame maintained by the module
level operating system (OS). A partition cannot be distributed over multiple
processors either in the same module or in different modules. Finally, partitions
communicate asynchronously via logical ports and channels. Message exchanges
rely on two transfer modes: sampling mode and queuing mode. In the former,
no message queue is allowed. A message remains in the source port until it is
transmitted via the channel or it is overwritten by a new occurrence of the mes-
sage. A received message remains in the destination port until it is overwritten.
A refresh period attribute is associated with each sampling port. When reading
a port, a validity parameter indicates whether the age of the read message is
consistent with the required refresh period attribute of the port. In the queuing
mode, ports are allowed to store messages from a source partition in queues until
they are received by the destination partition. Here, the queuing discipline for
messages is First-In First-Out (FIFO).

Partitions are composed of processes that represent the executive units®. Pro-
cesses run concurrently and execute functions associated with the partition in
which they are contained. Each process is uniquely characterized by informa-
tion (like its period, priority, or deadline time) useful to the partition level OS
which is responsible for the correct execution of processes within a partition.
The scheduling policy for processes is priority preemptive. Communications be-
tween processes are achieved by three basic mechanisms. The bounded buffer
allows to send and receive messages following a FIFO policy. The event permits
the application to notify processes of the occurrence of a condition for which
they may be waiting. The blackboard is used to display and read messages: no
message queues are allowed, and any message written on a blackboard remains
there until the message is either cleared or overwritten by a new instance of the
message. Synchronizations are achieved using a semaphore.

Several standards for software and hardware have been defined for IMA. Here,
we particularly consider the APEX — ARINC 653 standard [2], which proposes an
OS interface for IMA applications, called Avionics Application Software Standard
Interface (cf. Figure 1). It includes, among others, services for communication
between partitions on the one hand and between processes on the other hand,
synchronization services for processes, and partition and process management
services.

3 The synchronous language SIGNAL

The SIGNAL language [13] handles unbounded series of typed values (z:):en,
called signals, denoted as x in the language, and implicitly indexed by discrete
time (denoted by ¢t in the semantic notation). At a given instant, a signal may be
present, at which point it holds a value; or absent, at which point it is denoted
by the special symbol | in the semantic notation. There is a particular type
of signals called event. A signal of this type is always true when it is present
(otherwise, it is L). The set of instants where a signal x is present is called its
clock. Tt is noted as ~“x (which is of type event) in the language. Signals that
have the same clock are said to be synchronous. A SIGNAL process is a system
of equations over signals, and a program is a process. SIGNAL relies on a handful
of primitive constructs which are combined using a composition operator. These
core constructs are of sufficient expressive power to derive other constructs for
comfort and structuring. In the following, we give a sketch of primitive constructs
(bold-faced) and few derived constructs of SIGNAL (italics). For each one, we
respectively mention its corresponding syntax and definition:

Functions/Relations: y:= f(x1,...,xn) o Y #Flerl #le & ang #L, Vi
ye = f(xly, ..., Tmt).

Delay: y:= x $ 1 init yO o e FLle ys #L, YVt > 0: ye = z¢—1,y0 = y0.

Down sampling: y:= x when b = yt = x¢ if by = true, else y» =1. The derived

3 An ARINC partition/process is akin a UNIX process/task.

statement y:= when b is equivalent to y:= b when b.

Deterministic merging: z:= x default y = zt = @y if o £, else z¢ = yy.
Parallel composition: (| P | Q |) %I union of equations associated with P and Q.
Hiding: P where x 4/ x is local to the process P.

Clock estraction: h:= “x = h := (x = x).

Synchronizing: x1 ~= x2 = (I h := ("x1 = “x2) |) where h.

Clock union: h:= x1 "+ x2 & h:= “x1 default ~x2.

Memory: y:= x cell b init yO “q y := x default (y$1 init yO) | (y ~=
x "+ (when b) |).

Context-dependent memory: y:= (var x) init c El y gets values of x at the context

clock (c is its initial value).

The SIGNAL language also provides a process frame in which any process
may be “encapsulated”. This allows to abstract a process to an interface, so that
the process can be used afterwards as a black box through its interface which
describes the input-output signals and parameters. The process frame enables the
definition of sub-processes. Sub-processes that are only specified by an interface
without internal behavior are considered as external (they may be separately
compiled processes or physical components). On the other hand, SIGNAL allows
to import external modules (e.g. C++ functions). Finally, put together, all these
features of the language favor modularity and re-usability. The mathematical
foundations of SIGNAL enable formal verification and analysis techniques. We can
distinguish two kinds of properties: functional and non functional properties.

Functional properties consist of invariant properties on the one hand (e.g. a
program exhibits no contradiction between clocks of involved signals), and dy-
namic properties on the other hand (e.g. reachability, liveness). The SIGNAL com-
piler itself addresses only invariant properties (here, the compiler includes more
functionalities than classical compilers. For example, in addition to habitual syn-
tax or type checking, it implements some static verification algorithms and allows
for automatic generation of an optimized code). For a given SIGNAL program,
the compiler checks the consistency of constraints between clocks of signals, and
statically proves properties (e.g. determinism, absence of cyclic definitions, ab-
sence of empty clocks to ensure a consistent reactivity of the program). A major
part of the compiler task is referred to as the clock calculus. Dynamic properties
are addressed using other tools like SIGALI [16], a formal system that can be
used for model checking.

Non functional properties include temporal properties, which are of high in-
terest for real-time systems. A technique has been defined in order to allow
timing analysis of SIGNAL programs [12]. Basically, it consists of formal trans-
formations of a program initially describing an application, which yield another
SIGNAL program that corresponds to a temporal interpretation of the initial one.
The new program will serve as an observer of the initial program. An observer of
a program P is an abstraction O(P) of P in which we specify only the properties
we want to check. Here, the term “abstraction” means that O(P) does not con-
strain the original behavior of P whenever the two programs get composed. As

shown in Figure 2, the observer receives from the observed program the signals
required for a given analysis and indicates whether or not the considered prop-
erties have been satisfied (e.g. this can be expressed through output boolean
signals as for LUSTRE programs [11]). The use of observers for verification is
very practical because they can be easily described in the same formalism as the
observed program. Thus, there is no need to combine different formalisms as in
other analysis techniques like some model-checking techniques, which associate
temporal logics with automata.

Fig. 2. Analysis of a program using an observer program (P is the observed program
and O(P) the observer.

The development environment associated with SIGNAL is called PoLy-
CHRONY*. In the next section, we will show how the co-simulation of the temporal
interpretation of a SIGNAL program (i.e. the observer) together with the program
(i.e. the observed one) provides timing information like latencies, allowing, for
instance, to compute worst case execution times within POLYCHRONY.

4 IMA-based modeling: a case study

In this section, we will first illustrate the description of an avionic application.
Then, we will address its temporal evaluation. The presented application is a
real world case study from the avionic industry. For reasons of confidentiality,
we have deliberately modified the names of entities. However, it does not hinder
the comprehension of the exposed approach.

4.1 Informal description

The application we are considering is called SATMAINT. It calculates and emits
to other components of the global system some general parameters and infor-
mation corresponding to the maintenance phase (this is done cyclically). The
partition also acquires and treats maintenance messages received from other
components during the execution of the system. SATMAINT communicates with
an external device in order to allow an operator to visualize the maintenance
information stored in the memory by the application. Finally, the partition peri-
odically checks the availability of maintenance data, and emits a report message.

4 http://www.irisa.fr/espresso/Polychrony.

SAMPLING Port APEX QUEUING Port APEX

Fig. 3. Informal architecture of the partition SATMAINT.

SATMAINT is represented by a single IMA partition. Its decomposition into
processes, as well as the interactions between the processes, are clearly identified
in the initial informal specification. This is depicted by Figure 3. There are eight
processes (denoted by Proc_i where i € {1..8}). A major part of the function
affected to the partition is achieved by Proc_6, Proc_7 and Proc_8. The other
processes are rather in charge of collecting required data in order to treat failure
messages, and calculate maintenance information that are either saved or sent
to the operator.

The processes communicate within the partition using five buffers, noted
buffi where i is the identifier of the process that receives its messages from the
buffer. In addition, three events in the partition are used for communication.
Each one is represented as evt_ij, where ¢ and j indicate the two processes that
communicate via this event. Finally, the unique semaphore used here is sema_38.
It allows Proc_3 and Proc_8 to accede to Message_table in mutual exclusion. The
partition SATMAINT communicates with its environment via sampling ports
and queuing ports.

4.2 The SIGNAL model definition

Based on the informal description of the application seen above, we can now
define the corresponding SIGNAL model. For that, we use the components previ-
ously presented in [9]. They include SIGNAL models of APEX — ARINC 653 ser-
vices: inter-process communication and synchronization services, inter-partition
communication services, process and partition management services, and time
management services. They also include complementary services (which are not

part of APEX) to allow more complete descriptions of applications (e.g. a service
for process rescheduling). Finally, generic models of the executive entities (parti-
tions and processes) have been defined. The combination of all these components
allows to describe real-time applications as it is illustrated in the following.

Active_process_ID g "
timedout Activg_process_ID
queuing, ports timedout;

. 168
dt126| GROUP_ 1261} ueuingf PROC_8{8} - V78

d37g s

Tl
Active_partition_ID

PARTITION_LEVEL_OS{1} M

5| GROUP_45{} PROC_3{3}
7 sampling_

L | jevt 67
uff_1 dt PROC_7{7} sema_38

Y GROUP_378{} mil buft g
uff 7 I buff_7]] Message_t

bl 2
GLOBAL_OBJECTS{} pouff-6 buff_6
evt 5%3 buff.3

3
initialize . dt378 := dt3 default dt7 default dt8
jevt_67

3

Messige,mble

Fig. 4. SIGNAL model of the partition SATMAINT (left), and a zoom in GROUP_378
(right).

Global view of the partition model. The model of the partition SATMAINT
is shown in Figure 4. One can distinguish the component representing the
partition-level OS. The box containing the call GLOBAL_OBJECTS has been added
for structuring. It provides the processes with communication and synchroniza-
tion mechanisms, and other local resources (e.g. Message_table). Processes are
grouped into subsets identified by the prefix “GROUP_”. For instance, GROUP_378
contains PROC_3, PROC_7 and PROC_8 as shown in the zoom on Figure 4 (right).
All the objects and processes are created at the initialization phase of the par-
tition (denoted by the occurrence of the input signal initialize). The input
Active_partition_ID represents the identifier of the running partition selected
by the module-level OS, and it denotes an execution order when it identifies the
current partition (the activation of each partition depends on this signal. It is
produced by the module-level OS, which is in charge of the management of par-
titions in a module). Whenever the partition executes, the PARTITION_LEVEL_0S
selects an active process within the partition. This is represented by its output
signal Active_process_ID, which is sent to each process. A time information
dtk is then returned by processes to the partition-level OS. It represents the
duration of the current “block” of actions executed by an active process. The
signal timedout produced by the partition-level OS carries information about
the current status of the time counters used within the partition. For instance,
a time counter is used for a wait when a process gets interrupted on a service
request with time-out. As the partition-level OS is responsible for the man-

agement of time counters, it notifies each interrupted process of the partition
with the expiration of its associated time counter. This is reflected by the signal
timedout.

The partition-level OS model. Figure 5 gives a partial view of the SiG-
NAL description of the partition-level OS. Its main task is to control the concur-
rent execution of processes within the partition. Its description requires APEX
services (for instance on Figure 5, CREATE_PROCESS and START allow respec-
tively to create and start processes) and implementation-dependent functions
like those which define the scheduling policy (for instance, it is the case of the
PROCESS_SCHEDULINGREQUEST call in Figure 5).

(| (att0,...,att8) := GET_PROCESSES_ATTRIBUTES{}(when initialize) (a)
| (pidO,return_code0) := CREATE_PROCESS{}(attO when initialize)
| ...
| (pid8,return_code8) := CREATE_PROCESS{}(att8 when initialize) (b)
| return_code9 := SET_PARTITION_MODE{}(#NORMAL when initialize) (c)
| return_codel0 := START{}(pid0)
...
| return_codel8 := START{}(pid8) (d)
| is_running := when (Active_partition_ID = Partition_ID) (e)
| diagnostic := PROCESS_SCHEDULINGREQUEST{}(is_running) (£)
| (Active_process_ID,status,valid) := PROCESS_GETACTIVE{}(is_running) (g)
| timedout := UPDATE_COUNTERS{}(dt126 default dt45 default dt378) (h)
| ...
| switch_on_idle := (when ((Active_partition_ID$1)=Partition_ID))
when (not (Active_partition_ID=(Active_partition_ID$1))) (i)
| switch_on_normal := (when (not ((Active_partition_ID$1)=Partition_ID)))
when (Active_partition_ID=(Active_partition_ID$1)) (6D)
| return_codel9 := SET_PARTITION_MODE{}((#IDLE when switch_on_idle)
default (#NORMAL when switch_on_normal)) (k)

D]

Fig. 5. The partition-level OS model.

On the presence of the signal initialize, which corresponds to the initial-
ization phase of the partition, process attributes are defined in equation (a)
(examples of attributes are priority, period). These attributes are used to create
processes and then to start them. Creation does not imply dynamic memory
allocation [2]; it only creates a link between the given name and a statically
allocated process with a suitable stack area, having the same name. The START
service only puts the specified process in the “ready” state. For instance, lines
(b) and (d) correspond to the creation and initiation of the process Proc_8 (i-
dentified by pid8). The partition is set to the NORMAL mode® in the equation
(c).
® There are four operating modes [2]: IDLE, NORMAL, COLD_START and WAR-

M_START. For instance, in the IDLE mode, the partition does not execute any

The signal Active_partition_ID represents the identifier of the running
partition (selected by the module-level OS) and it denotes an execution or-
der when it identifies the current partition: this is the meaning of the signal
is_running (line (e)). Therefore, process rescheduling is performed (line (£)).
Process rescheduling occurs at each activation of the partition (see the sequence
diagram illustrated on Figure 10). It also occurs during executions of APEX
services that can induce the interrupt of the calling processes. The process with
the highest priority in the ready state (identified by Active_process_ID at line
(g)) is designated to be active. On the other hand, time counters are updated
(line (h)). The signal timedout notifies processes with expiration of counters
with which they are concerned. The partition continues to execute in that way
whenever it is identified by the input signal Active_partition_ID.

The partition becomes inactive when the signal Active_partition_ID is
different from its identifier. This is expressed in the equation (i): the signal
of type event, switch_on_idle, occurs when the previous value of the input
Active_partition_ID was equal to Partition_ID (the identifier of the current
partition), and different from its current value. Similarly, switch_on_normal
expresses a re-activation of the partition (line (j)). The correct mode setting is
done in the equation (k).

Active_process_ID

active_block

CONTROL{PID} retd
ret2

ret4
request_type evt_78
ret6
ret7

evt_68

timedout

COMPUTE{}

sema_38

jMessage,{ab\e |

i buff_8 |
buff_8 dt8

Fig. 6. A SIGNAL model of Proc_8.

Processes model. To illustrate how processes are modeled, we focus on Proc_8,
which belongs to GROUP_378 on Figure 4. Models of the other processes of SAT-
MAINT are defined in the same way. A well-known modular design principle for

process, whereas in the NORMAL mode, the scheduler gets activated (all the re-
quired resources in the partition must have been already created).

a system consists in considering separately its control and computation parts (for
instance, this idea has gained a great popularity in hardware design). The model
we propose for processes relies on the same principle. Two basic sub-components
are distinguished, as shown in Figure 6: CONTROL and COMPUTE. The former
specifies the execution flow of the process. Typically, it is a finite state machine
that indicates which statements (or actions) should be executed whenever the
process is active (cf. Figure 9). The latter describes the executed statements,
which are grouped into blocks. Each block is associated with a state of the au-
tomaton specified in CONTROL. In addition, a block is assumed to be executed
without interruption, within a bounded amount of time. To make an analogy, the
way the two subparts of the process model interact is similar to what happens
in a mode-automaton [15].

scan the buffer buff-8 and retrieve arriving messages;
if a message is retrieved then
do actions Al;
perform a “wait_semaphore” on the semaphore sema_38;
do actions A2 (which require access to Message_Table);
perform a “signal_semaphore” on the semaphore sema_38;
do actions A3;
tf the received message denotes an operator request then
perform a “set_event” on the APEX event evt_68;
else if the received message denotes another request then
perform a “set_event” on the APEX event evt_78;
end if
end if

Fig. 7. Informal specification of Proc_8.

The informal specification of Proc_8 is given on Figure 7. The corresponding
SIGNAL model is shown on Figures 6, 8 and 9. In the model depicted by Figure
6, the signal active_block identifies a block selected in CONTROL. This block
is executed instantaneously. Of course, one must be careful with the kinds of
statements that can be combined in a block. Two sorts of statements can be dis-
tinguished: those which may cause an interruption of the running process (e.g. a
RECEIVE_BUFFER request on an empty buffer), termed system calls (in ref-
erence to the fact that they involve the partition-level OS); and those that never
interrupt a running process (typically data computation functions), referred to
as functions. Since a block is supposed to be non-interruptible, we impose that
it contains either one single system call or one or more functions. This way, the
instantaneousness of the block execution is guaranteed to be coherent with its
non-interruptibility.

The COMPUTE subpart of Proc_8 is depicted by Figure 8 (left). Blocks
are represented by inner boxes. The statements associated with a block j are

executed whenever the current state of the automaton specified in CONTROL
is blockj (cf. Figure 9), i.e., whenever the event triggerj is present.

process BLOCK_0 =
{ SystemTime_type delay; }
(7 event trigger0;
Comm_ComponentID_type buff_8;

(] trigger := when (active_block=0) — lpu 8 ! SystemTime_type dt80;
active_bibal P (0t80,mess area,mess_lengthret0) := BLOCK_0{3.0}trigger0, reco MessageArea_type mess_area;
- uff_8) s area o -
] measrlengm- MessageSise_type mess_length;

ReturnCode_type ret0;

(| trigger1 := when (active_block=1)

P8 = ... default | |
d(Bl BLOCK_1{20.0}(trigger1) d "

dt8)

(] (mess_area, mess_length, ret0):=
H RECEIVE_BUFFER{8} ((var buff_8)
when trigger0, 500.0)

Messagetab :)dtBO := delay when trigger0

3
L

(| trigger2 := when (active_block=2)
(dt82,ret?) := BLOCK_2(3.0}trigger2.sema_38)

57T

o5

(| trigger3 := when (active_block=3)
dt83 := BLOCK_3{45.0)trigger_3,Message_table)

sema_38

(| trigger4 := when (active_block=4)
(dt84,ret4) := BLOCK_4{3.0)(trigger4,sema_38)

process BLOCK_1 =
{ SystemTime_type delay; }
C (? event triggerl;

TeE T E

(| trigger5 = when (active_block=5)
|| I @t85,request_type) := BLOCK_5{65.0}triggerS,mess _area,

mess_length) equest_bype ! SystemTime_type dt81;
. s)
(| trigger6 := when (active_block=6) 4 : .
—}’ | (4t86,ret6) := BLOCK_6{3.0)trigger6,evt_68) i ! vt 68 (I Actionsi{}(when trlgge.!rl)
L g6 | dt81 := delay when triggerl

(I trigger7 := when (active_block=7) T L 78 D
| (dt87,ret7) := BLOCK_7{3.0}trigger7,evt_78) - ces
D

dt87

Fig. 8. The COMPUTE subpart for Proc_8.

For instance, on Figure 8 (right), the first block executed by the process
(represented by BLOCK_0) contains the system call RECEIVE_BUFFER in order to
receive a message from buff_8. This APEX service takes as input parameters
the identifier of the specified buffer and a time-out value (500.0 time units) to
wait for a message when the buffer is empty. Output parameters are the message
address and size and a return code that reflects the diagnostic of the request.
The return code is useful for the CONTROL subpart in order to perform the
correct transitions in the automaton. The execution time corresponding to this
block, denoted by dt80, is defined by the value of the parameter delay, which is
supposed to have already been calculated off-line (e.g. it could be the worst case
execution time of the called APEX service). This information can be obtained by
considering a simulation of the associated temporal interpretation as discussed
in section 3.

The second block executed by the process (represented by BLOCK_1) only
contains actions (A1 in the informal specification) that are not system calls.
Their associated execution time is given by dt81. After each execution of a
block, the corresponding duration is sent to the partition-level OS in order to
update time counters. The output signal dt8 of the COMPUTE subpart (Figure
8, left) first takes the value of any dt8k (k € {0,..,7}), which is present. It is
used in the definition of the output signal dt378 (which represents the duration
of the current block executed by the active process) in GROUP_378 (cf. Figure 4,
right). Finally, the partition-level OS receives dt378.

100

t70 t01
@ 2
afl
56

@ @ “

t34

@

145

Fig. 9. The automaton associated with the CONTROL subpart for Proc_8.

As we can observe, blocks are computed sequentially (from top to bottom) as
represented by the transitions labeled by ¢;; (i # j) in the automaton depicted
by Figure 9. However, consecutive executions of a same block can sometimes
occur. This happens when a system call is executed and the required resource is
not yet available. For example, consider the RECEIVE_BUFFER request. If there is
no message currently in the buffer, the calling process will get suspended on this
block. After a message has been sent, the state of the process is set to “ready”.
As soon as this process becomes active, it re-executes the same block (which
induced its suspension) to retrieve the message that was sent. Such transitions
are labeled ¢;; in the automaton.

The UML sequence diagram® depicted by Figure 10, called ezecution, illus-
trates how the partition-level OS interacts with a process during the execution
of the partition.

After the initialization phase, the partition gets activated (i.e. when receiv-
ing Active_partition_ID). The partition-level OS selects an active process within
the partition. Then, the CONTROL subpart of each process checks whether
or not the concerned process can execute. In the diagram, this is denoted by
the optional action (represented by a box labeled opt). In the case a process
is designated by the OS, this action is performed: the process executes a block
from its COMPUTE subpart, and the duration corresponding to the executed
block is returned to the partition-level OS in order to update time counters.
The execution of the model of the partition follows this basic pattern until the
module-level OS selects a new partition to execute.

The application model we have presented in this section illustrates how avion-
ics applications can be described in a modular way, using the synchronous lan-
guage SIGNAL. A great advantage of SIGNAL-based modeling is the possibility
to formally analyze descriptions. In particular, timing issues can be addressed
using the performance evaluation technique implemented in POLYCHRONY.

8 UML Specification version 2.0: Superstructure — Object Management Group
(wvww.omg. org).

sd execution

:Partition—level OS :CONTROL :COMPUTE
initialize 1 1 1

Active_partition_ID |

Active_partition_ID, timedout

opt]] active_block

. | i

]
Active_partition_ID !
= =

I Active_partition_ID, timedout

opt | | active_block

a i]

Fig. 10. A sketch of the model execution.

4.3 Model analysis: temporal evaluation

The temporal analysis of the application SATMAINT exposed in this section is
based on a technique presented in [12]. It relies on the principle introduced in
section 3, which consists of using an observer program to check properties of a
given program.

Overview of the technique. As a general observation, a SIGNAL program is
recursively composed of sub-processes, where elementary sub-processes are prim-
itive constructs, called atomic nodes. A transformation of such a program substi-
tutes each of its signals « with a new signal representing availability dates date_z,
automatically replacing atomic nodes with their temporal model counter-part.
The resulting time model is composed with the original functional description
of the application (using the standard synchronous composition). Each signal x
has the same clock as its associated date information date_z. The simulation of
the resulting program reflects both functional and timing aspects of the original
program. Obviously, a less strict temporal model can be designed in order to
get faster simulation (or formal verification). It is sufficient to consider more
abstract representations either of the program or of its temporal model.

The temporal interpretations of SIGNAL primitive constructs are collected
in a library of parameterized cost functions. For a program to be interpreted,
the library is extended with interpretations of external function calls and other
separately compiled processes, which appear in the program. As an illustration,
let us consider the following primitive construct: z := x + y. It is represented
by the atomic node depicted by Figure 11, on the left hand side. Besides the
input values x and y, this node also requires a clock information, denoted by
the signal clk_z, which triggers the computation of the output value z. The
associated temporal model is represented by the node illustrated on the right

clk. date_clk.

y date’y A
done;

Fig. 11. Node associated with z := x + y (left); and its temporal model (right).

hand side. The SIGNAL program corresponding to this temporal model, called
T_Plus, is depicted by Figure 12. In this model, MAXn denotes a SIGNAL process
that returns the maximum value of n inputs among those that are present at
a given instant (i.e., inputs are not constrained to be simultaneously present).
The notations type x and type_y represent respectively the types of x and y.
The input signal date_clk_z is associated with the trigger clock clk_z. Signals
begin i and done_i have been added in order to express the end of execution
of a given node so that the following nodes could be executed. The presence of
begin_i in a node means that the preceding ones (following the scheduling order
chosen for node execution), have already produced all their output dates. The
presence of done_i means that the current node has calculated all its output
dates (i.e., done_i becomes begin_i+1). The date of z, denoted by date_z, is
the sum of the maximum date of inputs and the delay of the addition operation,
some A, . This quantity Ay depends on the desired implementation, on a specific
platform. It has to be provided in some way by the user, with respect to the
considered platform. In the current implementation in POLYCHRONY, the value
Ay is provided by a function DELTA_ADD which has the types of the operands
as parameters and which fetches the required value from some table. Following
the same idea, each primitive construct of SIGNAL has been associated with its
temporal interpretation. Thanks to compositionality of SIGNAL specifications,
the same principle can be applied at any level of granularity.

process T_Plus{ type_x, type_y; }
(7 date_type date_x, date_y, date_clk_z, begin_i;
! date_type date_z, done_i;)
(I date_z := MAX2(MAX3(date_x, date_y, date_clk_z),
begin_i when “date_z) + DELTA_ADD{type_x, type_y}()
| done_i := (date_z default begin_i) cell “done_i

1);

Fig.12. A temporal interpretation of z := x + y in SIGNAL.

In addition to the library of cost functions of primitive constructs, the im-
plementation also requires platform-dependent information (e.g. the delay of the
addition of two integer numbers on a given processor). For instance, the sum
of integer numbers coded on 32 bits will take one cycle on a processor with a
32-bit adder (this is the case of the Intel Pentium IV processor). On the other
hand, the same operation requires more than one cycle on a processor with only
a 16-bit adder (like the Intel 8086 processor). In the example exposed in Figure
12, this information is obtained via the DELTA_ADD call.

Application to the partition SATMAINT. The co-simulation schema is
shown in Figure 13. The model of SATMAINT is composed with its associated
temporal interpretation T_SATMAINT (the prefix notation “T_” is used for tem-
poral interpretation). At each simulation step, the date of an output date(O;)
depends on the date of an input date(I;) and the control configuration repre-
sented by a “valuation” of boolean signals vector [c1,... ,cq] computed in the
original program. In fact, the control parts of SATMAINT and T_SATMAINT
are identical, only data parts functionally differ: the data part of SATMAINT
computes the functional results whereas the data part of T_SATMAINT yields
date informations. The vector [c1,. .. ,¢q] contains intermediate boolean signals
computed by the data part of SATMAINT that are needed by T_SATMAINT
to compute output information. Note that in a straightforward approach, it is
possible to provide a set of vectors that covers all the possible combinations for
the control flow. A better way is to take into account the existing relationships
between these booleans such as provided by the clock calculus of SIGNAL (this
is expressed through the composition of the original program and its temporal
interpretation).

In practice, we mainly raise one difficulty about the implementation of the
schema illustrated in Figure 13. It is due to the scalability issue which can be-
come problematic during the compiling of large application programs (here, the
program resulting from the composition of the application model together with
its temporal interpretation, in other words, (| SATMAINT | T_SATMAINT |), is
huge and may not facilitate its compiling). So, the adopted solution consists of
using a modular evaluation schema, which is presented in the following. One can
also mention other advantages of modularity like the possibility of applying a
component-based approach, then taking advantage of re-usability.

The modularity of the SIGNAL language allows to construct a program from
other programs by composition. Therefore, this principle also applies to the con-
struction of the temporal interpretation of the partition SATMAINT, which is
quite large. For that, we consider a splitting of the corresponding SIGNAL model
into subparts of a reasonable size (e.g. such a subpart could be a process). They
will be easier to be first addressed. So, for each subpart, we define an associ-
ated temporal interpretation. Afterwards, the resulting model can be composed
with the concerned subpart. The program obtained from this composition is
abstracted in order to take into account only information that are relevant for
the considered observation (as a result, abstractions contribute to reduce the

Input

t)
%/
[e1 5 ¢q] Generic basic
_| cost fopctions
|
—
gDeZLtSrator T_SATMAINT | F/—
1
' date(l; platform-depen
% r Informations

N

A

Fig. 13. Co-simulation of SATMAINT with its temporal interpretation.

size of a program). Finally, the global model that consists of the composition of
the application with its temporal interpretation is obtained by composing the
abstracted subprograms.

LetP=P; | ... | P, denote the program corresponding to the application
that is considered for temporal analysis. We want to define the program P’ =
(I P | T_P |) that will be used for the simulation, where T_P is the temporal
model of P. The same program can be also rewritten as: P> =P’y | ... | P7,.
Each P’; denotes the composition of a subprogram P; of P, with its associated
temporal interpretation T_P;. The following steps are identified in order to carry
out experiments:

1. Partial definition of temporal interpretations: for each subprogram P; (i €
{1,...,n}) of P, we define the corresponding temporal model T_P;.

2. Composition of each subpart of the application with its associated tempo-
ral interpretation, then abstraction: this step defines the subprograms P’;
(i € {1,...,n}), which constitute the simulation program P’ that we want to
construct. The abstraction aims to keep only relevant information of these
subprograms for the co-simulation. It follows that P?; = «(P; | T_P;), where
a denotes the abstraction (e.g. a program can be abstracted by considering
only its control part—boolean and synchronization signals—or by approxi-
mating the value of numerical signals—for instance, by dealing with domains
of intervals instead of point-wise domains).

3. Construction of the global model for simulation: this model results from the
composition of subprograms P’;, defined at the previous step, i.e. P’ =P’
| ... | P2,

On the other hand, we notice that the above method can be applied in a
recursive way. In a program P, equivalent toP; | ... | Py, when the size of the
subprograms P; (i € {1,...,n}) is important, we can also use the same method

for each one in order to define the corresponding P’; (i € {1,...,n}). The global
simulation model then results from the composition of P’ ;s.

To apply the method to the partition SATMAINT, we should first decom-
pose it into subparts. Let us consider processes as subparts of the partition.
For instance, in the process PROC_8, we can begin by defining the interpreta-
tion of its COMPUTE subpart: T_COMPUTE = T_BLOCK_O | ... | T_BLOCK_7.
In this composition, we suppose that the temporal model of each block is ob-
tained without necessarily having to consider its decomposition as is done for
subprograms of a larger size. The temporal interpretation of the CONTROL
subpart of the process is determined in a similar way as the COMPUTE one.
The composition of both temporal models gives the model for PROC_8: T_PR0OC_8
= T_COMPUTE_8 | T_CONTROL_8. We proceed in the same way for the other sub-
parts of the partition. Then, we compose the resulting temporal model with its
associated program subpart. For PROC_8, it follows: (| PROC_8 | T_PROC_8 |).

This process could be now “simplified” by considering approximations (or ab-
stractions). This will facilitate the compiling of the global program. For instance,
let us consider a subpart of the application that performs a complex operation,
which requires a constant duration & on a target platform (by “complex”, we
mean an operation that requires several elementary operations, e.g. product of
two matrices). The temporal model of such a subpart can be defined in a simple
way by adding the constant § to the dates corresponding to inputs availability in
order to compute dates associated with outputs. This interpretation is simpler
than the one obtained by composing the temporal models of all intermediate
operations that are carried out by the considered subprogram. Other simplifi-
cations consist of considering worst case execution times [17] in the definition
of the temporal interpretation of a subprogram. Finally, interesting possible ab-
stractions of subparts of the application can be obtained by considering only
their control parts. They provide enough information for the co-simulation with
the associated temporal models.

5 Discussion and related work

We observe that modularity and abstraction play a central role in SIGNAL pro-
gramming for scalability in our design approach. Basically, the description of a
large application is achieved with respect to a precise design methodology that
consists of specifying first, either completely or partially (by using abstractions),
sub-parts of the application. After that, the resulting programs can be composed
in order to obtain new components. These components can be also composed
and so on, until the application description is complete. The construction of
the global simulation model of SATMAINT for temporal issues relies on this
principle. The description of the application itself relies on the same principle.
A crucial issue about the design of safety critical systems, like in avionics, is
the correctness of these systems. In POLYCHRONY, the functional properties of
a system can be checked using tools like the compiler or the model checker Si-
GALI. Here, we addressed temporal aspects of programs. For that, we used a

technique consisting of co-simulating the program under analysis with an asso-
ciated observer (also referred to as temporal interpretation) defined in SIGNAL.
The observer is another program which has the same control as the observed
one, but its data part reflects the temporal dimension of the analyzed program.
Using SIGNAL for both the model of an application and its associated tempo-
ral interpretation results in uniform descriptions upon which available tools and
techniques remain applicable.

We can mention a few studies addressing the design of embedded real-time
systems in the avionic domain. The first one is the COTRE approach [5]. Its main
objective consists in providing the designer with a methodology, an Architecture
Description Language (ADL) called Cotre, and an environment to describe, ver-
ify and implement embedded avionic systems. The Cotre language distinguishes
two different views for descriptions: a user view expressed using the Cotre for
User language (termed U-Cotre) and a view for verification (termed V-Cotre).
In fact, the latter plays the role of an intermediate language between U-Cotre
and certain existing verification formalisms (e.g. timed automata, timed Petri
nets). The authors argue that the use of formal techniques is one of the main dif-
ferences between the Cotre language and other ADLs. COTRE is closely related to
the approach based on the Avionics Architecture Description Language (AADL),
which is developed by the International Society of Automotive Engineers (SAE)
[8]. It is dedicated to the design of the software and hardware components of an
avionics system and the interfaces between those components. The AADL defi-
nition is based on METAH (an ADL developed by Honeywell) [22]. It allows to
describe the structure of an embedded system as an assembly of software and
hardware components in a similar way. The AADL draft standard also includes
a UML profile of the AADL. This enables the access to formal analysis and code
generation tools through UML graphical specifications.

While these approaches combine various formalisms and tools for the design
of embedded real-time systems, our approach relies on the single semantic model
of the SIGNAL language. It is very important to have a common framework in
order to guarantee the correctness of the designs. Modularity allows to overcome
scalability problems. In addition, such a framework favors MDA-like approach
since all transformations of descriptions are achieved with respect to a unique
semantic model.

Among specific studies related to IMA, we can mention those concerning the
two-level hierarchical scheduling aspects within IMA systems. In [3], Audsley
and Wellings introduced a scheduling approach for APEX applications. In [14],
Lee et al. presented algorithms in order to produce cyclic partition and channel
schedules for IMA-based avionics systems. The technique we illustrated in this
paper for temporal analysis provides information on execution times of parti-
tions. Thus, these information could be used when taking decisions in processor
allocation to partitions. Further expected benefits of defining our approach in
a formal framework are the available techniques and tools that help to address
some critical issues of IMA such as the partitioning, which still need to be further
explored by researchers. Indeed, in current industrial practices, avionic functions

with high critical level are designed using federated architectures (for instance,
this is the case for the future Airbus A380). This is likely due to the fact that
partitioning raises several questions that are not enough addressed yet. Among
these questions, we can mention the correctness of a partitioning, which is cru-
cial. A formal description of partitioning requirements is proposed by Di Vito [7],
using the language of PVS (Prototype Verification System). However, this de-
scription only concerns space partitioning (time partitioning is not addressed).
The use of a dataflow representation such as in SIGNAL can allow to define
a correct-by-construction partitioning, based on a so-called sensitivity analysis
[10]. Being able to guarantee the correctness of a given partitioning can help
reducing IMA certification efforts. A study addressing this last issue has been
done by Conmy and McDermid [6], who propose a high level failure analysis
of IMA. The analysis is part of an overall IMA certification strategy. Finally, a
presentation of the IMA-based communication network designed for the future
Airbus A380 is given by Sanchez-Puebla and Carretero in [20].

6 Conclusions

The work presented in this paper promotes modular designs in a formal context.
It favors component based designs (where an immediate benefit is re-usability),
and verification and validation. This has been possible through the use of the
synchronous language SIGNAL. We showed how a synchronous model of a real
world avionics application is described following the integrated modular concept
(IMA). The description relies on an existing library of SIGNAL models of APEX
services defined by the avionics standard ARINC 653. Issues on the temporal
evaluation of the defined model have been also addressed in order to allow the
analysis of real-time behaviors of the application. By considering a unique for-
malism (i.e SIGNAL) and its associated tool-set (i.e POLYCHRONY) for both de-
scription and analysis of applications, we put forward a strongly uniform formal
design approach, which allows to reason about the properties of the applications.

References

1. Airlines Electronic Engineering Committee. ARINC Report 651-1: Design Guid-
ance for Integrated Modular Avionics. In Aeronautical radio, Inc., Annapolis,
Maryland, November 1997.

2. Airlines Electronic Engineering Committee. ARINC Specification 653: Avionics
Application Software Standard Interface. In Aeronautical radio, Inc., Annapolis,
Maryland, January 1997.

3. N.C. Audsley and A.J. Wellings. Analysing APEX Applications. In Proceedings
of Real Time Systems Symposium (RTSS’96), 1996.

4. A. Benveniste et al. The Synchronous Languages Twelve Years Later. Proceedings
of the IEEE, 91(1):64-83, 2003.

5. B. Berthomieu et al. Towards the Verification of Real-Time Systems in Avionics:
the Cotre Approach. In FElectronic Notes in Theoretical Computer Science, vol. 80,
2003.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

P. Conmy and J. McDermid. High Level Failure Analysis for Integrated Modular
Avionics. In Proceedings of the 6th Australian Workshop on Industrial Ezperience
with Safety Critical Systems and Software, Brisbane, Australia, June 2001.

B.L. Di Vito. A Model of Cooperative Noninterference for Integrated Modu-
lar Avionics. In Proceedings of Dependable Computing for Critical Applications
(DCCA-7), San Jose, CA, January 1999.

P.H. Feiler, B. Lewis, and S. Vestal. The SAE Avionics Architecture Description
Language (AADL) Standard: A Basis for Model-Based Architecture-Driven Embed-
ded Systems Engineering. In Proceedings of Workshop on Model-Driven Embedded
Systems, Washington D.C., USA, May 2003.

A. Gamatié and T. Gautier. Synchronous Modeling of Avionics Applications using
the SIGNAL Language. In Proceedings of 9th IEEE Real-time/Embedded Technology
and Applications Symposium. Washington D.C., USA, May 2003.

T. Gautier and P. Le Guernic. Code generation in the sacres project. In Proceed-
ings of the Safety-critical Systems Symposium, §5§5°99, Springer. Huntingdon, UK,
February 1999.

N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous Observers and the Ver-
ification of Reactive Systems. In Proceedings of the 8rd International Conference
on Algebraic Methodology and Software Technology (AMAST’93), Springer Verlag,
Twente, June 1993.

A. Kountouris and P. Le Guernic. Profiling of SIGNAL Programs and its Application
in the Timing Evaluation of Design Implementations. In Proceedings of the IEE
Collog. on HW-SW Cosynthesis for Reconfigurable Systems, pages 6/1-6/9. HP
Labs, Bristol, February 1996.

P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polychrony for System Design.
Journal for Circuits, Systems and Computers. Special Issue on Application Specific
Hardware Design, World Scientific, 12(3):261-303, June 2003.

Y.-H. Lee et al. Resource Scheduling in Dependable Integrated Modular Avion-
ics. In Proceedings of the International Conference on Dependable Systems and
Networks, April 2000.

F. Maraninchi and Y. Rémond. Mode-Automata: About Modes and States for
Reactive Systems. In Proceedings of the European Symposium On Programming,
Lisbon, Portugal, Springer-Verlag, pages 39-44, March 1998.

H. Marchand, P. Bournai, M. Le Borgne, and P. Le Guernic. Synthesis of Discrete-
Event Controllers based on the SiGNAL Environment. Discrete Event Dynamic
System: Theory and Applications, 10(4):325-346, October 2000.

P. Puschner and A. Burns. A Review of Worst-Case Execution-Time Analysis.
Journal of Real-Time Systems, 18(2/3):115-128, May 2000.

J. Rushby. Formal Methods and their Role in the Certification of Critical Systems.
In NASA Contractor Report 4673, num. SRI-CSL-95-1, Menlo Park, CA, March
1995.

J. Rushby. Partitioning in Avionics Architectures: Requirements, Mechanisms, and
Assurance. Technical report, NASA Langley Research Center, June 1999.

M.A. Sénchez-Puebla and J. Carretero. A new Approach for Distributed Com-
puting in Avionics Systems. In Proceedings of the 1st International Symposium on
Information and Commaunication Technologies, Dublin, Ireland, 2003.

J. Sifakis. Modeling Real-Time Systems - Challenges and Work Directions. In
Proceedings of the First International Workshop on Embedded Software, T.A. Hen-
zinger and C.M. Kirsch, Eds, LNCS 2211, Springer Verlag, October 2001.

S. Vestal. METAH Support for Real-Time Multi-Processor Avionics. In Proceedings
of the IEEE Workshop on Parallel and Distributed Real-Time Systems, April 1997.

