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Lateral forces due to frictional instability are seen as the main reason for the occurrence of curve squeal.
Predicting squeal requires thus to describe the high-frequency wheel/rail interaction during curving in-
cluding the coupling between vertical and lateral directions. In this paper, a time domain approach is
presented which includes both vertical and lateral forces and takes into account the non-linear processes
in the contact zone. Track and wheel are described as linear systems using impulse response functions that
can be pre-calculated. The non-linear, non-steady state contact model is based on an influence function
method for the elastic half-space. First results from the interaction model including tangential friction
are presented in order to demonstrate the functioning of the approach.

1 Introduction

Curve squeal is a highly disturbing tonal sound ge-
nerated by a railway vehicle negotiating a sharp curve.
This type of noise is commonly attributed to self-excited
vibrations of the railway wheel, which are either indu-
ced by stick/slip behaviour due to lateral creepage of
the wheel tyre on the top of the rail or by contact on
the wheel flange [1].

Although many curve squeal models have been pro-
posed in the literature, e.g. the models [2–6], curve
squeal remains difficult to predict. On the one hand, this
can be attributed to the lack of knowledge about impor-
tant model parameters, such as e.g. realistic friction co-
efficients. On the other hand, high-frequency wheel/rail
interaction during curving is a complex phenomena,
which poses a challenge in modelling. As curve squeal is
intrinsically transient and non-linear, models aiming to
predict squeal amplitudes have to be formulated in the
time-domain. Due to the required computational effort
of time-domain solutions, it is usually necessary to sim-
plify wheel, rail and contact dynamics, and, by conse-
quence, the models might not include all the important
features of the phenomena.

The aim of the work presented in this paper is to
contribute to the modelling and understanding of curve
squeal by proposing a detailed time-domain model for
dynamic wheel/rail interaction that considers the cou-
pling between vertical and tangential directions. The
computational effort is reduced by representing vehicle
and track by impulse response functions that are cal-
culated in advance. This technique, which has proven
efficient for instance in the area of tyre/road noise [7]
and in vertical wheel/rail interaction [8], makes it pos-
sible to include a non-linear, non-steady state contact
model that is solved at each time step in the interaction
model.

2 Wheel/rail interaction model

The wheel/rail interaction model is primarily inten-
ded for quasi-static curving of the leading inner wheel
in a railway bogie. The model relies on the wheel/rail
contact position and the angle of attack of the wheelset
(i.e. the lateral creepage) as input parameters. These pa-
rameters can be pre-calculated with a vehicle dynamics
programme.

Figure 1 shows the reference frame for the wheel/rail
interaction model. The x-direction (1-direction) is the
rolling direction along the rail. The lateral direction
is the y-direction (2-direction) pointing away from the
wheel flange. The vertical z-coordinate (3-coordinate) is
pointing into the rail. This reference frame is moving
with the nominal contact point along the rail.
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Fig. 1: Reference frame.

2.1 Wheel and track model

The vehicle is represented by a single flexible C20
wheel disregarding the influence of the axle. The wheel
is modelled by axi-symmetric finite elements and repre-
sented by its modal basis. The receptances of the wheel
in the wheel/rail contact point on the wheel tread are
calculated by modal superposition.

The track consisting of one continuously supported
BV50 rail is modelled with wave-guide finite elements
using the the software package WANDS [9]. This model



takes advantage of the two-dimensional geometry of the
rail but nonetheless considers the three-dimensional na-
ture of the vibration by assuming a wave-type solution
along the rail. Cross-sectional deformations of the rail,
which are important for high-frequency applications and
lateral dynamics are taken into account.

Figure 2 shows the vertical and lateral point recep-
tances and the vertical/lateral cross receptances of the
wheel and the track at the nominal contact point. On
the wheel, the nominal contact point is assumed at the
centre of the wheel tread. On the rail head, the nominal
contact point is assumed at a distance of 1.2 cm from
the centre. This offset introduces a coupling between
vertical and lateral dynamics of the rail.
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Fig. 2: Magnitudes of the wheel ( ——— ) and track
receptances (−−−) at contact : (a) vertical point

receptance, (b) lateral point receptance,
(c) vertical/lateral cross receptance.

The impulse response functions (or Green’s func-
tions) of the wheel, gW

ij , are obtained by inverse Fourier

transform from the wheel receptances, GW
ij ,

gW
ij (t) = F

−1
(

GW
ij (f)

)

, i, j = 2, 3 . (1)

The subscripts i and j denote the excitation and res-
ponse direction, respectively. The lateral and verti-
cal displacements of the wheel at the contact point,
ξW
2 (t) and ξW

3 (t), are then calculated by convoluting the
contact forces with the Green’s functions

ξW
j (t) = −

∫ t

0

3
∑

i=2

Fi(τ)gW
ij (t − τ) dτ , j = 2, 3 . (2)

The longitudinal dynamics of the wheel is not taken into
account and the influence of wheel rotation is neglected.

The track is represented by a special type of Green’s
functions denoted moving Green’s functions, gR,x0

ij,v (t),
which include the motion of the nominal contact point
along the rail [10]. The function gR,x0

ij,v (t) describes, for
excitation of the rail (index R) in i-direction at the posi-
tion x0 at time t0 = 0, the displacement response of the
rail in j-direction at a point moving with train speed v
away from the excitation, thus at the nominal contact
point between wheel and rail. The discrete version of the
moving Green’s function gR,x0

ij,v (t) is constructed from

(ordinary) Green’s functions gR,x0, x0+α
ij (t), where the

superscripts specify the excitation point x0 and the res-
ponse point x0 + α on the rail. The Green’s functions
gR, x0, x0+α

ij (t) are obtained from the corresponding track
transfer receptances by inverse Fourier transform

gR, x0, x0+α
ij (t) = F

−1
(

GR, x0, x0+α
ij (f)

)

, i, j = 2, 3 .

(3)
The lateral and vertical displacements of the track at
the contact point, ξR

2 (t) and ξR
3 (t), are calculated by

convoluting the contact forces with the moving Green’s
functions

ξR
j (t) =

∫ t

0

3
∑

i=2

Fi(τ)gR,vτ
v,ij (t − τ) dτ , j = 2, 3 . (4)

The longitudinal dynamics of the track is not taken into
account.

In the case of the continuously supported track used
in this article, the moving Green’s functions are inde-
pendent from the excitation position x0 on the rail.

2.2 Contact model

The contact model is an implementation of Kalker’s
model CONTACT [11], which is a three-dimensional,
non-steady state rolling contact model based on the as-
sumption that wheel and rail can be locally approxima-
ted by elastic half-spaces. In addition to the parameters
included in CONTACT, the contact model used in this
article considers the combined roughness of wheel and
rail on several parallel lines in the rolling direction and
the contribution of the structural dynamics of wheel and
rail to the creepage.

The potential contact area is divided into N rec-
tangular elements with side lengths ∆x and ∆y in x−
and y−direction, respectively. Assuming that wheel and
rail are made of the same material, quasi-identity holds
and, consequently, normal and tangential contact pro-
blem can be solved separately [11].

2.2.1 Normal contact

The normal contact problem consists in determi-
ning which elements of the potential contact area are
in contact and in calculating the local vertical displace-
ment uI3 and the contact pressure pI3 in every element
I.

The local vertical displacement, which is the displa-
cement difference between rail and wheel

uI3 = uR
I3 − uW

I3 , I = 1, . . . , N , (5)



is related to the contact pressure according to

uI3 =
N

∑

J=1

AI3J3 pJ3 , I = 1, . . . , N , (6)

where AI3J3 are influence coefficients for the elastic half-
space. The total vertical contact force, F3, is obtained by
summing the contributions from the different elements

F3 =

Ne
∑

I=1

pI3∆x∆y . (7)

Introducing the variable dI describing the distance bet-
ween the deformed bodies in each element, the contact
conditions are formulated as

dI ≥ 0

pI3 ≥ 0 . (8)

dIpI3 = 0

If contact occurs in a surface element, the distance is
zero and the contact pressure is positive. If contact does
not occur, the distance is positive and the pressure is
zero. Adhesion and penetration are excluded by (8). The
distance dI is obtained as

dI = −δ + uI3 + zR
I − zW

I + rR
I − rW

I , (9)

where zR
I and zW

I are the profiles of rail and wheel, rR
I

and rW
I are the roughness of rail and wheel and δ is the

approach of distant points

δ = ξW
3 + ξS

3 (P ) − ξR
3 . (10)

The variable ξS
3 (P ) is the position of the primary suspen-

sion of the wheel corresponding to the nominal preload,
P , which represents the vehicle components above the
primary suspension.

The normal contact problem is solved with an active
set algorithm [11].

2.2.2 Tangential contact model

In frictional rolling contact, the contact area is divi-
ded into a stick and a slip area. The tangential contact
problem consists in determining which elements are in
stick and in slip and in calculating the local tangential
displacements uIτ and tangential stresses pIτ at the sur-
face.

The relation between local tangential displacements
and tangential stresses is given by

uIτ =

2
∑

α=1

N
∑

J=1

AIτJα pJα , τ = 1, 2 , (11)

where AIτJα are influence coefficients for the elastic
half-space. The tangential forces, Fτ , are obtained by
summing up the contributions from the different ele-
ments

Fτ =
N

∑

I=1

pIτ∆x∆y , τ = 1, 2 . (12)

A contact element belongs to the stick area, if the local
shift, SIτ , vanishes

SIτ = 0 , τ = 1, 2 . (13)

Otherwise the contact element belong to the slip area.
The local shift is defined as

SIτ = uIτ + W ∗

τ − u′

Iτ , τ = 1, 2 . (14)

The variable u′

Iτ represents the local displacement at
the previous time step. In Kalker’s formulation, WIτ is
the rigid shift calculated as

W1 = ξ − yφ (15)

W2 = η + xφ , (16)

where ξ, η and φ are the longitudinal, lateral and spin
creepage. In this paper, the contribution of the structu-
ral dynamics of wheel and track is added to the rigid
shift

W ∗

1 = ξ − yφ (17)

W ∗

2 = η + xφ +
(

ξR
2 − ξW

2

)

−
(

ξ′R2 − ξ′W2
)

, (18)

where ξ′R2 and ξ′W2 are the lateral displacements of rail
and wheel at the previous time step.

In the slip area, the following relations hold

pIτ
√

p2
I1 + p2

I2

= −
SIτ

√

S2
I1 + S2

I2

, τ = 1, 2 (19)

p2
I1 + p2

I2 = (µpI3)
2 , (20)

where µ is the friction coefficient, which is assumed
constant. Equation (19) assures that the slip occurs in
the direction opposite to the tangential stress. Equa-
tion (20) states that the tangential stress in the slip
zone is equal to the traction bound µpI3.

The tangential contact problem is solved with an
active set algorithm [11] combined with the Newton-
Raphson method.

3 Simulation results

In this section, first results from the interaction mo-
del are presented in order to demonstrate the functio-
ning of the approach. The common model parameters
used in the simulations are presented in Table 1. Wheel
and rail profiles are assumed cylindrical with wheel ra-
dius RW and rail head radius RR. The longitudinal cree-
page, ξ, and the spin creepage, φ, are set to zero in all
the simulations presented.

3.1 Comparison to CONTACT

Setting all Green’s functions to zero (i.e. assuming
quasi-static conditions) and using smooth wheel and rail
surfaces makes it possible to verify the interaction model
against CONTACT [11,12].

Figure 3 shows the division of the contact area into
stick and slip zones obtained with both models for an
imposed lateral creepage of η = 10−3 and a static pre-
load of P = F3 = 65 kN. The results obtained with both
models are identical. The rolling direction is the positive
x-direction. The slip zone is located at the trailing edge
of the contact.

The distribution of total tangential stress correspon-
ding to Figure 3 is presented in Figure 4. The total la-
teral force is F2 = −8.1 kN.



Wheel radius RW = 0.39 m
Rail head radius RR = 0.30 m
Half of wheelset mass mW = 342 kg
Wheel and rail material :
Young’s modulus E = 210 GN/m2

Poisson ratio ν = 0.3
Density ρ = 7860 kg/m3

Loss factor (rail) ηR = 0.01
Material of rail support :
Young’s modulus EE = 4.8 MN/m2

Poisson ratio νE = 0.45
Density ρE = 10 kg/m3

Loss factor ηE = 0.25
Train speed v = 100 km/h
Static preload P=65kN
Primary wheel suspension :
Stiffness (vertical) k3 = 1.12 MN/m
Damping (vertical) c3 = 13.2 kNs/m
Stiffness (lateral) k2 = 1.12 MN/m
Damping (lateral) c2 = 13.2 kNs/m
Friction coefficient µ = 0.3
Spatial resolution ∆x = ∆y = 1 mm

Tab. 1: Model parameters
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Fig. 3: Division of the contact area : quasi-static case,
η = 10−3. Stick zone : ◦ (CONTACT), x (interaction

model) ; Slip zone : � (CONTACT), �, filled
(interaction model).
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2 : quasi-static case, η = 10−3.

The distribution of lateral stress on line y = 0,
which is depicted in Figure 5, shows that the result
from the interaction model is in excellent agreement
with CONTACT. The maximum relative difference bet-
ween both models does not exceed 0.16% and can be
attributed to different round-off practices. This implies
that the contact model used in this paper is correctly
implemented.
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Fig. 5: Lateral tangential stress on line y = 0 :
quasi-static case, η = 10−3. (a) Amplitude : ———

interaction model, ◦ CONTACT ; (b) relative
difference.

3.2 Smooth surfaces

The simulation presented in section 3.1 is now re-
peated with the Green’s functions obtained from the
receptances in Figure 2.

The time series of the contact forces is presented in
Figure 6, where the first 72 ms correspond to the per-
iod of preload application. After some initial oscillations
the contact forces go towards a steady-state solution.
Due to the influence of the structural dynamics of wheel
and track, this steady-state solution differs slightly from
the quasi-static case in section 3.1. The vertical contact
force increases to F3 = 65.8 kN, while the lateral force
decreases (in absolute value) to F2 = −7.4 kN.
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Fig. 6: Dynamic contact forces, smooth surfaces,
η = 10−3. ——— vertical,−−−, lateral.

In comparison to the quasi-static case, one contact
element changed from the slip zone to the stick zone
(Figure 7) and the distribution of the lateral tangential
stress varies slightly (Figure 8).

The higher the imposed lateral creepage, the bigger
is the influence of the structural dynamics of wheel and
track. In the case η = 10−2, where the complete contact
area is in slip, the steady-state vertical contact force is
F3 = 67.2 kN.

3.3 Rough surfaces

In this section, one example is shown where the inter-
action model is applied for rough surfaces. The rough-
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Fig. 7: Division of the contact area : smooth surfaces,
η = 10−3. Stick zone : ◦ (CONTACT), x (interaction

model) ; Slip zone : � (CONTACT), �, filled
(interaction model).
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Fig. 8: Lateral tangential stress on line y = 0 : smooth
surfaces, η = 10−3. ——— interaction model,

◦ CONTACT.

ness used is a wheel roughness data set measured on a
wheel with sinter block brakes in 25 parallel lines with
a spacing of 2 mm across the width of the running sur-
face [13]. The roughness level is low over the whole fre-
quency range of interest. More information about the
roughness data set can be found in [14], where it is re-
ferred to as ‘wheel 1 with sinter block brakes’.

Figure 9 shows the time series of the dynamic contact
forces. For two instants in time, t1 and t2, the corres-
ponding divisions of the contact area into stick and slip
zones and the lateral tangential stress distribution at
y = 0 are presented in Figures 10 and 11, respectively.
The comparison to the results from CONTACT reveals
that the shape of the contact area and the stick and slip
zones can differ considerably from the quasi-static case.
The same is true for the tangential stress distribution.

4 Conclusions

A numerical model has been presented, which si-
mulates high-frequency wheel/rail interaction including
tangential friction in the time-domain. As wheel and
track are represented by pre-calculated impulse response
functions, the model is characterised by high compu-
tational efficiency. This makes it possible to include a
non-steady state contact model that is solved at each
time step in the interaction model. The comparison of
the interaction model with Kalker’s rolling contact mo-
del CONTACT for a quasi-static case shows that the
implementation of the contact model is correct. Re-
sults from the interaction model for dynamic cases with
smooth and rough wheel and rail surfaces differ from
CONTACT. This is explained by the fact that the inter-
action model includes the structural dynamics of wheel
and rail and the effect of surface roughness.

Future work will include the implementation of a
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Fig. 9: Dynamic contact forces : rough wheel,
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Fig. 10: Division of the contact area : rough wheel,
η = 10−3. Stick zone : ◦ (CONTACT), x (interaction

model) ; Slip zone : � (CONTACT), �, filled
(interaction model) ; (a) at t1 in Figure 9(c) ; (b) at t2

in Figure 9(c).
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Fig. 11: Lateral tangential stress on line y = 0 : rough
wheel, η = 10−3 ; ——— interaction model,

◦ CONTACT ; (a) at t1 in Figure 9(c) ; (b) at t2 in
Figure 9(c).

velocity-dependent friction coefficient, which implies an
extension of the contact model. Furthermore, the vali-
dation of the interaction model for dynamic cases is an
important aspect of future work.
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