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Fitting interatomic potentials consistent with thermodynamics: Fe, Cu, Ni and their alloys

Introduction

The use of atomistic simulation methods is becoming increasingly important in materials science. First principles methods, such as density functional theory (DFT), have proven to be very accurate tools in describing various materials properties. However, due to their inherent complexity, such schemes are only applicable to small scale atomic systems (typically <10 3 atoms). When mechanical properties and micro-structure are the focus of attention, 2 simulations have to be simple enough to deal with a large number of atoms (typically 10 5 -10 7 atoms), thus capturing the length scale that is relevant for this class of problems. For such a purpose, classical short-ranged cohesive energy models remain an unavoidable constraint.

Historically, the first approach used to describe atomic interactions was by simple pair potentials. Although this scheme is suitable for rare-gas solids, it shows a number of deficiencies when applied to metals [1,2]. The solution to these problems was the introduction of an additional many-body term, dependent on a variable describing the local atomic coordination (henceforth density). Based on different physical grounds, and independently from each other, three groups implemented such a scheme, namely, the "glue model" (GM) developed by Ercolessi et al. [3][4][5], the "embedded atom method" (EAM) developed by Daw and Baskes [6,7] and the "Finnis-Sinclair" (FS) formalism developed by Finnis and Sinclair [1]. From a computational point of view, all three schemes are identical with a performance of the same order as simple pair potentials. In what follows we refer to the three formalisms as many-body central force potentials. In the literature, several extensions based on many-body central force potentials exist, introducing for example bond-angle dependences [8][9][10][11] or local concentration dependences [12,13]. For most transition metals and their alloys, however, many-body central force potentials are still widely used.

In the literature, a number of many-body central force potentials are available for pure elements (see for example [14][START_REF]Intermetallic Compounds: Principles[END_REF][START_REF] Mishin | [END_REF][17]) and, especially in the last few years, also multi-component potentials (mostly binary) have been developed (see for example [14,[18][19][20][21]). In most cases, besides problem-specific properties (e.g. point defect interaction energies and their migration barriers), the mixing enthalpy at low temperature (0 K for DFT data) and/or formation energy of some intermetallic compounds is the only thermodynamic information included in the fit. Such approaches are currently considered "common practice" (see for example [11,[22][23][24][25]) and are also applied to the potentials fitted here. The mixing enthalpy determines the alloy's thermodynamics in the high temperature limit, and can thus be a sufficient description for disordered alloys. The formation energy of intermetallic compounds, on the other hand, gives the absolute stability of the compound, but can hardly control the stabilization of other (unphysical) compounds. It is thus clear that, for many alloys of technological interest, a fit to the mixing enthalpy or formation energy of some intermetallic compounds does not suffice, and that more elaborate methods to fit thermodynamic information is necessary.

In this paper we develop two methods to account for the experimental phase stabilities.

The first method, based on the probability polyhedron [START_REF] Ducastelle | Order and phase stability in alloys[END_REF][START_REF] Inden | Phase Transformations in Materials[END_REF], aims at controlling the 3 allowable ground states. This method is of particular interest when intermetallic compounds appear in the phase diagram. The second method is based on the cluster variation method (CVM) [START_REF] Kikuchi | [END_REF] and aims at fitting the experimental solid phase boundaries at finite temperature.

As an illustration of the performance of both methods, they are applied to the Fe-Cu, Fe-Ni and Cu-Ni binary systems, which together form a ternary Fe-Cu-Ni potential. The Fe-Cu and Fe-Cu-Ni systems are model alloys for reactor pressure vessel (RPV) steels.

Experimentally it is known that nano-metric Cu-rich precipitates cause hardening and embrittlement in such steels [29][30][31][32][33][34][35][36][37][38]. It is thus essential that the potential closely reproduces the Cu solubility, a demand handled with our second technique above. The Fe-Ni system, developed as a part of the ternary Fe-Cu-Ni system, on the other hand, also serves as a model alloy for austenitic steels, as used for example in current reactor's internal components. Experimentally, this system consists of a ferritic Fe rich phase, an austenitic Ni rich phase and, in-between, two fcc based L1 0 FeNi and L1 2 FeNi 3 intermetallic phases [39]. Here it is thus essential to correctly reproduce the stability of observed intermetallic phases, a demand handled with our first technique. The Cu-Ni potential on the other hand is a by-product of our ternary Fe-Cu-Ni potential, but for reasons of consistency it was also fitted to the experimental phase diagram. The phase diagram consists of a miscibility gap of two austenitic phases with total miscibility above a critical temperature [40][41][42][43]. As a first approximation this alloy can be considered disordered, and therefore we use it as an illustration of a case in which fitting to the mixing enthalpy only gives already a reasonable result. All of the above potentials were fitted to many other properties (mostly defect properties), besides thermodynamic data. As an illustration of the methods, however, here we only present the thermodynamic aspects and compare them against experiments and other potentials found in the literature. For more details on the other properties, the reader is referred to [20,21,[START_REF] Bonny | Ternary Fe-Cu-Ni many-body potential to model reactor pressure vessel steels: First validation by simulated thermal annealing[END_REF]. To conclude, a closing discussion on the applicability and limitations of the developed fitting techniques is given.

Potential formalism

For the sake of definiteness, the interactions are expressed using the EAM scheme. We note, however, that the fitting techniques are not restricted to this formalism and can in fact be applied using other ones, including bond-angle dependent and concentration dependent formalisms. Within EAM, in addition to a pair interaction term, V, a so-called embedding term, F, dependent on the electron density ρ, is included. The latter contribution approximates the many-body interaction with the surrounding neighbours. The total energy is thus given as,
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Here N represents the total number of atoms in the system, r ij is the distance between atoms i and j, and t i denote atomic species. The electron density around atom i, contributed from its neighbours is in turn given as, 1 ( )
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where ϕ denotes the electron density function of the considered element. The form of V, F and ϕ is, however, not uniquely determined. Two transformations [1,2,18], 1

T and 2 T , exist that leave the total energy invariant,
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with C and S arbitrary constants. Therefore, the units of the electron density are arbitrary for the pure species, but contribute to each other's embedding energy in the alloy case.

In what follows, we assume that the potentials for the pure species are given, and only the cross pair interactions V AB and relative weight between the electron densities ρ A /ρ B need to be determined. During the fitting of the alloy properties, transformation 
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where N p denotes the number of knots, a k are the fitting parameters and H denotes the Heaviside unit step function.

Fitting procedure

The fitting of an interatomic potential can be viewed as a problem of finding the potential parameters that allow the latter to optimally reproduce a given data set, presently, thermodynamic data. Mathematically, it can be formulated as the minimization of the overall squared deviation, so called objective function (OF), between predicted and reference data, possibly including some constraints. Simple thermodynamic properties, such as the random mixing enthalpy, or formation energy of intermetallic compounds, are relatively easy to express. Moreover, if relaxation effects can be neglected, Equation ( 5) leads essentially to a quadratic programming problem [START_REF] Nocedal | Numerical Optimization[END_REF] to determine the parameter set {a k }. Otherwise, if relaxation effects matter, the intermetallic compound structures need first to be relaxed for each trial parameter set, thereby leading to nested optimizations. In the same context, for mimicking the random alloy, one may use relatively small so-called special quasi-random structures (SQSs) [START_REF] Zunger | [END_REF]. Thus, more elaborate minimization routines would be necessary. The two fitting techniques proposed below are of the latter kind; it will also be shown that relaxations are not the only cause of complexity in the optimization procedure.

Ground States

At low temperature, the phase diagram is determined by the static properties of the alloy. For disordered alloys this is the random mixing enthalpy while for intermetallic phases this is the formation energy of intermetallic compounds. In the absence of intermetallic compounds a fit to the random mixing enthalpy can be sufficient to describe randomly disordered alloys, but for alloys governed by intermetallic phases a more elaborate approach is necessary. Besides fitting the formation energy of the intermetallic compounds of interest, constraints must be applied to control the relative stability with respect to other possible intermetallic compounds.

Such a procedure is necessary to guarantee that the compounds of interest are the only ground states of the system, so that no unwanted (unphysical) phases appear in the phase diagram. On For a binary alloy with a given lattice symmetry, there exist 1 2

M n n= å possible ordered compounds for a unit cell containing up to M atoms. These ordered compounds can easily be enumerated as described in [47], but it is clear that the total number of compounds increases fast with M, among which only a selected few represent possible ground states of the system under investigation. It is thus desirable to sample only the compounds that are candidate ground states rather than enumerating all. A way to perform this is based on the configuration polyhedron [START_REF] Ducastelle | Order and phase stability in alloys[END_REF][START_REF] Inden | Phase Transformations in Materials[END_REF]. In short, given a lattice and a (set of) maximal clusters upon it, the configuration polyhedron is a convex region in the correlation functions (CF) space where the probability of any specified cluster configuration is assured to be non-negative (c.f. next section for further details). Since the configurational energy on a rigid lattice can be written as a linear cluster expansion in CF space [START_REF] Ducastelle | Order and phase stability in alloys[END_REF][START_REF] Inden | Phase Transformations in Materials[END_REF]48], the vertices of such a polyhedron are candidates to system's ground states, though not all of the associated ordered compounds are feasible, i.e., physically possible for the given lattice. In what follows we understand this concept in the latter more restricted sense of feasible vertices, denoting also the m th CF for a cluster comprising n sites as ξ n,m .

Finel [49] studied the bcc lattice by using two maximal clusters, the standard octahedron and the cubic unit cell, so distances up to 5th nearest neighbour (5nn) were considered, except 4nn. In that work a polyhedron of 28 vertices (with 97 faces in the 5-D space spanned by the CFs ξ 1 , ξ 2,1 , ξ 2,2 , ξ 2,3 and ξ 2,5 ) was constructed and the vertices were identified with the associated ordered compounds. We have enlarged this polyhedron by selecting ordered compounds from previous ATAT [50,51] runs, used to construct the Fe-Cu phase diagram [20]. For each of these compounds the respective CFs were determined in 6-D space spanned by the point correlation function ξ 1 and five doublets up to 5nn:

ξ 2,1 ,ξ 2,2 ,ξ 2,3 ,ξ 2,4
and ξ 2,5 . Then these CFs were checked for convexity against the 28 original vertices given by Finel, with the result that the number of vertices of the polyhedron was raised to 99 (with 1750 faces in 6-D space). The ordered compounds corresponding to these vertices are referred to as BCC-99 and serve to sample possible ground states.

Similarly, Kanamori and Kakehashi [52] studied the fcc lattice using a different method from Finel's, and reported a set of 87 ordered compounds, referred to as FCC-87, relevant to interactions up to 4nn (although they do not exhaust all the possibilities according to Finel [49]). It was checked that they can be taken as vertices of a polyhedron possessing 691 faces and 37 (and the complementary ones) of reference [52]).

Given the compounds corresponding to the BCC-99 and FCC-87, we impose by constraints that the formation energy of all of them for a trial potential should lay above the convex hull of formation energies of the experimentally observed intermetallic compounds.

This procedure leads thus to 186 constraints during the optimisation of the potential parameters.

Phase boundaries at finite temperature

The main problem of fitting a potential to the experimental phase diagram at finite temperature is precisely the evaluation of the phase diagram corresponding to the trial potential. In the literature, many Monte Carlo and molecular dynamics based algorithms are available to compute the solid state phase diagram for a given potential [51,[53][START_REF] Frenkel | Understanding Molecular Simulation -From Algorithms to Applications[END_REF][START_REF] Arregui | [END_REF][56], but their computation time is prohibitive for their use during potential fitting. An alternative, computationally feasible procedure to estimate the solid state phase diagram is to use CVM to obtain the free energy together with the common tangent method [START_REF] Hoff | \textit{Thermodynamics in Materials Science}[END_REF] to track the phase boundaries.

According to general statistical mechanics principles, free energies can be expressed as variational problems in a configuration (site occupation) space [START_REF] Ducastelle | Order and phase stability in alloys[END_REF][START_REF] Inden | Phase Transformations in Materials[END_REF]. Particularly, for rigid periodic lattices the Helmholtz free energy per site, f(T,c), may be written as, min ( ) ln ( )
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where the first term represents the internal energy and the second one embodies the used, thus carrying the specific interaction model. Regarding the entropy term, many calculations of phase diagrams using the CVM have been performed with relatively small α M clusters, which nevertheless were able to obtain rather non trivial phase diagram structures.

These are mainly the tetrahedron-octahedron approximation for the fcc lattices, and the tetrahedron approximation for the bcc ones, which are used here in their expressions for disordered alloys [START_REF] Ducastelle | Order and phase stability in alloys[END_REF][START_REF] Inden | Phase Transformations in Materials[END_REF]. The minimization in Equation ( 6) is constrained to a convex region in CF space where 0 1 p a £ £ , which is the configuration polyhedron as presented above.

Once the free energy is obtained, the experimental solubility limits x α and x β for the phases α and β, respectively, at a given temperature T, are fitted through the common tangent equations,
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Here f α is the free energy per atom at temperature T for concentration x α , and f' α represents the derivative with respect to x taken in the point x α (and similar for the β-phase). This procedure can be applied to fit as many experimental phase boundary points as wished.

The constrained minimization in Equation ( 6) with respect to ξ is complicated because, (i) each face of the configuration polyhedron introduces an inequality constraint; (ii) the cluster expansion for the energy may require more ξ α than required for the CVM entropy (leading to instabilities in the resulting free energy). Although approximate solutions exist for the latter [START_REF] Sluiter | [END_REF], for large configuration polyhedrons, as is the case here, the minimization is unmanageable.

A technique that largely overcomes these problems reverts to the so called barycentric coordinates, namely, each point within the CF polyhedron can be expressed as,

i i i l = å ξ V , (8) 
where
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are the coordinates (vector in CF space) for each vertex i of the configuration polyhedron. The barycentric coordinates, λ i (99 for the bcc lattice and 87 for the fcc one) comply to the relations, 
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)
Such a representation is generally non unique, but this is inconsequential for our purposes.

Notice that i V can be determined up to the number of dimensions desired from the associated intermetallic compound.

The barycentric coordinates are a very convenient tool to handle CFs, in fact, the latter are strictly needed only to express the entropy within the CVM approach, not the energy.

First, it is important to realize that the positive combination of Equation ( 8) represents a positive combination of feasible probability distribution functions, and thus also a new feasible probability distribution function. Second, because the vertices themselves can include as many CFs as needed to cluster expand the energy, the latter is given by the same linear combination of vertex energies for any point belonging to the polyhedron. Therefore, the energy can also be expanded as, ( )
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Here E i is the energy of compound corresponding to vertex i V , that was optimised using the trial potential. Also, constraints on the barycentric coordinates, Equation (9), are easier to implement than on CFs, and their meaning is more transparent due to the direct relationship to individual compounds. In summary, the use of barycentric coordinates makes the minimization more stable and the resulting free energy more reliable.

Applications

Iron-nickel model alloy

In this section we take our Fe-Ni potential from [21] to illustrate the importance of applying the first of the above described fitting techniques. This fact is highlighted by comparing with two potentials found in the literature. The first one was developed by Meyer and Entel [59] in the EAM formalism for the purpose of studying the austenite-martensite transformation by varying Ni content and employing MD techniques. The second potential, by Mishin et al. [11], was developed mainly to study the phase stability of ordered Fe In Figure 1 the lowest energies of the BCC-99 and FCC-87 compounds, computed with the three different potentials are compared. The figure clearly shows the importance of the constraints on the possible intermetallic compounds introduced in the fitting procedure. For the MISH potential, as already reported [11], the formation energy of the compounds C11 f at 33.33 and 66.67 at.% Ni lay on and just above the hull, respectively, while the compound at 88.75 at.% Ni ( Ca 7 Ge type ) lays below the hull and thus represents an (unwanted) ground state of the system. Note also that the examination of the BCC-99 and FCC-87 structures reveals the existence of many other ordered compounds, especially between 50 and 100 at.% Ni, with a formation energy only a few meV above the convex hull of truly ground states.

These are metastable states that could become of importance at finite temperature. Turning to the MEY potential, it appears that the experimentally observed intermetallics L1 0 FeNi and L1 2 FeNi 3 are not even ground states of the system. As shown in the figure, the phase diagram consists in this case of over ten compounds, none of which is L1 0 FeNi or L1 2 FeNi 3 . In summary, we see that the here fitted potential is the only one capable of reproducing the experimental phase diagram at 0 K, being at the same time derived within the relatively simple EAM formalism, thanks to the application of the fitting procedure described in Section 3.1.

Iron-copper model alloy

Our Fe-Cu potential published in [20] provides an example of application of the second of the above-described fitting techniques. The thermodynamic reliability of the potential is here contrasted to experimental data and to similar results obtained with two potentials from the literature. The first of these was developed by Ackland et al. [60] using the FS formalism to study point defect properties in low Cu ferritic RPV steels. The second one was developed by Ludwig et al. [61] in the EAM formalism to study the interface between Cu precipitates and the Fe matrix, as well as their effect on the dislocation core structure. In what follows they are referred to as ACK and LUD, respectively.

Figure 2 shows the Cu solubility in Fe obtained from all three potentials. The curves for both ACK and LUD are taken from [62] and [63], respectively. The phase boundaries obtained in these works are based on a full thermodynamic integration accounting for all components in the free energy. In the case of our potential, however, the vibrational entropy was verified to be negligible and was consequently not included in the phase diagram computation. The experimental data from Salje and Feller-Kniepmeier [64] and from Perez et al. [65] are also included in the figure. The former were obtained from the diffusion profile measurements of a thin Cu deposit onto an Fe substrate. The latter were obtained from thermoelectric power and small angle X-ray scattering measurements in thermally aged Fe-Cu alloys, where Cu precipitation was thereby induced. In fact, the latter points correspond to equation ( 10) from Ref. [65] evaluated at the measuring temperatures. Clearly, our potential follows the experimental results very well, perhaps with a little over/under-estimated solubilities for temperatures below/above 1000 K. The other two potentials, on the other hand, give too high solubility, particularly ACK. In summary, we see that the here fitted potential obtains a better fit to the experimental phase boundary at all temperatures, than if only the mixing energies at 0 K were used as data to be fitted.

Copper-nickel model alloy

Our Cu-Ni potential, on which further details can be found in [START_REF] Bonny | Ternary Fe-Cu-Ni many-body potential to model reactor pressure vessel steels: First validation by simulated thermal annealing[END_REF], provides an example of potential fitted to the random solution mixing enthalpy only. The phase diagram predicted by our potential is compared to Calphad calculated data [START_REF] Saunders | CALPHAD (Calculation of Phase Diagrams): A Comprehansive Guide[END_REF] and to the phase diagram from two potentials found in the literature. The first of these potentials was developed by Asta et al. [23] in the EAM formalism. The authors studied the structural and thermodynamic properties of solid solutions using a computational approach which combines the EAM description of alloy energetics with a second-order-expansion treatment of compositional and displacive disorder. The second potential is the work of Lee and Shim [25] and uses the modified embedded atom method (MEAM). It was developed to comply with the basic thermodynamic properties of Cu-Ni. The latter potential was quoted to be a part of a long term project to construct a ternary Fe-Cu-Ni potential to investigate the primary damage defect creation in RPV steels, although to date the ternary Fe-Cu-Ni potentials remains unpublished to our knowledge. In what follows, these two potentials are referred to as AST and LEE, respectively.

In Figure 3 the miscibility gap calculated for all three potentials is compared with the most recent Calphad parameterizations [42,43]. The miscibility gap predicted by both the AST and LEE potential were taken from [23] and [25], respectively, which claim to account 12 for all components in the free energy. In the case of our potential, the vibrational entropy was verified to be negligible and was consequently not included in the phase diagram computation. Prior to comparing the miscibility gaps obtained from the potentials with each other and with the Calphad computed phase diagrams, a comment regarding the uncertainties in the latter is necessary. Experimentally, the existence of a Cu-Ni miscibility gap has been confirmed. However, disagreement exists regarding its composition and temperature range, so the corresponding Calphad phase diagram is mostly based on (speculative) thermodynamic calculations (see [42] and references therein). Therefore, the Calphad curves should be taken here as indicative curves, rather than experimentally verified phase boundaries. Taking this comment into account, the agreement of the miscibility gaps computed from all potentials is in reasonable agreement with the Calphad parameterizations. The asymmetry in the miscibility gap, however, is only reproduced by the AST potential, while the miscibility gaps resulting from our potential and LEE exhibit the opposite and no symmetry, respectively.

Thus, in this case, where no special care was taken to reproduce specific structure stability or phase diagram boundary, our potential performs similarly to existing ones. It should be noted, that the relative weight of the electron densities ρ Cu /ρ Ni in our potential was already fixed during the fitting of the Fe-Ni and Fe-Cu potentials. Allowing for this weight to change and applying our second fitting technique, the correct asymmetry and a closer fit to one of the Calphad calculated miscibility gaps could be obtained. This would be, however, at the cost of compatibility with the Fe-Ni and Fe-Cu potentials. Thus, for reasons of compatibility and in view of the experimental uncertainties, we opted to fix ρ Cu /ρ Ni as determined by the Fe-Ni and Fe-Cu binaries so that all three binaries together form a ternary EAM potential.

Discussion

Both methods presented above are generally applicable to a wide range of systems. In some cases, however, the peculiarities of the system make our techniques unsuitable. An example of this is the Fe-Cr system, that may exhibit intermetallic compounds, and certainly exhibits short-range order in the Fe-rich limit, i.e. <10 at.% Cr [START_REF] Klaver | [END_REF][68][69]. The BCC-99 (and also FCC-87) compounds presented above do not exhaust unit cells larger than about nine atoms.

In principle, this problem can be solved by increasing the unit cell size to describe a concentration range below 10 at.% Cr. In practice, however, such a probability polyhedron (in 6-D) will consist of over 10,000 vertices, which are all constraints to be accounted for in the expressions of the CVM entropy. Clearly, this greater complexity and prohibitive high number of constraints limits the method's applicability. In particular, systems exhibiting intermetallic compounds in their dilute limits may not be handled.

For all three example systems, information regarding the random mixing enthalpy was included in the fit. Currently, this is performed by a mean field expansion of the mixing enthalpy as a function of composition [70] that neglects relaxations. Such a strategy proved sufficiently accurate, but for systems where relaxation effects are an issue, SQSs can be used to mimick the randomly disordered alloys. These structures in turn can be optimized in the same way as the BCC-99 and FCC-87 compounds. Also, for none of the current systems vibrational entropy was considered. If necessary, however, the method is easily extendable to fit vibrational entropy. Once the relaxed structure of an SQS, BCC-99 or FCC-87 compound is obtained, the Hessian matrix is calculated, from where the vibrational entropy in the harmonic approximation [71] can be obtained. With these remarks, we cover the most important aspects to included when fitting many-body potentials consistent with thermodynamics.

To finalize, it is worth emphasizing that the application of both our proposed techniques (and possible extensions) require optimizers able to work with function values only, of unkown or even ill defined derivatives. Firstly, SQSs and/or the compounds associated with the BCC-99 or FCC-87 polyhedrons are optimized for each trial parameter set {a k }, then the latter is varied to optimize the OF, thus introducing a nested minimization. When applying the second method, still an additional constrained minimization with respect to correlation functions is necessary to obtain the free energy. Among the optimizers available in the literature, we found the (freely available) deterministic one by Powell [72] (COBYLA) to be a good compromise between computation time and quality of results.

Summary and conclusions

We have presented and described in some detail two advanced methods to fit the thermodynamic properties of alloys when developing classical interatomic potentials. The first method involves the zero Kelvin phase diagram and uses the configuration polyhedron. It is especially suitable to fit potentials that reproduce experimentally observed intermetallic 
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