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The widely used potential of Finnis and Sinclair (FSP) [1] that we are celebrating in this special issue is based on a remarkable set of properties of the electronic density of states. For orthogonal tight binding (TB) models of cohesion, the total energy is traditionally partitioned into an electronic contribution that can be computed as an integral over the density of states (DOS) up to the Fermi energy, and a repulsive pair potential [2]. The electronic contribution is most often evaluated by diagonalizing the TB Hamiltonian, and then summing over the eigenvalues below the Fermi energy. However, the process of diagonalizaion is numerically intensive, and scales poorly with the number of atoms. The approach underpinning the FSP is to treat the DOS as a distribution function that can be characterised by, and reconstructed from, its moments. The FSP considers only the second moment (width of the band) which defines the characteristic energy for bonding. To evaluate the second moment from an underlying TB Hamiltonian Ĥ we use a rather powerful result, namely that the n th moment is given by the n th power of the Hamiltonian matrix ( Ĥn ) [3], something that is straightforward to compute. Thus there is a direct route from the local atomic structure to the local electronic structure, and hence cohesion. The FSP computes Ĥ2 from which it is possible to estimate the band energy once an anzatz for the form of the density of states has been chosen.

Within a nearest neighbour approximation to TB, often the second moment is not sufficient to distinguish between two competing structures. Ducastelle and Cyrot-Lackman [4,5] argued that to distinguish between FCC and HCP you need to go at least as far as the fourth moment, though in practice higher moments may be needed. This is a direct consequence of the difference in the stacking sequences between the two structures. Once more than just a few moments become necessary, a systematic procedure for reconstructing the DOS becomes essential. al [6] demonstrated how to use the Lanczos algorithm to reconstruct the DOS from the Green's function: this is known as the Recursion Method, and has inspired a number of subsequent approaches. In particular it led to a proposal by Pettifor [7] for a systematic way to construct potentials by computing the bond order. This is still an active project, having evolved through a number of stages [7][8][9][10]. A different approach to building higher moment potentials has been taken by Carlsson[11] and Dudarev [12], who employed a matrix version of recursion.

Formalism

As discussed above, the fundamental idea behind all moments based total energy electronic structure methods is that an approximate density of states (DOS) generated from the knowledge of a finite number of its moments can give a good estimate of the total energy. The Global Density of States (GDOS) method [13] constructs the DOS in such a way that it is straightforward to compute atomic forces that are exact derivatives of the energy (see Ozaki et al [14] for another method that can give consistent atomic forces). This is achieved by considering the moments µ n of the DOS of the entire system, as opposed to the more usual DOS projected onto indivdual atomic orbitals [7,15]. These can be expressed as the trace of powers of the Hamiltonian Ĥ

µ n = 1 N orb Tr Ĥn (1)
where N orb is the total number of atomic orbitals in the system. These moments are easy to differentiate because matrices (and operators) permute under a trace. Consider the derivative with respect to an atomic coordinate λ. It will satisfy

∂µ n ∂λ = n N orb Tr Ĥn-1 ∂ Ĥ ∂λ (2) 
To develop the equations for GDOS we begin by considering the DOS for an entire system. If the eigenvalues of the Hamiltonian are i , with corresponding vectors |i , then the DOS can be defined by n(E) = i δ(Ei )/N orb . This can be rewritten as n(E) = i i| δ(E -Ĥ) |i /N orb which is equivalent to n(E) = Tr δ(E -Ĥ) /N orb . The n th moment is defined by µ n = ∆ E n n(E) dE, which immediately yields Eq. 1.

The total energy (within orthogonal, non-self-consistent tight binding) is then given by [13,15] 

U = ∆ EF En(E) dE + 1 2 i =j φ ij + i u i (3) 
where E F is the Fermi energy, φ ij is a pair potential acting between atoms i and j and includes electrostatic and Pauli repulsion, and u i is a single atom term that makes no contribution to the atomic forces or binding energy and is usually ignored (and will be dropped from now on in this work). The total number of electrons N fixes the Fermi energy through Thus the total force at fixed number of electrons must take account of the variation of the Fermi energy with atomic displacement, which leads to the following force expression

N = ∆ EF n(E) dE (4) 
F λ = - ∂U ∂λ N = -∆ EF (E -E F ) ∂n(E) ∂λ dE - 1 2 i =j ∂φ ij ∂λ (5) 
If we construct an approximate DOS from the first M moments, then (using Eq.

2) we can express its derivative as

∂n(E) ∂λ = M m=1 ∂n(E) ∂µ m m N orb Tr Ĥm-1 ∂ Ĥ ∂λ (6) 
Thus to compute the force we need to determine ∂n(E)/∂µ m . The result will depend on how the DOS is reconstructed from the moments. Here we use the recursion method as it provides rapid convergence of integrated quantities with increasing numbers of moments, and is a stable algorithm that can be used even with large numbers of moments [6]. In the previous version of GDOS [13,15,16], the former property was exploited, but not the latter as moments were computed first from which the recursion coefficients were generated. To achieve stability the Lanczos algorithm must be used to generate the recursion coefficients and vectors directly, as is done here. This allows much larger numbers of moments to be considered, and hence much tighter convergence to be achieved. The Lanczos algorithm generates a tridiagonal Hamiltonian, the elements of which allow the easy construction of a Green's function using a continued fraction. The DOS is then obtained from the Green's function [6,15]. The normal Lanczos algorithm proceeds as follows [6]. Let the diagonal and off-diagonal elements of the tridiagonal Hamiltonian be a n (n ∈ {0, 1, . . . , N R -1}) and b n (n ∈ {1, 2, . . . , N R }) where N R is the number of recursion levels considered. The states that tridiagonalise the Hamiltonian are |w n where

a n = w n | Ĥ |w n , b n = w n-1 | Ĥ |w n , and 0 = w m | Ĥ |w n for |n -m| > 1.
We also have w m | w n = δ nm . From this it is straightforward to generate the recurrence relation Ĥ |w n = a n |w n + b n |w n-1 + b n+1 |w n+1 from which we can compute all the coefficients and vectors starting from a given |w 0 [6]. We note that the coefficients a n and b n can be related directly to the moments [17,18]. The DOS projected onto state |w 0 is then given by n 00 (E) = -2ImG 00 (E + )/π where E + indicates a positive infinitessimal imaginary part has been added to E, and

G 00 (Z) = w 0 | Z -Ĥ -1 |w 0 . Now G 00 (Z) can be computed from the following continued fraction[6] G 00 (Z) = 1 Z -a 0 - b 2 1 Z -a 1 - b 2 2 Z -a 2 -. . . (7) 
The convergence of the Green's function (and hence the energy) can be greatly improved by the addition of a square root terminator. This corresponds to including an infinite number of extra constant recursion coefficients: a n = a for n ≥ N R and b n = b for n > N R . The continued fraction containing these terms can be summed 

(Z) = 1 Z -a - b 2 Z -a - b 2 Z -a -. . . = 1 b   Z -a 2b -i 1 - Z -a 2b 2   (8) 
The coefficients a and b are chosen such that a lies in the middle of the band and 4b equals the band width. While the square root terminator is appropriate for metals, it is not optimal for semiconductors and insulators as it puts weight in the region where the band gap resides. Further improvement in convergence can be achieved for gapped systems through the use of terminators that include gaps. These are discussed by Turchi et al [19], who show that the more general terminator can be expressed by an elliptic function in the single-gap case or an Abelian function in the multi-gap case.

The above procedure gives the DOS projected onto one orbital (|w 0 ) in terms of moments computed with reference to that orbital. But we require the total DOS computed from the trace of the moments. To achieve this in a straightforward manner using recursion we consider a vector of states. Let us represent this vector and the operation of Ĥ on it by

|W n } =            w (1) n w (2) n w (3) n . . . w (Norb) n            Ĥ |W n } =            Ĥ w (1) n Ĥ w (2) n Ĥ w (3) n . . . Ĥ w (Norb) n            (9)
We define the inner product of a pair of vectors |W n } and |W m } by

{W n | W m } = Norb α=1 w (α) n | w (α) m (10) 
If we now put w

(α) 0 = |α / √ N orb where |α is an atomic orbital, then it follows that µ n = {W 0 | Ĥn |W 0 } = Tr Ĥn /N orb ,
which is what we require. Further, we can apply the Lanczos algorithm in a straightforward manner [8,15], giving

Ĥ |W n } = a n |W n } + b n |W n-1 } + b n+1 |W n+1 } (11) 
Inserting the recursion coefficients into Eq. 7 then allows us to obtain the density of states for the whole system

n(E) = - 2N orb π ImG 00 (E + ) ( 12 
)
from which we can obtain the energy by using Eq. 3. To compute the forces we need the derivatives of the density of states with respect to atomic displacements (Eq. 5). From Eq. 12 we get

∂n(E) ∂λ = - 2N orb π Im ∂G 00 (E + ) ∂λ = - 2N orb π Im m ∂G 00 (E + ) ∂a m ∂a m ∂λ + ∂G 00 (E + ) ∂b m ∂b m ∂λ (13) 
From the Dyson equation it is straightforward to show [15,[START_REF] Turchi | The Recursion Method and Its Applications[END_REF] ∂G 00 (Z)

∂a m = G 0m (Z)G m0 (Z) ∂G 00 (Z) ∂b m = 2G 0m (Z)G m-1,0 (Z) (14) 
and the matrix elements of the Green's function G 0n can be found by a recurrence relation [15]. Combining Eqs. 5, 13 and 14 we get the GDOS expression for the forces

F λ = -2 n χ nn ∂a n ∂λ + 2χ nn-1 ∂b n ∂λ - 1 2 i =j ∂φ ij ∂λ (15) 
where

χ nm = - N orb π Im ∆ EF (E -E F ) G 0n (E + )G m0 (E + ) dE (16) 
The expression for ∂a n /∂λ and ∂b n /∂λ are complex and so are presented in the appendix. Once these are determined, the DOS contribution to the forces can be expressed as

F λ,DOS = -2 αα ρ αα ∂H αα ∂λ (17) 
which provides a definition of the density matrix ρ αα . It satisfies the sum rule α ρ αα = NR-1 n=0 χ nn because traces are independent of representation. Twice the trace equals the number of electrons in the absence of the square root terminator. However, the terminator introduces a small discrepancy as the traces are no longer complete.

For this work the integrals have been performed using an adaptive trapezium rule

(∆ b a f (x)dx ≈ (h/2)(f (a) + f (b)) + h N -1 n=1 f (a + nh)
, with b = a + N h and N varied to give the required accuracy) to ensure a given level of convergence (7 figures in this case). Rather than just running the integral along the real axis, a semicircular contour in the complex plane is used that runs between the bottom of the band up to the Fermi energy. This contour introduces an imaginary part (except at the two end points) to the energy which broadens sharp features in the density of states. Without this broadening it is possible that some features might be missed if the mesh is too course, or that a huge number of points would be needed to achieve convergence. The number of integrals is independent of the number of atoms, but the precision required could increase with system size if the total energy needs to be converged to some fixed absolute amount. 

Results

In the original paper describing the moments formulation of GDOS [13], the convergence of the energy, DOS and forces was demonstrated for small numbers of moments (up to 11, which is equivalent to between 5 and 6 recursion levels). Also shown was the ability to relax the (100) dimerized surface of silicon. With the present reformulation we can go to a much larger numbers of moments as is now demonstrated. In all the calculations presented here a computational cell with 64 sites on a diamond lattice is used, with the Hamiltonian being given by the Si tight binding parameters of Goodwin, Skinner and Pettifor [START_REF] Goodwin | [END_REF]. Cubic tails were added to the ends of the radial functions to ensure they go smoothly to zero between first and second neighbours. The reference calculations are performed in k-space using just Γ point sampling of the Brillouin zone. For the GDOS calculations the same Hamiltonian is used as for the k-space calculation: that is, a Bloch transformation has been applied to give Hαα = R 0α| Ĥ |Rα where R runs over the periodic images of the computational cell. This Hamiltonian is unusual for real space methods, but is used because it allows us to make a direct comparison with the k-space results.

In Fig. 1 is presented the error in the cohesive energy for bulk Si as a function of the number of recursion levels. The degree of convergence is governed by the ratio of the width of the smallest important feature in the density states to the bandwidth. In the case of bulk Si the relevant small quantity is the bandgap (about 1eV), and the bandwidth is about 20eV. We see that good convergence is achieved by 20 recursion levels, and the calculation remains stable to at least 40 levels.

[FIGURE 1 

GOES ABOUT HERE]

The bulk is a rather undemanding test for GDOS. Point defects provide a much more significant challenge as they introduce very narrow states into the bandgap that must be reproduced accurately if the defect formation energy and atomic displacements are to be computed precisely. Therefore we now investigate a single vacancy in our 64 site cell (63 atoms). First we consider the unrelaxed vacancy. Surrounding it are four weakly interacting dangling bonds that form four sharp states (eight, if you include spin) in the gap that contain four electrons. Thus the electron chemical potential lies within these states, making them important to the energy of the defect. The gap states form two groups, one having one state and the other having three degenerate states. The splitting between the groups is 0.55eV, and this probably corresponds to the smallest important feature in the problem. As the bandwidth is about 20eV, we would expect to achieve convergence at about 40 recursion levels. From Fig. 2 we see that this is indeed the case.

[FIGURE 2 GOES ABOUT HERE] When the Si vacancy relaxes, the four atoms around it pair up to form two dimers. The elastic strain this introduces raises the energy, but this is more than compensated by the lowering of the energy made possible by the breaking of symmetry which allows electrons to occupy lower energy states (an example of the Jahn-Teller effect). However, this balance is quite delicate, and a good resolution of the DOS in the gap region is essential to get the dimerization. The splitting between the occupied and unoccupied gap states is about 0.5eV, so we would expect good convergence at 40 recursion levels. From Fig. 3 we see that the energy is very close to convergence at 35 recursion levels. The calculations were not taken to a higher number of recursion levels because at 40 the forces became inaccurate. Explicit orthogonalisation of the recursion vectors improves stability in scalar recusion [22]. This was tried here but was not found to help, so a new procedure to control the propagation of errors resulting from finite precision arithmetic is required. This is a new research topic and not pursued further here.

[FIGURE 3 GOES ABOUT HERE] In Fig. 4 is shown the bond length of the dimers as the number of recursion levels is increased. As indicated above, we do not expect dimerization to be stable until the DOS can be resolved adequately. And indeed this is what we find. Dimerization is first found at 13 recursion levels, corresponding to the sharp drop in the bond length in Fig. 4. However, it cannot be said to be established until 30 recursion levels have been included. Comparing Fig 3. and Fig 4., it is interesting to note that there is very little change in energy associated with the forming of dimers, indicating what a delicate process this is.

[FIGURE 4 GOES ABOUT HERE]

Conclusion

Above has been presented a reworking of a moment-based method (GDOS) for computing total energies and atomic forces from an orthogonal tight binding Hamiltonian. The primary strengths of GDOS are that the atomic forces are guaranteed to be exact derivatives of the energy, and the number of integrals is independent of the number of atoms. This produces smoother energy minimization and energy conserving molecular dynamics [13]. The revised method now uses recursion coefficients and vectors directly, avoiding the need to work with explicit moments. This allows much larger numbers of moments (recursion levels) to be used, leading to higher levels of convergence. This has been demonstrated for a hard problem for this method: the vacancy in Si. If sufficient numbers of moments are included, good convergence of both energies and forces is indeed found. As has been shown by Bowler et al, there are much better methods for efficient modelling of defects in semiconductors [16]. GDOS is really more appropriate for systems with narrow bands with smooth features. Transition metals represented by their d-bands have always been the natural application of moments methods, and indeed we are now considering a systematic study of how best to model 

{W n | W m } = αα Λ αα w (α) n | w (α ) m (A2)
We then consider the derivatives of the recusion coefficients with respect to the metric. In a previous paper [15] it was shown that

∂a n ∂Λ αα = b n+1 α| P n+1 ( Ĥ)P n ( Ĥ) α -b n α| P n ( Ĥ)P n-1 ( Ĥ) α ∂b n ∂Λ αα = 1 2 b n α| P n ( Ĥ)P n ( Ĥ) α -α| P n-1 ( Ĥ)P n-1 ( Ĥ) α (A3)
where the n th order polynomial P n is defined by |W n } = P n ( Ĥ) |W 0 }, and can be expressed as

P n ( Ĥ) = r C (n) r Ĥr (A4)
where C

(n) r = 0 when either r > n or r < 0. Substituting Eq. A4 into Eq. A3 gives

∂a n ∂Λ αα = rm b n+1 C (n+1) r C (n) m-r -b n C (n) r C (n-1) m-r α| Ĥm α ∂b n ∂Λ αα = 1 2 b n rm C (n) r C (n) m-r -C (n-1) r C (n-1) m-r α| Ĥm α (A5)
If we now view the recursion coefficients as functions of the moments, we can write

∂a n ∂Λ αα = n+1 m=1 ∂a n ∂µ m ∂µ m ∂Λ αα = n+1 m=1 ∂a n ∂µ m α| Ĥm α ∂b n ∂Λ αα = n+1 m=1 ∂b n ∂µ m ∂µ m ∂Λ αα = n+1 m=1 ∂b n ∂µ m α| Ĥm α (A6)
where we have used ∂µ m /∂Λ αα = α| Ĥm |α . Comparing Eq. A6 with Eq. A5 we get If we substitute Eqs. A7 and A4 into Eq. A1 we get our final result

∂a n ∂µ m = r b n+1 C (n+1) r C (n) m-r -b n C (n) r C (n-1) m-r ∂b n ∂µ m = 1 2 b n r C (n) r C (n) m-r -C (n-1) r C (n-1) m-r ( 
∂a n ∂λ = b n+1 W n+1 ∂ Ĥ ∂λ |W n } + {W n+1 | ∂ Ĥ ∂λ W n -b n W n ∂ Ĥ ∂λ |W n-1 } + {W n | ∂ Ĥ ∂λ W n-1 ∂b n ∂λ = b n W n ∂ Ĥ ∂λ |W n } -W n-1 ∂ Ĥ ∂λ |W n-1 } (A8)
where |W n } = P n ( Ĥ) |W 0 } and P n (x) = dP n (x)/dx. The derivative P n is a polynomial of order n -1, and so can be expanded as The error in the cohesive energy for bulk silicon (relative to a k-space calculation) as a function of the number of recursion levels. All calculations were performed using a 64 atom computational cell.

P n = n-1 r=0 d (n) r P r . Thus we can write the corresponding state |W n } as |W n } = n-1 r=0 d (n) r |W r }. The expansion coefficients d (n) r can be computed from the recurrence relation b n+1 d (n+1) r = δ n,r -a n d (n) r -b n d (n-1) r + a r d (n) r + b r+1 d (n) r+1 + b r d (n) r-1 ( 

Figure 2:

The error in the unrelaxed vacancy formation energy (relative to a kspace calculation) as a function of the number of recursion levels. All calculations were performed using a 64 site (63 atom) computational cell. 

  A9) with the condition d (n) r = 0 when r ≥ n or r < 0.
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 1 Figure 1:The error in the cohesive energy for bulk silicon (relative to a k-space calculation) as a function of the number of recursion levels. All calculations were performed using a 64 atom computational cell.

Figure 3 :

 3 Figure3: The error in the relaxed vacancy formation energy (relative to a k-space calculation) as a function of the number of recursion levels. All calculations were performed using a 64 site (63 atom) computational cell.

Figure 4 :

 4 Figure4: The error in the dimer bond length of the atoms neighbouring the vacancy (relative to a k-space calculation) as a function of the number of recursion levels. All calculations were performed using a 64 site (63 atom) computational cell.
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Appendix A. Derivatives of the recursion coefficients

The recursion coefficients are functions of the moments, so we have

The derivatives of the recursion coefficients with respect to moments are determined by an indirect argument (but only because a more direct one is not apparent to the author!). We generalize our definition of the inner product between two vectors to