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AN INTERACTING PARTICLES MODEL

AND

A PIERI-TYPE FORMULA FOR THE ORTHOGONAL GROUP

MANON DEFOSSEUX

Abstract. We introduce a new interacting particles model with blocking and
pushing interactions. Particles evolve on the positive line jumping on their
own volition rightwards or leftwards according to geometric jumps with pa-
rameter q ∈]0, 1[. We show that the model involves a Pieri-type formula for
the orthogonal group. We prove that the two extreme cases - q = 0 and q = 1 -
lead respectively to a random tiling model studied in [1] and a random matrix
model considered in [4].

1. introduction

In [1] A. Borodin and J. Kuan consider a random tiling model with a wall
which is related to the Plancherel measure for the orthogonal group and thus to
representation theory of this group. Similar connection holds for the interacting
particles model and the random matrix model considered in [4]. The aim of this
paper is to establish a direct link between the random tiling model on one side and
the interacting particles model or the random matrix model on the other side. For
this we consider an interacting particle model depending on a parameter and show
that these models correspond to different parameter values. The paper is organized
as follows. Definition of the set of Gelfand-Tsetlin patterns for the orthogonal group
is recalled in section 2. Section 3 is devoted to the description of the particles model.
We recall in section 4 the description of an interacting particle model equivalent
to the random tiling model studied in [1]. Models considered in that paper involve
Markov kernels which can be obtained with the help of a Pieri-type formula for the
orthogonal group. These Markov kernels are constructed in section 5 after recalling
some elements of representation theory. We describe the matrix model related to
our particles model in section 6. Results are stated in section 7 and proved in
section 8.

Acknowlegments: The author would like to thank Alexei Borodin for its sugges-
tions and helpful explanations.

2. Gelfand-Tsetlin patterns

Let n be a positive integer. For x, y ∈ R
n such that xn ≤ · · · ≤ x1 and yn ≤

· · · ≤ y1, we write x � y if x and y are interlaced, i.e.

xn ≤ yn ≤ xn−1 ≤ · · · ≤ x1 ≤ y1.

When x ∈ R
n and y ∈ R

n+1 we add the relation yn+1 ≤ xn. We denote |x| the
vector whose components are the absolute values of those of x.

Definition 2.1. Let k be a positive integer.
1
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(1) We denote by GTk the set of Gelfand-Tsetlin patterns defined by

GTk = {(x1, · · · , xk) : xi ∈ N
j−1 × Z when i = 2j − 1,

xi ∈ N
j when i = 2j, |xi−1| � |xi|, 1 ≤ i ≤ k}.

(2) If x = (x1, . . . , xk) is a Gelfand-Tsetlin pattern, xi is called the ith line of
x for i ∈ {1, . . . , k}.

(3) For λ ∈ Z
[ k+1

2
] the subset of Gelfand-Tsetlin patterns having a kth line equal

to λ is denoted by GTk(λ) and its cardinal is denoted by sk(λ).

Usually, a Gelfand Tsetlin pattern is represented by a triangular array as indi-
cated at figure 1 for k = 2r.

−x2r
1 · · · −x2r

r x2r
r · · · x2r

1

−x2r−1
1 · · · −x2r−1

r−1 x2r−1
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1
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−x4

1 −x4
2 x4

2 x4
1

−x3
1 x3

2 x3
1

−x2
1 x2

1

x1
1

Figure 1. A Gelfand–Tsetlin pattern of GT2r

3. An interacting particles model with exponential jumps

Let k be a positive integer. In this section we construct a process (X(t))t≥0
evolving on the set GTk of Gelfand-Tsetlin patterns with non negative valued com-
ponents. This process can be viewed as an interacting particles model. For this, we
associate to a Gelfand-Tsetlin pattern x = (x1, . . . , xk), a configuration of particles
on the integer lattice Z

2 putting one particle labeled by (i, j) at point (k− i, xi
j) of

Z
2 for i ∈ {1, . . . , k}, j ∈ {1, . . . , [ i+1

2 ]}. Several particles can be located at the same
point. In the sequel we identify each particles with its corresponding component.
Let q ∈]0, 1[. Consider two independent families

(ξij(n+
1

2
))i=1,...,k,j=1,...,[ i+1

2
];n≥0, and (ξij(n))i=1,...k,j=1,...,[ i+1

2
];n≥1,

of identically distributed independent random variables such that

P(ξ11(
1

2
) = x) = P(ξ11(1) = x) = qx(1− q), x ∈ N,

and the markov Kernel R on N defined by

R(x, y) =







1−q
1+q (q

|x−y| + qx+y) if y ∈ N
∗

1−q
1+q q

x otherwise,

for x ∈ N. Actually for x ∈ N the probability measure R(x, .) on N is the law of
the random variable |x+ ξ11(1)− ξ11(

1
2 )|.

Particles evolve as follows. At time 0 all particles are at zero, i.e. X(0) = 0. All
particles, except those labeled by (2l − 1, l) for l ∈ {1, . . . , [k+1

2 ]}, try to jump to
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the left at times n + 1
2 and to the right at times n, n ∈ N. For l ∈ {1, . . . , [k+1

2 ]},
particle labeled by (2l − 1, l) jumps on its own volition at times n only. Suppose
that at time n there is one particle at point (k − i,X i

j(n)) of Z2, for i = 1, . . . , k,

j = 1, . . . , [ i+1
2 ]. Positions of particles are updated recursively as follows (see also

figure 2).

At time n+ 1/2 : All particles except particles X2l−1
l (n) for l ∈ {1, . . . , [k+1

2 ]}, try
to jump to the left one after another in the lexicographic order pushing the particles
in order to stay in the set of Gelfand-Tsetlin patterns and being blocked by the
initial configuration X(n) of the particles. Let us indicate how the first three lines
are updated at time n+ 1

2 .

• Particle X1
1 (n) doesn’t move. We let

X1
1 (n+

1

2
) = X1

1 (n).

• Particle X2
1 (n) tries to jump to the left according to a geometric jump. It

is blocked by X1
1 (n). If it is necessary it pushes X3

2 (n) to an intermediate

position denoted by X̃3
2 (n), i.e.

X2
1 (n+

1

2
) = max

(

X1
1 (n), X

2
1 (n)− ξ21(n+

1

2
)
)

X̃3
2 (n) = min

(

X3
2 (n), X

2
1 (n+

1

2
)
)

• ParticleX3
1 (n) tries to move to the left according to a geometric jump being

blocked by X2
1 (n) :

X3
1 (n+

1

2
) = max

(

X2
1 (n), X

3
1 (n)− ξ31(n+

1

2
)
)

.

Particle X̃3
2 (n) doesn’t move. We let

X3
2 (n+

1

2
) = X̃3

2 (n).

Suppose now that rows 1 through l − 1 have been updated for some l > 1. Then
particles X l

1(n), . . . , X
l
[ l+1

2
]
(n) of line l are pushed to intermediate positions

X̃ l
i(n) = min

(

X l
i(n), X

l−1
i−1(n+

1

2
)
)

, i ∈ {1, . . . , [ l + 1

2
]}.

whit the convention X l−1
0 (n+ 1

2 ) = +∞. Then particles X̃ l
1(n), . . . , X̃

l
[ l
2
]
(n) try to

jump to the left according to geometric jump being blocked as follows by the initial
position X(n) of the particles. For i = 1, . . . , [ l2 ],

X l
i(n+

1

2
) = max

(

X l−1
i (n), X̃ l

i(n)− ξli(n+
1

2
)
)

.

When l is odd, particle X̃ l
l+1

2

(n) doesn’t move and we let

X l
l+1

2

(n+
1

2
) = X̃ l

l+1

2

(n).

At time n+ 1 : All particles except particlesX2l−1
l (n+ 1

2 ) for l ∈ {1, . . . , [k+1
2 ]}, try

to jump to the right one after another in the lexicographic order pushing particles
in order to stay in the set of Gelfand-Tsetlin patterns and being blocked by the
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initial configuration X(n+ 1
2 ) of the particles. The first three lines are updated as

follows.

• Particle X1
1 (n + 1

2 ) moves according to the law R(X1
1 (n + 1

2 ), .) pushing

X2
1 (n+ 1

2 ) to an intermediate position X̃2
1 (n+ 1

2 ) :

X1
1 (n+ 1) =

∣

∣X1
1 (n+

1

2
) + ξ11(n+ 1)− ξ11(n+

1

2
)
∣

∣

X̃2
1 (n+

1

2
) = max

(

X2
1 (n+

1

2
), X1

1 (n+ 1)
)

• Particle X̃2
1 (n+

1
2 ) jumps to the right according to a geometric jump pushing

X3
1 (n+ 1

2 ) to an intermediate position X̃3
1 (n+ 1

2 ), i.e.

X2
1 (n+ 1) = X̃2

1 (n+
1

2
) + ξ21(n+ 1)

X̃3
1 (n+

1

2
) = max

(

X3
1 (n+

1

2
), X2

1 (n+ 1)
)

• Particle X3
2 (n + 1

2 ) tries to move according to the law R(X1
1 (n+ 1

2 ), .). It

is blocked by X2
1 (n+ 1

2 ). Particle X̃3
1 (n+ 1

2 ) moves to the right according
to a geometric jump. That is

X3
2 (n+ 1) = max(

∣

∣X3
2 (n+

1

2
) + ξ32(n+ 1)− ξ32(n+

1

2
)
∣

∣, X2
1 (n+

1

2
))

X3
1 (n+ 1) = X̃3

1 (n+
1

2
) + ξ31(n+ 1)

Suppose rows 1 through l− 1 have been updated for some l > 1. Then particles of
line l are pushed to intermediate positions

X̃ l
i(n+

1

2
) = max

(

X l−1
i (n+ 1), X l

i(n+
1

2
)
)

, i ∈ {1, . . . , [ l + 1

2
]},

with the convention X l−1
l+1

2

(n + 1) = 0 when l is odd. Then particles X̃ l
1(n +

1
2 ), . . . , X̃

l
[ l
2
]
(n + 1

2 ) try to jump to the right according to geometric jump being

blocked by the initial position of the particles as follows. For i = 1, . . . , [ l2 ],

X l
i(n+ 1) = min

(

X l−1
i−1(n+

1

2
), X̃ l

i(n+
1

2
) + ξli(n+ 1)

)

.

When l is odd, particle X l
l+1

2

(n+ 1
2 ) is updated as follows.

X l
l+1

2

(n+ 1) = min(
∣

∣X l
l+1

2

(n+
1

2
) + ξll+1

2

(n+ 1)− ξll+1

2

(n+
1

2
)
∣

∣, X l−1
l−1

2

(n+
1

2
))

4. An interacting particles model with exponential waiting times

In this section we describe an interacting particles model on Z
2 where particles

try to jump by one rightwards or leftwards after exponentially distributed waiting
times. The evolution of the particles is described by a random process (Y (t))t≥0 on
the set GTk of Gelfand-Tsetlin patterns with non negative valued components. As
in the previous model, at time t ≥ 0 there is one particle labeled by (i, j) at point
(k− i, Y i

j (t)) of the integer lattice, for i = 1, . . . , k, j = 1, . . . , [ i+1
2 ]. Every particles

try to jump to the left or to the right by one after independent exponentially
distributed waiting time with mean 1. Particles are pushed and blocked according
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to the same rules as previously. That is when particle labeled by (i, j) wants to
jump to the right at time t ≥ 0 then

(1) if i, j ≥ 2 and Y i
j (t
−) = Y i−1

j−1 (t
−) then particles don’t move and Y (t) =

Y (t−).
(2) else particles (i, j), (i+1, j), . . . , (i+ l, j) jump to the right by one for l the

largest integer such that Y i+l
j (t−) = Y i

j (t
−) i.e.

X i
j(t) = X i

j(t
−) + 1, . . . , X i+l

j (t) = X i+l
j (t−) + 1.

When particle labeled by (i, j) wants to jump to the left at time t ≥ 0 then

(1) if i is odd, j = (i + 1)/2 and X i
j(t
−) = 0 then particle labeled by (i, j) is

reflected by 0 and everything happens as described above when this particle
try to jump to the right by one.

(2) if i is odd, j = (i+ 1)/2 and X i
j(t
−) ≥ 1 then X i

j(t) = X i
j(t
−)− 1.

(3) if i is even or j 6= (i + 1)/2, and X i
j(t
−) = X i−1

j (t−) then particles don’t
move.

(4) if i is even or j 6= (i+1)/2, and X i
j(t
−) > X i−1

j (t−) then particles (i, j), (i+

1, j + 1), . . . , (i + l, j + l) jump to the left by one for l the largest integer

such that Y i+l
j+l (t

−) = Y i
j (t
−). Thus

X i
j(t) = X i

j(t
−)− 1, . . . , X i+l

j+l(t) = X i+l
j+l(t

−)− 1.

This random particles model is equivalent to a random tiling model with a wall,
as it has been explained in detail in [1].

5. Markov Kernel on the set of irreducible representations of the

orthogonal group

When a finite dimensionnal representation V of a group G is completely re-
ducible, there is a natural way that we’ll recall later in our particular case to
associate to this decomposition a probability measure on the set of irreducible rep-
resentations of G. Theorem 7.1 claims that the process (Xk(t), t ≥ 0) is Markovian.
It occurs that the transition probabilities of this process can be obtained in that
manner. Actually we recover them considering decomposition into irreducible com-
ponents of tensor products of particular irreducible representations of the special
orthogonal group.

Let d be an integer greater than 2. Let us recall some usual properties of the
finite dimensional representations of the compact group SO(d) of d× d orthogonal
matrices with determinant equal to 1 (see for instance [5] for more details). The
set of finite dimensional representations of SO(d) is indexed by the set

{λ ∈ R
r : 2λr ∈ N, λi − λi+1 ∈ N, i = 1, . . . , r − 1},

when d = 2r + 1 and by the set

{λ ∈ R
r : λr−1 + λr ∈ N, λi − λi+1 ∈ N, i = 1, . . . , r − 1},

when d = 2r. Actually we are only interested with representations indexed by a
subset Wd of these sets define by

Wd = {λ ∈ R
r : λr ∈ N, λi − λi+1 ∈ N, i = 1, . . . , r − 1},

when d = 2r + 1 and

Wd = {λ ∈ R
r : λr ∈ Z, λr−1 + λr ∈ N, λi − λi+1 ∈ N, i = 1, . . . , r − 1},
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when d = 2r. For λ ∈ Wd, using standard notations, we denote by Vλ the so called
irreducible representation with highest weight λ of SO(d). The subset of Wd whose
elements have non negative components is denoted by W+

d .
Let m be an integer and λ an element of Wd. Consider the irreducible repre-

sentations Vλ and Vγm
of SO(d), with γm = (m, 0, · · · , 0). The decomposition of

the tensor product Vλ ⊗ Vγm
into irreducible components is given by a Pieri-type

formula for the orthogonal group. It has been recalled in [3]. We have

Vλ ⊗ Vγm
= ⊕βMλ,γm

(β)Vβ ,(1)

where the direct sum is over all β ∈ Wd such that

• when d = 2r+1, there exists an integer s ∈ {0, 1} and c ∈ N
r which satisfy







c � λ, c � β

∑r
i=1(λi − ci + βi − ci) + s = m,

s being equal to 0 if cr = 0. In addition, the multiplicity Mλ,γm
(β) of the

irreducible representation with highest weight β is the number of (c, s) ∈
N

r × {0, 1} satisfying these relations.
• when d = 2r, there exists c ∈ N

r−1 which verifies






c � |λ|, c � |β|
∑r−1

k=1(λk − ck + βk − ck) + |λr − µr| = m.

In addition, the multiplicityMλ,γm
(β) of the irreducible representation with

highest weight β is the number of c ∈ N
r−1 satisfying these relations.

Let us consider a family (µm)m≥0 of Markov kernels on Wd defined by

µm(λ, β) =
dim(Vλ)

dim(Vβ) dim(Vγm
)
Mλ,γm

(β),

for λ, β ∈ Wd and m ≥ 0. It is known that for λ ∈ Wd the dimension of Vλ is given
by sd−1(λ). Thus

µm(λ, β) =
sd−1(λ)

sd−1(β)sd−1(γm)
Mλ,γm

(β).

Let ξ1, . . . , ξd be independent geometric random variables with parameter q and ǫ
a Bernoulli random variable such that

P(ǫ = 1) = 1− P(ǫ = 0) =
q

1 + q
.

Consider a random variable T on N defined by

T =

d−1
∑

i=1

ξi + ǫ,

when d = 2r + 1 and

T = |ξ1 − ξ2|+
d

∑

i=3

ξi,

when d = 2r.



AN INTERACTING PARTICLES MODEL AND A PIERI-TYPE FORMULA FOR SO(d) 7

Lemma 5.1. The law of T is a measure ν on N defined by

ν(m) =
1

1 + q
(1 − q)d−1qmsd−1(γm), m ∈ N.

Proof. When d = 2r + 1, for m = 0 the property is true. For m ≥ 1

P(T = m) =
q

1 + q
P(

d−1
∑

i=1

ξi = m− 1) +
1

1 + q
P(

d−1
∑

i=1

ξi = m)

=
1

1 + q
(1− q)d−1qm Card{(k1, . . . , kd−1) ∈ N

d−1 :

d−1
∑

i=1

ki ∈ {m− 1,m}}

=
1

1 + q
(1− q)d−1qm

∑

(k1,...,kd−1)∈Nd−1:
∑

d−1

i=1
ki=m

(21k1≥1 + 1k1=0)

=
1

1 + q
(1− q)d−1qmsd−1(γm).

So the lemma is proved in the odd case. Moreover

P(|ξ1 − ξ2| = k) =







2 1−q
1+q q

k if k ≥ 1,

1−q
1+q otherwise.

Thus when d = 2r,

P(T = m) =
1

1 + q
(1− q)d−1qm

∑

(k1,...,kd−1)∈Nd−1:
∑

d−1

i=1
ki=m

(21k1≥1 + 1k1=0)

=
1

1 + q
(1− q)d−1qmsd−1(γm).

�

Lemma 5.1 implies in particular that the measure ν is a probability measure.
Thus one defines a Markov kernel Pd on Wd letting

Pd(λ, β) =
+∞
∑

m=0

µm(λ, β)ν(m),(2)

for λ, β ∈ Wd.

Proposition 5.2. For λ, β ∈ Wd,

Pd(λ, β) =
∑

c∈Nr:c�λ,β

(1 − q)d−1
sd−1(β)

sd−1(λ)
q
∑

r

i=1
(λi+βi−2ci)(1cr>0 +

1cr=0

1 + q
)

when d = 2r + 1 and

Pd(λ, β) =
∑

c∈Nr−1:c�|λ|,|β|

(1− q)d−1
sd−1(β)

sd−1(λ)
q
∑

r−1

i=1
(λi+βi−2ci)+|λr−βr|

when d = 2r.

Proof. Proposition follows immediately from the tensor product rules recalled for
the decomposition (1). �
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6. Random matrices

Let us denote by Md,d′ the set of d × d′ real matrices. A standard Gaussian
variable onMd,d′ is a random variable having a density with respect to the Lebesgue
measure on Md,d′ equal to

M ∈ Md,d′ 7→ 1
dd

′
√
2π

exp(−1

2
tr(MM∗)).

We write Ad for the set {M ∈ Md,d : M + M∗ = 0} of antisymmetric d × d real
matrices, and iAd for the set {iM : M ∈ Ad}. Since a matrix in iAd is Hermitian,
it has real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd. Morever, antisymmetry implies that
λd−i+1 = −λi, for i = 1, · · · , [d/2] + 1, in particular λ[d/2]+1 = 0 when d is odd.

Consider the subset Cd of R
[ d
2
]

+ defined by

Cd = {x ∈ R
[ d
2
] : x1 > · · · > x[ d

2
] > 0},

and its closure
C̄d = {x ∈ R

[ d
2
] : x1 ≥ · · · ≥ x[ d

2
] ≥ 0}.

Definition 6.1. We define the function hd on Cd by

hd(λ) = cd(λ)
−1Vd(λ), λ ∈ Cd,

where the functions Vd and cd are given by :

Vn(λ) =
∏

1≤i<j≤[ d
2
]

(λi − λj)
∏

1≤i<j≤[ d
2
]

(λi + λj)
∏

1≤i≤[ d
2
]

λε
i ,

cn(λ) =
∏

1≤i<j≤[ d
2
]

(j − i)
∏

1≤i<j≤[ d
2
]

(d− j − i)
∏

1≤i≤[ d
2
]

([
d

2
] +

1

2
− i)ε,

whit ε equal to 1 when d /∈ 2N and 0 otherwise.

Next proposition is an immediate consequence of propositions 4.8 and 5.1 of [3]

Proposition 6.2. Let (M(n), n ≥ 0), be a process on iAd defined by

M(n) =

n
∑

l=1

Yl

(

0 i
−i 0

)

Y ∗l ,

where the Yl’s are independent standard Gaussian variables on Md,2. If Λ(n) is

the vector of C̄d whose components are the [d2 ] biggest eigenvalues of M(n), n ∈ N,

then the process (Λ(n), n ≥ 0) is a Markov chain on C̄d with transition probabilities

pd(x, dy) =
hd(y)

hd(x)
md(x, y) dy,

for x, y ∈ Cd, where dy is the Lebesgue measure on R
[ d
2
]

+ and

md(x, y) =

∫

Rr

+

1{z�x,y}e
−

∑
m

i=1
(yi+xi−2zi) dz

when d = 2r + 1 and

md(x, y) =

∫

R
r−1

+

1{z�|x|,|y|}e
−

∑
r−1

i=1
(xi+yi−2zi)(e−|xr−yr| + e−(xr+yr)) dz

when d = 2r.
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7. Results

Theorem 7.1. The process (Xk(t))t≥0 is a Markov process on W+
k+1. If we denote

Rk its transition kernel then

• R1 = R.
• when k is even Rk = Pk+1,
• when k is an odd integer greater than 2

Rk(x, y) =







Pk+1(x, y) + Pk+1(x, ỹ) if y k+1

2

6= 0

Pk+1(x, y) otherwise,

for x, y ∈ W+
k+1, where ỹ = (y1, . . . , y k−1

2

,−y k+1

2

).

If (Λ(n), n ≥ 0) is the process of eigenvalues considered at proposition 6.2 with
d = k + 1 then the following theorem holds.

Theorem 7.2. Letting q = 1 − 1
N , the process (X

k(n)
N , n ≥ 1) converges in distri-

bution towards the process of eigenvalues (Λ(n), n ≥ 1) as N goes to infinity.

Theorem 7.3. Letting q = 1
N , the process (X([Nt]), t ≥ 0) converges in distribu-

tion towards the process (Y (t), t ≥ 0) as N goes to infinity.

8. proofs

Proof of theorem 7.1. Proof of theorem 7.1 rests on an intertwining property
and an application of a Pitman and Rogers criterion given in [6].

Definition 8.1. Let ξ1 and ξ2 be two independent geometric random variables. For
x, a ∈ N such that x ≥ a, the law of the random variable

max(a, x− ξ1),

is denote by
a←

P (x, .) For x, b ∈ N such that x ≤ b we denote by
→b

P (x, .) and
→b

R (x, .)
the laws of the random variables

min(b, x+ ξ1) and min(b, |x+ ξ1 − ξ2|).

For x, y ∈ R
2 such that x ≤ y we let

P (x, y) = (1− q)qy−x.

The two following lemmas are proved by straightforward computations.

Lemma 8.2. For a, x, y ∈ N such that a ≤ y ≤ x

a←

P (x, y) =

{

(1− q)qx−y if a+ 1 ≤ y
qx−a if y = a.

For b, x, y ∈ N such that b ≥ y ≥ x

→b

P (x, y) =

{

(1− q)qy−x if y ≤ b− 1
qb−x if y = b.
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For b, x, y ∈ N such that b ≥ y, x

→b

R (x, y) =







































1−q
1+q (q

|y−x| + qx+y) if y ≤ b− 1, y > 0

1−q
1+q q

x if y ≤ b− 1, y = 0

1
1+q q

b(q−x + qx) if y = b, y > 0

1 if y = b, y = 0.

Lemma 8.3. For (x, y, z) ∈ N
3 such that 0 < z ≤ y

z
∑

u=0

(1u=0 + 2 1u>0)R(u, x)
u←

P (y, z) = (1− q)(1x=0 + 2 1x>0)q
x∨z+y−2z(3)

For (x, y, a) ∈ N
3 such that a ≤ y and y ≤ x

y
∑

u=a

qu
u←

P (x, y) = qx−yqa(4)

For (x, y, a) ∈ N
3 such that y ≤ a and x ≤ y

a
∑

v=y

q−v
→v

P (x, y) = qy−xq−a(5)

For y ∈ N, y′ ∈ N
∗ such that y′ ≤ a

a
∑

v=y′

qv∨y−2v
→v

R (y ∧ v, y′) =
1

1− q
q−aR(y, y′)(6)

We first prove theorem 7.1 for k = 2. Consider the set

W+
2,3 = {(z, y) ∈ N

2 : z ≤ y}.

Define a Markov kernel S2 on W+
2,3 letting

S2((z0, y0), (z, y)) =











(1− q)2 s2(y)
s2(y0)

qy0+y−2z1z≤y0∧y if z > 0

(1−q)2

1+q
s2(y)
s2(y0)

qy0+y if z = 0.

for (z0, y0), (z, y) ∈ W+
2,3 and another one L2 from W+

2,3 to N×W+
2,3 letting

L2((z0, y0), (x, z, y)) = (1x=0 + 2 1x>0)
1

s2(y)
1x≤y1(z0,y0)=(z,y),

for (z0, y0), (z, y) ∈ W+
2,3 and x ∈ N. The fact that S2 is a Markov kernels follows

from proposition 5.2 with d = 3. The process

(X1
1 (n), X

2
1 (n− 1

2
), X2

1 (n))n≥1,

is clearly Markovian. Its transition kernel is denoted by Q2. Then Q2, L2 and S2

satisfy the following intertwining.

Lemma 8.4.

L2Q2 = S2L2.
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Proof. For (x, z, y), (x′, z′, y′) ∈ N×W+
2,3 such that x ≤ y and x′ ≤ y′

Q2((x, z, y), (x
′, z′, y′)) = R(x, x′)

x←

P (y, z′)P (x′ ∨ z′, y′).

Thus

L2Q2((z, y), (x
′, z′, y′)) =

z′

∑

x=0

s1(x)

s2(y)
R(x, x′)

x←

P (y, z′)P (x′ ∨ z′, y′)

As L2, S2 and Q2 are Markov kernels it is sufficient to prove the identity for z′ > 0.
In that case identity (3) of lemma 8.3 implies that

z′

∑

x=0

(1x=0 + 2 1x>0)

s2(y)
R(x, x′)

x←

P (y, z′) = (1 − q)(1x′=0 + 2 1x′>0)q
x′∨z′+y−2z′

.

Thus

L2Q2((z, y), (x
′, z′, y′)) =

(1x′=0 + 2 1x′>0)

s2(y)
(1− q)2qy+y′−2z′

,

which proves that
L2Q2 = S2L2.

�

Proposition 8.5. Letting X2
1 (− 1

2 ) = X2
1 (1) = 0, the process

(X2
1 (n− 1

2
), X2

1 (n))n≥0

is a Markov process on W+
2,3 with transition probability S2.

Proof. Since the process

(X1
1 (n), X

2
1 (n− 1

2
), X2

1 (n))n≥1

is Markovian with transition kernel Q2, proposition folows from the intertwining
property of lemma 8.4 and the criterion of Pitman and Rogers given in [6]. �

Theorem 7.1 follows when k = 2 from proposition 8.5. For the general case one
defines the process (Zk(n), Y k(n))n≥1, letting

Zk(n) = (Xk
1 (n− 1

2
), . . . , Xk

[k
2
]
(n− 1

2
)),

Y k(n) = Xk(n),

for n ≥ 1 and Zk(0) = Y k(0) = 0. Let us notice that Zk is equal to Xk when k is
even, whereas it is obtained from Xk by deleting its smallest component when k is
odd. We consider the subset W+

k,k+1 of W+
k ×W+

k+1 defined by

W+
k,k+1 = {(z, y) ∈ W+

k ×W+
k+1 : z � y},

and a Markov kernel Sk on W+
k,k+1 letting for every (z, y), (z′, y′) ∈ W+

k,k+1

Sk((z, y), (z
′, y′)) = (1− q)k

sk(y
′)

sk(y)
q
∑

r

i=1
(yi+y′

i
−2zi)(1zr>0 +

1zr=0

1 + q
)1z′�y,y′(7)

when k = 2r, and

Sk((z, y), (z
′, y′)) = (1− q)k−1

sk(y
′)

sk(y)
R(yr, y

′
r)q

∑
r−1

i=1
(yi+y′

i
−2zi)1z′�y,y′(8)
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when k = 2r − 1. The fact that for (z, y) ∈ W+
k,k+1 the measure Sk((z, y), .) is a

probability measure is a consequence of proposition 5.2 when d = k + 1.

Notation. Since for (z, y) ∈ W+
k,k+1 the probability Sk((z, y), .) doesn’t depend on

z it will by denoted by Sk(y, .) when there is no ambiguity.

Lemma 8.6. If the process

(Zk−1(n), Y k−1(n))n≥1,

is a Markov process on W+
k−1,k with transition kernel Sk−1 then the process

(Y k−1(n), Zk(n), Y k(n))n≥1

is a Markov process on the set

{(x, (z, y)) ∈ W+
k ×W+

k,k+1 : x � y}.
If we denote its transition kernel by Qk then for (u, z, y), (x, z′, y′) ∈ W+

k ×W+
k,k+1

such that u � y and x � y′

Qk((u, z, y), (x, z
′, y′)) =

∑

v∈Nr−1

Sk−1(u, (v, x))
→vr−1

R (yr ∧ vr−1, y
′
r)

×
r−1
∏

i=1

ui←

P (yi ∧ vi−1, z
′
i)

r
∏

i=1

→vi−1

P (z′i ∨ xi, y
′
i),(9)

when k = 2r − 1 and

Qk((u, z, y), (x, z
′, y′)) =

∑

v∈Nr−1

Sk−1(u, (v, x))
ur←

P (yr ∧ vr−1, z
′
r)

×
r−1
∏

i=1

ui←

P (yi ∧ vi−1, z
′
i)

r
∏

i=1

→vi−1

P (z′i ∨ xi, y
′
i),(10)

when k = 2r. In the odd and the even cases v0 = +∞ and the sum runs over
v = (v1, . . . , vr−1) ∈ N

r−1 such that vi ∈ {y′i+1, . . . , xi ∧ z′i}, for i ∈ {1, . . . , r − 1}
Proof. The dynamic of the model implies that the process

(Zk−1(n), Y k−1(n), Zk(n), Y k(n), n ≥ 0)

is Markovian. Since for (z, y) ∈ W+
k−1,k the transition probability Sk−1((z, y), .)

doesn’t depend on z, the Markovianity of the process

(Y k−1(n), Zk(n), Y k(n), n ≥ 0)

follows. Identities (9) and (10) is deduced from the blocking and pushing interac-
tions. �

Let us define Markov Kernel Lk fromW+
k,k+1 to W+

k ×W+
k,k+1 letting for x ∈ W+

k

and (z, y), (z0, y0) ∈ W+
k,k+1

Lk((z0, y0), (x, y, z)) = 1(z0,y0)=(z,y)
sk−1(x)

sk(y)
1x�y,(11)

when k is odd and

Lk((z0, y0), (x, y, z)) = (1{0}(x k

2
) + 2 1N∗(x k

2
))1(z0,y0)=(z,y)

sk−1(x)

sk(y)
1x�y,(12)

when k is even. The following proposition generalizes lemma 8.4.
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Proposition 8.7. Markov kernels Sk, Lk and Qk defined as in (7), (8), (11), (12)
and lemma 8.6 satsify the intertwining

LkQk = SkLk.

Proof. For (z, y) ∈ W+
k,k+1, (x, z

′, y′) ∈ W+
k ×W+

k,k+1 such that x � y′,

LkQk((z, y), (x, z
′, y′)) =

∑

u∈W+

k

Lk((z, y), (u, z, y))Qk((u, z, y), (x, z
′, y′)).

We prove separately the even and the odd cases. When k = 2r, the sum is equal to

∑

(u,v)∈Nr×Nr−1

sk−1(x)

sk(y)
(1{0}(ur) + 2 1N∗(ur))(1− q)2r−2R(ur, xr)q

∑
r−1

i=1
(xi+ui−2vi)

× P (z′1 ∨ x1, y
′
1)

r
∏

i=1

ui←

P (yi ∧ vi−1, z
′
i)

r
∏

i=2

→vi−1

P (z′i ∨ xi, y
′
i).

where the sum runs over (u, v) ∈ N
r × N

r−1 such that ur ∈ {0, . . . , z′r}, vi ∈
{y′i+1, . . . , xi ∧ z′i}, ui ∈ {vi ∨ yi+1, . . . , z

′
i}, for i ∈ {1, . . . , r − 1}. Thus the sum

equals

∑

v∈Nr−1

sk−1(x)

sk(y)
(1− q)2r−2q

∑
r−1

i=1
xiP (z′1 ∨ x1, y

′
1)

r
∏

i=2

q−2vi−1

→vi−1

P (z′i ∨ xi, y
′
i)

×
∑

u∈Nr

(1{0}(ur) + 2 1N∗(ur))(1 − q)2r−2R(ur, xr)

r
∏

i=1

qui

ui←

P (yi ∧ vi−1, z
′
i).

For a fixed v the sum over u is

z′

r
∑

ur=0

(1{0}(ur)+2 1N∗(ur))R(ur, xr)
ur←

P (yr∧vr−1, z′r)
r−1
∏

i=1

z′

i
∑

ui=vi∨yi+1

qui

ui←

P (yi∧vi−1, z′i).

Since Lk and Qk are Markov kernels it is sufficient to consider the case when zr > 0.
In that case, identities (3) and (4) of lemma 8.3 imply that the sum over u equals

(1{0}(xr) + 2 1N∗(xr))q
xr∨z

′

r
+yr∧vr−1−2z

′

r(1 − q)

r−1
∏

i=1

qyi∧vi−1−z
′

i
+vi∨yi+1 .

i.e.

(1{0}(xr) + 2 1N∗(xr))q
xr∨z

′

r
+yr−2z

′

r
+
∑

r−1

i=1
yi+vi−z

′

i(1− q).

Thus

L2rQ2r((z, y), (x, z
′, y′))

equals

sk−1(x)

sk(y)
(1− q)2r−1(1{0}(xr) + 2 1N∗(xr))q

xr∨z
′

r
+yr−2z

′

r
+
∑

r−1

i=1
yi−z

′

iq
∑

r−1

i=1
xi

× P (z′1 ∨ x1, y
′
1)

r
∏

i=2

xi−1∨z
′

i−1
∑

vi−1=yi

q−vi−1

→vi−1

P (z′i ∨ xi, y
′
i).
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Identity (5) of lemma 8.3 gives that

r
∏

i=2

xi−1∨z
′

i−1
∑

vi−1=yi

q−vi−1

→vi−1

P (z′i ∨ xi, y
′
i) =

r
∏

i=2

qy
′

i
−z′

i
∨xi−xi−1∧z

′

i−1

= qy
′

r
−z′

r
∨xr−x1∧z

′

1q
∑

r−1

i=2
y′

i
−xi−z

′

i ,

which implies

L2rQ2r((z, y), (x, z
′, y′)) =

sk−1(x)

sk(y)
(1− q)2r(1{0}(xr) + 2 1N∗(xr))q

∑
r

i=1
yi+y′

i
−2z′

i ,

and achieves the proof for the even case. Similarly when k = 2r − 1

L2r−1Q2r−1((z, y), (x, z
′, y′)) =

∑

u,v∈Nr−1

sk−1(x)

sk(y)
q
∑

r−1

i=1
xi−2vi

→vr−1

R (yk ∧ vr−1, y
′
k)

×
r−1
∏

i=1

qui

ui←

P (yi ∧ vi−1, z
′
i)

r
∏

i=1

→vi−1

P (z′i ∨ xi, y
′
i),

where the sum runs over (u, v) ∈ N
r−1 × N

r−1 such that vi ∈ {y′i+1, . . . , xi ∧ z′i},
ui ∈ {vi∨yi+1, . . . , z

′
i}, for i ∈ {1, . . . , r− 1}. We obtain the intertwining in a quite

similar way as in the even case, using identities (4), (5) and (6) of lemma 8.3. �

Proposition 8.8. The process (Zk(n), Y k(n))n≥1, is Markovian with transition
kernel Sk defined in (8).

Proof. Conditionally to the process (Xk−1(t), t ≥ 0) processes (Xk(t), t ≥ 0) and
(X l(t), t ≥ 0), for l = 1, . . . , k− 2, are independent. So the property can be proved
by induction on k. Proposition 8.5 claims that it is true for k = 2. Suppose that
proposition is true for a fixed interger k− 1 greater that 1. Lemma 8.6 implies that
the process

(Y k−1(n), Zk(n), Y k(n))n≥1

is Markovian with transition kernel Qk. The intertwining of proposition 8.7 implies,
by using the Pitman and Rogers criterion given in [6], that the process

(Zk(n), Y k(n))n≥1

is Markovian with probability Sk. �

Theorem 7.1 is an immediate corollary of proposition 8.8.

Proof of theorem 7.2. Let (xN )N≥1 be a sequence of elements of W+
k+1 such

that xN

N converges to x ∈ Ck+1 as N goes to infinity and (νN )N≥1 be a sequence of

probability measures on W+
k+1 defined by

νN =
∑

y∈W+

k+1

Rk(xN , y)δ 1
N

y,

Propositions 5.2 and 6.2 imply that the measure νN converges to the measure pk+1

defined in proposition 6.2 as N goes to infinity. Theorem 7.2 follows.
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Proof of theorem 7.3. Proof of theorem 7.3 rests on a similar argument as in
section 2.7 of [2].

Lemma 8.9. Let T1(q) and T2(q) be two (possibly infinite) lower and upper tri-
angular matrices, whose matrix coefficients are polynomials in an indeterminate
q > 0:







T1(q) = A0 + qA1 + q2A2 + . . . ,

T2(q) = B0 + qB1 + q2B2 + . . . ,

and assume that A0 = B0 = I. Then for t ∈ R+,

lim
q→0

(T1(q)T2(q))
[t/q] = exp(t(A1 +B1)).

Proof. Because of the triangularity assumption, lemma follows, as in the proof of
lemma 2.21 of [2], from the claim for finite size matrices which is standard. �

Theorem 7.3 follows immediately from the last lemma taking






T1(q)(x, y) = P(X(n+ 1
2 ) = y|X(n) = x),

T2(q)(x, y) = P(X(n+ 1) = y|X(n+ 1
2 ) = x),

for x, y ∈ GTk.
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Figure 2. An example of blocking and pushing interactions be-
tween times n and n+1 for k = 4. Different kinds of dots represent
different particles.


