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AN INTERACTING PARTICLES MODEL
AND
A PIERI-TYPE FORMULA FOR THE ORTHOGONAL GROUP

MANON DEFOSSEUX

ABSTRACT. We introduce a new interacting particles model with blocking and
pushing interactions. Particles evolve on the positive line jumping on their
own volition rightwards or leftwards according to geometric jumps with pa-
rameter ¢ €]0,1[. We show that the model involves a Pieri-type formula for
the orthogonal group. We prove that the two extreme cases-q=0and g =1 -
lead respectively to a random tiling model studied in [[|] and a random matrix
model considered in

1. INTRODUCTION

In [ﬂ] A. Borodin and J. Kuan consider a random tiling model with a wall
which is related to the Plancherel measure for the orthogonal group and thus to
representation theory of this group. Similar connection holds for the interacting
particles model and the random matrix model considered in [[J]. The aim of this
paper is to establish a direct link between the random tiling model on one side and
the interacting particles model or the random matrix model on the other side. For
this we consider an interacting particle model depending on a parameter and show
that these models correspond to different parameter values. The paper is organized
as follows. Definition of the set of Gelfand-Tsetlin patterns for the orthogonal group
is recalled in sectionﬂE Sectionﬂ is devoted to the description of the particles model.
We recall in section Y| the description of an interacting particle model equivalent
to the random tiling model studied in [El] Models considered in that paper involve
Markov kernels which can be obtained with the help of a Pieri-type formula for the
orthogonal group. These Markov kernels are constructed in section E after recalling
some elements of representation theory. We describe the matrix model related to
our particles model in section [l Results are stated in section [| and proved in
section E

Acknowlegments: The author would like to thank Alexei Borodin for its sugges-
tions and helpful explanations.

2. GELFAND-TSETLIN PATTERNS

Let n be a positive integer. For z,y € R" such that x, < --- < z; and y, <
-+ <y, we write x < y if x and y are interlaced, i.e.

T <Yp < Tp1 < <1 <Y1,

When # € R® and y € R*""! we add the relation y, 11 < x,. We denote |z| the
vector whose components are the absolute values of those of x.

Definition 2.1. Let k be a positive integer.
1
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(1) We denote by GTy, the set of Gelfand-Tsetlin patterns defined by
GT, = {(z*,---,2%) 2" e NN71 X Z when i = 25 — 1,
' € NV when i = 2j, |2"7Y < |2'|,1 <i < k}.
(2) If x = (2,...,2%) is a Gelfand-Tsetlin pattern, x* is called the i*" line of
x forie{l,...,k}.
(8) For X € Z55) the subset of Gelfand-Tsetlin patterns having a k" line equal
to X is denoted by GTy(\) and its cardinal is denoted by si(\).

Usually, a Gelfand Tsetlin pattern is represented by a triangular array as indi-
cated at figure [ll for k = 2r.

L1
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FIGURE 1. A Gelfand-Tsetlin pattern of GT5,

3. AN INTERACTING PARTICLES MODEL WITH EXPONENTIAL JUMPS

Let k be a positive integer. In this section we construct a process (X (t))i>o0
evolving on the set GT}, of Gelfand-Tsetlin patterns with non negative valued com-
ponents. This process can be viewed as an interacting particles model. For this, we
associate to a Gelfand-Tsetlin pattern = = (z',..., %), a configuration of particles
on the integer lattice Z? putting one particle labeled by (i, j) at point (k — i, xé) of
Z2foric {1,....k},je€{1,..., [%]} Several particles can be located at the same
point. In the sequel we identify each particles with its corresponding component.
Let ¢ €]0,1[. Consider two independent families

(5;(”+5))i:1,...,k,j:1,...,[i§1];nzo’ and (5;'(”))i:L...k,j:L...,[igl];nzp

of identically distributed independent random variables such that

1
P& () =) =P&1) =) =q¢"(1-q), z€N,
and the markov Kernel R on N defined by

ﬁ(qlr*yl +¢"tY) ify e N*

R(‘ray) =

1-q
1+q

for z € N. Actually for z € N the probability measure R(z,.) on N is the law of
the random variable |z + &{ (1) — &1 (3)].

Particles evolve as follows. At time 0 all particles are at zero, i.e. X(0) = 0. All
particles, except those labeled by (21 — 1,1) for I € {1,..., [k—;rl]}, try to jump to

otherwise,
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the left at times n + 1 and to the right at times n, n € N. For [ € {1,...,[2]},

particle labeled by (20 — 1,1) jumps on its own volition at times n only. Suppose
that at time n there is one particle at point (k — i, Xi(n)) of Z*, for i = 1,...,k,

j=1,..., [#] Positions of particles are updated recursively as follows (see also
figure f).
At time n + 1/2 : All particles except particles X'~!(n) for I € {1,..., [2HL]}, try

to jump to the left one after another in the lexicographic order pushing the particles
in order to stay in the set of Gelfand-Tsetlin patterns and being blocked by the
initial configuration X (n) of the particles. Let us indicate how the first three lines
are updated at time n + %

e Particle X (n) doesn’t move. We let

1
X{(n+ 5) = X{(n).
e Particle X?(n) tries to jump to the left according to a geometric jump. It
is blocked by X{(n). If it is necessary it pushes X3(n) to an intermediate
position denoted by X3(n), i.e.

X3n+ 3) = max (X (n), X3(n) — (0 + 1))

: , 1
X3(n) = min (X3(n), X3 (n + 3))
e Particle X7(n) tries to move to the left according to a geometric jump being
blocked by X%(n) :

XPn -+ 5) = max (X2(n), X(n) — €} + 1)),

Particle X3(n) doesn’t move. We let
1 -
X3(n+ 5) = X3(n).

Suppose now that rows 1 through [ — 1 have been updated for some [ > 1. Then
particles X!(n),... ,X[ZH_I] (n) of line [ are pushed to intermediate positions

l+1
R

whit the convention X ~*(n + 1) = +oo. Then particles X!(n),... ,)N([li](n) try to
2
jump to the left according to geometric jump being blocked as follows by the initial
l

position X (n) of the particles. Fori =1,...,[3],

X! (n) = min (X} (n), X/} (n + %)), ie{l,...,[

Xl + ) = max (X7 (0), K1) — €ln + 1),

When [ is odd, particle X*,, (n) doesn’t move and we let
2

1 .

At time n + 1 : All particles except particles X'~ (n+1) for 1 € {1,..., [EE]}, try

to jump to the right one after another in the lexicographic order pushing particles
in order to stay in the set of Gelfand-Tsetlin patterns and being blocked by the
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initial configuration X (n + %) of the particles. The first three lines are updated as
follows.

e Particle X{(n + 1) moves according to the law R(X{(n + 1),.) pushing
X%(n+ %) to an intermediate position X2(n+1):

Xin+1)= \X1n+ )+§1(n+1) gi(n+%)\

X2(n+ 5) =max (X7(n+ =), X{(n + 1))

5)
e Particle X2(n+ %) jumps to the right according to a geometric jump pushing
X?(n+ 1) to an intermediate position X{(n + 3), i.e.

X¥(n+4+1)=X%(n+ 1)+El(n+1)
Xf(nJr ;) maX(Xl(n+ 1) Xl(nJrl))

e Particle X3(n + 1) tries to move according to the law R(X{(n+ 1),.). It
is blocked by XZ(n + 1). Particle X7(n + 1) moves to the right according
to a geometric jump. That is

X2<n+1>fmax\X2n+1>+52<n+1> &ln+ ), X2+ )
Xin+1)=XP(n+ = )+§1(n+1)

Suppose rows 1 through [ — 1 have been updated for some [ > 1. Then particles of
line [ are pushed to intermediate positions

[+1
=,

with the convention X'!(n + 1) = 0 when [ is odd. Then particles X!(n +
=

. 1 1
Xl (n+ 5) = max (X' (n+ 1), X n + 5)), ie{l,...,]

%), .. [ ](n + ) try to jump to the right according to geometric jump being

blocked by the initial position of the particles as follows. For i =1, ..., [%],

Xﬂn+D=nm%X£Hn+%%@m+%>+dm+1»

When [ is odd, particle X!, (n + %) is updated as follows.
2

1 1 1
Xby(n+1) =min(| XL, (n+ 5) + € (n+1) =& (n+ ) X+ 5)

4. AN INTERACTING PARTICLES MODEL WITH EXPONENTIAL WAITING TIMES

In this section we describe an interacting particles model on Z? where particles
try to jump by one rightwards or leftwards after exponentially distributed waiting
times. The evolution of the particles is described by a random process (Y (t)):>0 on
the set GT} of Gelfand-Tsetlin patterns with non negative valued components. As
in the previous model, at time ¢ > 0 there is one particle labeled by (4, ) at point
(k—1, Yf(t)) of the integer lattice, for i =1,...,k, j = 1,...,[%1]. Every particles
try to jump to the left or to the right by one after independent exponentially
distributed waiting time with mean 1. Particles are pushed and blocked according
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to the same rules as previously. That is when particle labeled by (i, ) wants to
jump to the right at time ¢ > 0 then
(1) if 3,5 > 2 and Y} (t7) = Yj;l (t7) then particles don’t move and Y (t) =
Y(t).
(2) else particles (i, ), (i +1,7),...,(i+1,j) jump to the right by one for I the

largest integer such that Y”l( )= Jl( T)ie

Xit)=X(t7)+1,... XM (t) = X;“(t )+ 1.
When particle labeled by (7, j) wants to jump to the left at time ¢ > 0 then

(1) if i is odd, j = (i +1)/2 and X}(t~) = 0 then particle labeled by (i, ) is
reflected by 0 and everything happens as described above when this particle
try to jump to the right by one.

(2) if i is odd, j = (i +1)/2 and X/ (¢t7) > 1 then X;i(t) = Xi(t7) - 1.

(3) if i is even or j # (i +1)/2, and X}(t7) = X;_l(tf) then particles don’t
move.

(4) ifiis evenor j # (i+1)/2,and X}(t7) > X' (¢7) then particles (i, j), (i+
1,74+ 1),...,(i + 1,74+ 1) jump to the left by one for [ the largest integer
such that Yﬁfll (t7) =Y/(t7). Thus

Xj(t) = Xj(¢7) = L., Xj5(t) = Xj5(t7) — 1.
This random particles model is equivalent to a random tiling model with a wall,
as it has been explained in detail in [].

5. MARKOV KERNEL ON THE SET OF IRREDUCIBLE REPRESENTATIONS OF THE
ORTHOGONAL GROUP

When a finite dimensionnal representation V' of a group G is completely re-
ducible, there is a natural way that we’ll recall later in our particular case to
associate to this decomposition a probability measure on the set of irreducible rep-
resentations of G. Theorem @ claims that the process (X*(t),t > 0) is Markovian.
It occurs that the transition probabilities of this process can be obtained in that
manner. Actually we recover them considering decomposition into irreducible com-
ponents of tensor products of particular irreducible representations of the special
orthogonal group.

Let d be an integer greater than 2. Let us recall some usual properties of the
finite dimensional representations of the compact group SO(d) of d x d orthogonal
matrices with determinant equal to 1 (see for instance [f]] for more details). The
set of finite dimensional representations of SO(d) is indexed by the set

{AERTZQ)\TEN,Aif)\Z‘JrlEN,Z.:L...,Tfl},
when d = 2r 4+ 1 and by the set
{)\GRT:/\Tflﬁ’/\TGN, Ai — i1 GN,’L':L...,Tfl},

when d = 2r. Actually we are only interested with representations indexed by a
subset W; of these sets define by

Wd:{)\GRriATEN,AifAZ‘JrlEN,Z.:L...,Tfl},
when d = 2r + 1 and
Wa={AeR" : N\ €Z, 1+ XN N — N1 eN i=1,...,r—1},
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when d = 2r. For A € Wy, using standard notations, we denote by V) the so called
irreducible representation with highest weight A of SO(d). The subset of W,; whose
elements have non negative components is denoted by W;.

Let m be an integer and A an element of W;. Consider the irreducible repre-
sentations V) and V,,_ of SO(d), with v, = (m,0,---,0). The decomposition of
the tensor product Vy ® V,, _ into irreducible components is given by a Pieri-type
formula for the orthogonal group. It has been recalled in [ We have

(1) VA @V,,, = @My, (6)Vs,
where the direct sum is over all 8 € W, such that
e when d = 2r + 1, there exists an integer s € {0,1} and ¢ € N" which satisfy

c=XA c¢=p

SN+ Bi— ) +s=m,

s being equal to 0 if ¢, = 0. In addition, the multiplicity My -, (8) of the
irreducible representation with highest weight 8 is the number of (¢, s) €
N x {0, 1} satisfying these relations.

e when d = 2r, there exists ¢ € N"~! which verifies

c2X[Al, =B

Z;;io‘k —cg+ Pr — Ck) + |>‘T - ,UT| =m.
In addition, the multiplicity My -, (8) of the irreducible representation with
highest weight 3 is the number of ¢ € N"~! satisfying these relations.
Let us consider a family (i, )m>0 of Markov kernels on W, defined by
dim(Vy)
= M
dim(V3) dim(V5,,)" 7™ ),

for A\, 8 € Wy and m > 0. It is known that for A € Wy the dimension of V), is given
by sq4—1(\). Thus

i (A, B)

Sdfl(/\)
m )‘aﬁ = M m ﬁ .
M ( ) Sd—l(ﬁ)sd—l('Ym) Ay ( )
Let &1,...,&4 be independent geometric random variables with parameter ¢ and ¢
a Bernoulli random variable such that
q
Ple=1)=1-Ple=0) = —.
€=1=1-Ple=0) = L

Consider a random variable T" on N defined by

d—1
T = Zgz + €,
i=1
when d = 2r + 1 and

d
T =& —&+) &,
i=3
when d = 2r.
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Lemma 5.1. The law of T is a measure v on N defined by
1
v(m) = ——(1—¢) 1¢™sq—1(vm), meN.
(m) 1+q( )" sa-1(Ym)

Proof. When d = 2r + 1, for m = 0 the property is true. For m > 1

q 1
(T =m) = (;5 m=1)+ (;g m)
1 d—1
=15 q(1 — )" ¢ Card{(k1,... ka—1) ENTTT Y Tk € {m —1,m}}
i=1
1 d—1_m
m(l —a)" g > (21, >1 + 1k, =0)

(k1yeeokgo1)ENG=L: 9 ky=m
— (1-— d—1_m _ m).
1Jrq( )" q"sa-1(Ym)
So the lemma is proved in the odd case. Moreover
l—q &k
Qﬁq ifk>1,
P& — & =k) =
S otherwise.
Thus when d = 2r,
1 -1 m
]P)(T:m) = m(l*(])d 1q Z (21k121+1k120)
(k1,eoka—1)ENG=L: 3T by=m

1 -1, m
Zl—Jrq(l—Q)d Y™ sa—1(Vm)-

O

Lemma @ implies in particular that the measure v is a probability measure.
Thus one defines a Markov kernel P; on Wy letting

—+o00
(2) Pd()"ﬁ) = Z Mm()"ﬁ)y(m)a
m=0
for A, 8 € Wjy.
Proposition 5.2. For )\, 5 € Wy,
_ P 1. —
Pa(\, B) = 1 qi-154210) s uvpimzen g Lee=0
a(\s B) CEN%;A B( q) VL (e, >0 1+q)
when d = 2r +1 and
PyNB) = 1 — yd-154=108) sr1nipimac) 42,5,
a(\, 8) >, (-9 IR

ceNT—1:c<|A[,| 8]
when d = 2r.

Proof. Proposition follows immediately from the tensor product rules recalled for
the decomposition (). O
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6. RANDOM MATRICES

Let us denote by Mg 4 the set of d x d’ real matrices. A standard Gaussian
variable on Mg 4/ is a random variable having a density with respect to the Lebesgue
measure on My 4 equal to

1 1
M e Mga — ——=exp(—=tr(MM™)).

W27 2
We write Ay for the set {M € Mgq: M + M* = 0} of antisymmetric d x d real
matrices, and iAy for the set {iM : M € A;}. Since a matrix in 4.4, is Hermitian,
it has real eigenvalues Ay > Ao > --- > A\y. Morever, antisymmetry implies that
Ad—it1 = =g, for i = 1,---,[d/2] + 1, in particular Ajz/9+1 = 0 when d is odd.

Consider the subset Cy of R2! defined by
CdZ{IGR[%] twy > > wpgy > 0},

and its closure B .
Cd:{:CeR[i] 2 2---290[%] > 0}.

Definition 6.1. We define the function hq on Cq by
ha(\) = ca(N) " Va(N), X € Ca,

where the functions Vg and cq are given by :

v.oo= JI ci=x) II a+x) I X,

1<i<j<[4] 1<i<j<[4] 1<i<[g]

.. L. d 1 .

= [ G-o I @-i-o I (51+5-
1<i<j<[€] 1<i<j<[€] 1<i<[4]

whit € equal to 1 when d ¢ 2N and 0 otherwise.
Next proposition is an immediate consequence of propositions 4.8 and 5.1 of [E]

Proposition 6.2. Let (M(n),n > 0), be a process on i Ay defined by

oSl

where the Y;’s are independent standard Gaussian variables on Mgz. If A(n) is
the vector of Cq whose components are the [ ] biggest eigenvalues of M(n), n € N,
then the process (A(n),n > 0) is a Markov chain on Cq with transition probabilities

paldy) = 48 ma(e.y) dy

d
for x,y € Cq, where dy is the Lebesgue measure on R[f] and

md(‘ray) :/ 1{ijyy}e_22n:1(yi+wi—2zi) dz
RT

+

when d = 2r + 1 and

ma(z,y) :/ Laxjal Jyiye” imt Ptvim2a) (emlermund 4 o= (etun)) g
RT71

i
when d = 2r.
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7. RESULTS
Theorem 7.1. The process (Xk(t))tzo 1s a Markov process on W,;"H. If we denote
Ry, its transition kernel then

L R1 = R.
o when k is even Ry = Pyy1,
o when k is an odd integer greater than 2

Prr1(2,y) + Pryr(2,9) iy #0
Rk(xv y) =
Pryi(x,y) otherwise,

for T,y € W]j_+17 where g = (yla" ay%a_y%)

If (A(n),n > 0) is the process of eigenvalues considered at proposition with
d = k + 1 then the following theorem holds.

k
Theorem 7.2. Letting g =1 — %, the process (X]\En) ,n > 1) converges in distri-

bution towards the process of eigenvalues (A(n),n > 1) as N goes to infinity.

Theorem 7.3. Letting ¢ = ~, the process (X([Nt]),t > 0) converges in distribu-
tion towards the process (Y (t),t > 0) as N goes to infinity.

8. PROOFS

Proof of theorem @ Proof of theorem m rests on an intertwining property
and an application of a Pitman and Rogers criterion given in [E]

Definition 8.1. Let &1 and & be two independent geometric random variables. For
z,a € N such that x > a, the law of the random variable

max(a,x — &),
a‘— —b —b
is denote by P (x,.) For x,b € N such that x < b we denote by P (x,.) and R (x,.)
the laws of the random variables
min(b,x 4+ &) and min(b, |z + & — &2).
For x,y € R? such that x < y we let
P(z,y) = (1—-q)¢"".
The two following lemmas are proved by straightforward computations.

Lemma 8.2. Fora,z,y € N such that a <y <z

v (1-q)g"¥ ifa+1<y
P(z,y) = r—a ;
(=.9) { q ify=a.

Forb,z,y € N such thatb>y > x

» (1—-gq)g"™" ify<b-1
P(z,y)=1{ \_ .
('T y) { qb T ny =b.
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For b,x,y € N such that b > y,x
T+ ¢"™) ify<b-1,y>0

g ify<b—1,y=0

@ ") fy=by>0

1 ify=>0,y=0.
Lemma 8.3. For (z,y,z) € N3 such that 0 < z <y

d u—
(3) D (lu=o+21us0)R(u,2) P (y,2) = (1 — q)(Lomo + 2 Lumo)g" * TV~

u=0

For (z,y,a) € N® such that a <y and y < x

4 U
(4) > q"P(wy) =q"""
For (x,y,a) € N® such that y < a and x <y
@ —v
(5) Y gV P(xy)=¢"""q"
v=y
For y € N,y € N* such that y' < a
e —v 1
vVy—2v R A N — —ap /
(6) Z/q (yAv,y) T4 (v:y")
v=y

We first prove theorem @ for k = 2. Consider the set
Wiy ={(2,y) e N : 2 <y}
Define a Markov kernel S5 on W2+ 3 letting

(1—q)? 2 gty =21y i 2> 0

s2(yo)

SQ((Z()vyO)a(Zay)) = ( )2 )
1— S2 . _
—1451 —52(75’0)(]?/0"‘3’ if z=0.

for (z0,90), (2,y) € Wy 3 and another one Ly from W53 to N x Wy letting

1
L2((Zo, yO)a (90, 2,Y)) = (1120 +2 1z>0)—1z§y1(Zmyo):(zyy)’
s2(y)

for (z0,40), (2,4) € Wi and x € N. The fact that S, is a Markov kernels follows
from proposition @ with d = 3. The process

1

2
is clearly Markovian. Its transition kernel is denoted by QJ2. Then @2, Lo and S
satisfy the following intertwining.

(X1(n), XP(n — 5), X7 (n))nz1,

Lemma 8.4.
LyQ2 = S3Ls.
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Proof. For (z,z,y),(x',2',y") € N x WQJT3 such that x <y and 2’ <y’
€T4—
Q2((z,2,y), (2,2, y')) = R(z,2") P (y, ') P(a" v 2", y).
Thus

’

LQQQ((Zvy>’ (:L' %Y )) - ;) Q(y)

As Ly, S5 and Q2 are Markov kernels it is sufficient to prove the identity for 2’ > 0.
In that case identity () of lemma @ implies that

V)

) pia,a)'P (g, 2\ P v 2, o)

&

z/ 1I: +21I Tr<— m/ z’ _ z’

Z( Os (y) >0_)R($’$I)P(yazl):(1_q)(1m’20+211’>0)q VEty—22
2

x=0

Thus
11/: —+ 2]~I/ 19,
L2@a((29), (0, 2 ) = Bt 2L20) (g a2
s2(y)
which proves that
LyQ2 = S L.
O
Proposition 8.5. Letting X7(—1) = X{(1) = 0, the process
1
(XT(n = 3), X7(n)nz0

is a Markov process on WQ‘ 3 with transition probability So.

Proof. Since the process

(X ), X700~ 3), X} (n))za

is Markovian with transition kernel @2, proposition folows from the intertwining
property of lemma B.4 and the criterion of Pitman and Rogers given in [f. O

Theorem follows when k = 2 from proposition .. For the general case one
defines the process (Z%(n),Y*(n)),>1, letting
1 1

Zk(n) = (Xf(n - 5)’ e ’X[kg](n - 5))a

Y¥(n) = X*(n),

for n > 1 and Z*(0) = Y*(0) = 0. Let us notice that Z* is equal to X* when k is
even, whereas it is obtained from X* by deleting its smallest component when k is
odd. We consider the subset W,j' i1 Of W,j X W,j +, defined by

Wit ={(z9) e W x Wi 2 <),

and a Markov kernel Sj on lek-u letting for every (z,y), (2',y’) € le:k-u

/
2 -~ " /7 1 —
7 1o 1 kw Ei:1(yi+yi 2z;) 12 z2-=0 12/ ,
( ) Sk((zv y)a ( Y )) ( Q) Sk(y) q ( >0+ _1 q) <y

when k = 2r, and

_1S ! L CTPR R yop
(8) Sk(('z’y)a (Zlay/)) = (1 - q)k ' S];((Z; R(yTay;)quzl (vityi=2 l)lz'f%y'
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when k = 2r — 1. The fact that for (z,y) € W,I,H the measure Si((z,y),.) is a
probability measure is a consequence of proposition when d =k + 1.

Notation. Since for (z,y) € W,:kﬂ the probability Sk((z,¥),.) doesn’t depend on
z it will by denoted by Sk (y,.) when there is no ambiguity.

Lemma 8.6. If the process
(2" (n), Y (1))nz1,
s a Markov process on lefl,k with transition kernel Sy_1 then the process
(Y*" 1 (n), Z2%(n), Y*(0))nz1
is a Markov process on the set
{(z, (2,9)) €W x Wiljpy 1o 2y}

If we denote its transition kernel by Qy then for (u,z,y),(x,2',y’) € W,:r X W,:,H_l

such that w <y and x <3/
—VUr—1

Qk((U7 Zvy)a (ZL', Z/a y/)) = Z Skfl(uv (’va)) R (yT A Ur—1, y:‘)
veENr—1
Tﬁluﬁ— T v
(9) X P (y1 /\’Uiflvzg)]:[ P (Z:\/:Chy;)a
=1 1=1
when k =2r —1 and
oo s /
Qk((uv z,y), (ZL', Z,Y )) = Z Skfl(uv (’va)) r (yT A Ur—1, Zr)
veENr—1
Tﬁluﬁ— T v
(10) X P (y1 /\’Uiflvzg)]:[ P (Z:\/:Chy;)a
=1 =1

when k = 2r. In the odd and the even cases vp = +o0o and the sum runs over
v=(v1,...,01) € NV such that v; € {yl,y,...,xi Nz}, forie{l,...,r—1}
Proof. The dynamic of the model implies that the process
(21 (n),Y* " (n), Z2"(n), Y*(n),n > 0)
is Markovian. Since for (z,y) € le—l,k the transition probability Si_1((z,v),.)
doesn’t depend on z, the Markovianity of the process
(YE=Y(n), Z%(n),Y*(n),n > 0)

follows. Identities (fl) and ([[d) is deduced from the blocking and pushing interac-
tions. O

Let us define Markov Kernel Lj, from W,:rk_H to Wy x W,:rk_ﬂ letting for x € W;"
and (Za y)? (207 yO) € W}::k+1

Sk—1(x)
11 L ((2o0, s (Ty,2)) =1, —(zy)—— Lla=y,
( ) k(( 0 yO) ( Yy )) (20,90)=(z,9) Sk(y) <y
when k is odd and
B Sp—1(x)
(12> Lk((zoayO)v (SC,y,Z)) - (1{0}(:6%) +2 1N* ('rg))l(zmyo):(z,y) Sk(y) 1zjya

when k is even. The following proposition generalizes lemma @
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Proposition 8.7. Markov kernels Sy, Ly and Qi defined as in (fl), ), ((4), ([£3)
and lemma @ satsify the intertwining

LiyQr = SiLy.
Proof. For (z,y) € W,Ikﬂ, (z,2',y') € W x W,:kﬂ such that x <3/,
Lka((zv y)a (:L', Zla y/>> = Z Lk((zv y)a (uv 2, y))Qk((ua Z y)v (:C, Zlv y/))
uGW,:r

We prove separately the even and the odd cases. When k = 2r, the sum is equal to

Sk—1\T _ r=1¢.. U, Y
%(1{0} (ur) + 2 Iy (ur)) (1 — Q)QT QR(“N xr)quZI (@etus=2v,)
(u,v)EN" xN7—1 kY
r ul —Vi— 1
x P(2] V x1,y)) H (yi Nvi—1, 2 H P (z/ V).
i=1 i=2
where the sum runs over (u,v) € N” x N"=1 such that u, € {0,...,2.}, v; €

i1z N2zit, ug € {vi Vyiyr,..., 2}, for i € {1,...,r —1}. Thus the sum
equals

r— r —Vi—1
> Skz(f) (1> 2= %Py V) [[a 2 P (2 Vaiy)
Sk\Y =2

X Z 1{0} UT)+21N*(U’T))(1_(])2T 2R UT"TT qu yz/\Uz 1,2 z)'

u€eN"” =1

For a fixed v the sum over u is

/

Z'I‘

r—1 Z;
Uy $— Ui <—
Z (1{0}(UT)+2 I (U’T))R(U’Ta :ET) P (yT/\UT—la Zvlw) H Z qUi P (yi/\'Ui—l, Z;)

u,=0 i=1 u; =v; Vyit1

Since Ly and Q)i are Markov kernels it is sufficient to consider the case when z, > 0.
In that case, identities (E) and (@) of lemma @ imply that the sum over u equals

r—1
(1{0} (fEr) 421y (zr))qw\/zr-i-ywvrq—kr(1 _ q) H qyiAvFl—zi+vi\/yi+1_
i=1
i.e.
(Lgoy () + 21y () g™ Vor Hor =25 P icy vitvi==i(1 — g).
Thus
L2TQ2T((Z; y)v (SC, Zla y/))
equals
Sk—1\T — T V2! —2z r—1 z =1,
A1) (1 _ G121 (1 gy () + 2 T (1) )= Vo 02 I il I o

sk (y)

x; 1\/2
L —Vi—1

PivaLy) [ Y q_”i*l P (2 Vi, y;).

1=2 Vi-1=Yi
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Identity (f) of lemma B.3 gives that

’
Ti—1Vz;_
T i—1 Vi1

r
—Vi—1 ! X AN y'v—z'sz-—z',l/\zlvf
[T Y. oo P Glvay) =] Ve
=2 Vi—1=Yi =2

Y. —z VT, —T1 A2 qZ:;QI yi—xi—z,

=4q

)

which implies

Skp—1\T r . Wi

Lo Q2900 ')) = D1 2 1y o) + 2 1)) w02
and achieves the proof for the even case. Similarly when k = 2r — 1

Sp—1(x r—1_ ._>'U7‘—1
Lor1@ori((5), (@ 2y = S B mmtean ™5 g, gt

o Sk(y)
u,veEN
r—1 Ui T —wvig
x H q"" P (yi Nvi-1,2]) H P (2 Vi, yp),

i=1 i=1

where the sum runs over (u,v) € N"~! x N"~! such that v; € {y},4,...,z;i A 2]},

u; € {viVyir1,..., 2}, fori e {1,...,r—1}. We obtain the intertwining in a quite
similar way as in the even case, using identities (), () and @) of lemma .3 O

Proposition 8.8. The process (Z*(n),Y*(n))n>1, is Markovian with transition
kernel Sy, defined in ().

Proof. Conditionally to the process (X¥~1(¢),t+ > 0) processes (X*(¢),t > 0) and
(X'(t),t >0),forl=1,...,k—2, are independent. So the property can be proved
by induction on k. Proposition claims that it is true for k£ = 2. Suppose that
proposition is true for a fixed interger k — 1 greater that 1. Lemma @ implies that
the process
(Y1 (n), Z8(n), Y (0))nx1

is Markovian with transition kernel ). The intertwining of proposition @ implies,
by using the Pitman and Rogers criterion given in [, that the process

(2" (1), Y*(n))nz1

is Markovian with probability Sj. (]

Theorem is an immediate corollary of proposition @

Proof of theorem @ Let (zn)n>1 be a sequence of elements of W,;:_l such
that IWN converges to = € Cx+1 as N goes to infinity and (vy)n>1 be a sequence of
probability measures on W,j 1 defined by

VN = Z Rk(:ENay)(S%ya

+
YEW L,

Propositions @ and imply that the measure v converges to the measure pgy;
defined in proposition as IV goes to infinity. Theorem E follows.
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Proof of theorem @ Proof of theorem E rests on a similar argument as in
section 2.7 of [

Lemma 8.9. Let T1(q) and Ta(q) be two (possibly infinite) lower and upper tri-
angular matrices, whose matrix coefficients are polynomials in an indeterminate
qg>0:

Tl(q) :A0+qA1 +q2A2+...,

To(q) = Bo+qB1 +¢°Ba + ...,
and assume that Ag = By = 1. Then fort € Ry,

;{I})(Tl(Q)TNJ))[t/q] = exp(t(A1 + B1)).

Proof. Because of the triangularity assumption, lemma follows, as in the proof of
lemma 2.21 of [ff], from the claim for finite size matrices which is standard. O

Theorem E follows immediately from the last lemma taking
Ti(q)(z,y) =P(X(n + 3) = y|X(n) = z),

To(q)(z,y) =P(X(n+1) = y|X(n + 3) = 2),
for z,y € GTj.
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Interactions between times n and n + %
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FIGURE 2. An example of blocking and pushing interactions be-
tween times n and n+1 for k = 4. Different kinds of dots represent
different particles.



